1
|
Zhang M, Zheng Q, Cao WQ, Cao MS. Thermally tailoring dielectric genes of graphene hybrids for tuning electromagnetic properties. MATERIALS HORIZONS 2025; 12:1440-1451. [PMID: 39717999 DOI: 10.1039/d4mh01351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The functions of graphene have garnered significant attention in recent research. A profound understanding of the principles of temperature-dependent electromagnetic responses is crucial for guiding the design of advanced functional materials and devices. From this perspective, the thermally tailored mechanisms of polarization genes and conduction genes are emphasized. The synergistic effect between thermally tailored polarization relaxation and charge transport behaviors is revealed. More importantly, microwave absorption, electromagnetic shielding, and temperature sensing at elevated temperatures are discussed by customizing the conduction and polarization genes. The tunable variable-temperature electromagnetic performance enables the possibilities of diversified electromagnetic energy conversion. Three electromagnetic energy conversion devices for consuming waste electromagnetic energy are predicted, which can support the next generation of energy management and smart devices and promote efficient utilization of resources and sustainable development.
Collapse
Affiliation(s)
- Min Zhang
- Department of Physics, Beijing Technology and Business University, Beijing, 100048, China
| | - Qi Zheng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Chen M, Cai C, Bao J, Du Y, Gao H, Liu X. Effect of aliphatic segment length and content on crystallization and biodegradation properties of aliphatic-aromatic co-polyesters. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Kruželák J, Kvasničáková A, Hložeková K, Hudec I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. NANOSCALE ADVANCES 2021; 3:123-172. [PMID: 36131869 PMCID: PMC9417728 DOI: 10.1039/d0na00760a] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/07/2020] [Indexed: 05/04/2023]
Abstract
The explosive progress of electronic devices and communication systems results in the production of undesirable electromagnetic pollution, known as electromagnetic interference. The accumulation of electromagnetic radiation in space results in the malfunction of commercial and military electronic appliances, and it may have a negative impact on human health. Thus, the shielding of undesirable electromagnetic interference has become a serious concern of the modern society, and has been a very perspective field of research and development. This paper provides detailed insight into current trends in the advancement of various polymer-based materials with the effects of electromagnetic interference shielding. First, the theoretical aspects of shielding are outlined. Then, the comprehensive description of the structure, morphology and functionalization of the intrinsic conductive polymers, polymers filled with the different types of inorganic and organic fillers, as well as multifunctional polymer architectures are provided with respect to their conductive, dielectric, magnetic and shielding characteristics.
Collapse
Affiliation(s)
- Ján Kruželák
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia +421 02 5932589
| | - Andrea Kvasničáková
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia +421 02 5932589
| | - Klaudia Hložeková
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia +421 02 5932589
| | - Ivan Hudec
- Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia +421 02 5932589
| |
Collapse
|
4
|
Rajavel K, Yu X, Zhu P, Hu Y, Sun R, Wong C. Exfoliation and Defect Control of Two-Dimensional Few-Layer MXene Ti 3C 2T x for Electromagnetic Interference Shielding Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49737-49747. [PMID: 33085473 DOI: 10.1021/acsami.0c12835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Defect-controlled exfoliation of few-layer transition-metal carbide (f-Ti3C2Tx) MXene was demonstrated by optimizing chemical etching conditions, and electromagnetic interference (EMI) shielding coatings were explored. The structural features such as layer morphology, lateral size, layer thickness, defect density, and mechanical stability of the exfoliated f-Ti3C2Tx were strongly dependent on exfoliation conditions. By selecting appropriate exfoliation conditions, moderate etching time leads to the formation of quality f-Ti3C2Tx with lesser defects, whereas longer etching time can break the layer structure and increase defect density, structural misalignment, and oxidative products of f-Ti3C2Tx. The resultant fabricated free-standing flexible f-Ti3C2Tx films exhibited electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band of about 3669 ± 33 S/m and 31.97 dB, respectively, at a thickness of 6 μm. The large discrepancy in EMI SE performance between quality (31.97 dB) and defected (3.164 dB) f-Ti3C2Tx sheets is attributed to interconnections between f-Ti3C2Tx nanolaminates interrupted by defects and oxidative products, influencing EMI attenuation ability. Furthermore, the demonstrated solution-processable high-quality f-Ti3C2Tx inks are compatible and, when applied for EM barrier coating on various substrates, including paper, cellulose fabric, and PTFE membranes, exhibited significant EMI shielding performance. Moreover, controlling defects in f-Ti3C2Tx and assembly of heterogeneous disordered carbon-loaded TiO2-Ti3C2Tx ternary hybrid nanostructures from f-Ti3C2Tx by tuning etching conditions could play an enormous role in energy and environmental applications.
Collapse
Affiliation(s)
- Krishnamoorthy Rajavel
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuecheng Yu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengli Zhu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yougen Hu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chingping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Hosseini F, Es’haghi Z. Synthesis of Bio-Nanomagnetite Using Poly(butylene adipate) and Poly(butylene adipate-co-terephthalate). J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Tengsuthiwat J, Sanjay MR, Siengchin S, Pruncu CI. 3D-MID Technology for Surface Modification of Polymer-Based Composites: A Comprehensive Review. Polymers (Basel) 2020; 12:E1408. [PMID: 32586057 PMCID: PMC7362174 DOI: 10.3390/polym12061408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional molded interconnected device (3D-MID) has received considerable attention because of the growing demand for greater functionality and miniaturization of electronic parts. Polymer based composite are the primary choice to be used as substrate. These materials enable flexibility in production from macro to micro-MID products, high fracture toughness when subjected to mechanical loading, and they are lightweight. This survey proposes a detailed review of different types of 3D-MID modules, also presents the requirement criteria for manufacture a polymer substrate and the main surface modification techniques used to enhance the polymer substrate. The findings presented here allow to fundamentally understand the concept of 3D-MID, which can be used to manufacture a novel polymer composite substrate.
Collapse
Affiliation(s)
- Jiratti Tengsuthiwat
- Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s of University Technology North Bangkok, Bangsue, Bangkok 10800, Thailand;
| | - Mavinkere Rangappa Sanjay
- Natural Composites Research Group Lab, King Mongkut’s of University Technology North Bangkok, Bangsue, Bangkok 10800, Thailand;
| | - Suchart Siengchin
- Department of Mechanical and Process Engineering, The Sirindhorn International Thai German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand;
| | - Catalin I. Pruncu
- Mechanical Engineering Department, University of Birmingham, Birmingham B15 2TT, UK
- Mechanical Engineering, Imperial College London, Exhibition Rd., London SW7 2AZ, UK
| |
Collapse
|
7
|
Pakdel E, Wang J, Kashi S, Sun L, Wang X. Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv Colloid Interface Sci 2020; 277:102116. [PMID: 32036000 DOI: 10.1016/j.cis.2020.102116] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 11/25/2022]
Abstract
The use of nanomaterials in textiles provides many new opportunities and advantages for users and manufacturers; however, it comes with some of its downsides and challenges which need to be understood and overcome for enhancing the applicability of these products. This review article discusses the recent progress in developing self-cleaning and conductive textiles as two of the leading research fields of smart textiles. In particular, different aspects of fabricating nanocoatings for photocatalytic self-cleaning, superhydrophobic and electromagnetic interference (EMI) shielding effect will be brought to light. The theoretical concepts, mechanisms, latest fabrication methods along with their potential applications will be discussed. Moreover, the current drawbacks of these fields will be underlined and some recommendations for future research trajectories in terms of performance, current limitations, sustainability and safety will be proposed. This review article provides a comprehensive review on the state-of-the-art achievements in the field, which will be a valuable reference for researchers and decision makers.
Collapse
|
8
|
Kim H, Lee S. Characterization of Electrical Heating Textile Coated by Graphene Nanoplatelets/PVDF-HFP Composite with Various High Graphene Nanoplatelet Contents. Polymers (Basel) 2019; 11:polym11050928. [PMID: 31137888 PMCID: PMC6572257 DOI: 10.3390/polym11050928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 11/16/2022] Open
Abstract
We prepared a horseshoe-pattern type electrical heating textile that was coated with high graphene nanoplatelet (GNP) content (32 wt% to 64 wt%) of graphene nanoplatelet/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composite. Silver-coated conductive yarn is used as electrode in the sample to improve its flexibility and applicability as wearable textile. These graphene nanoplatelet/PVDF-HFP coated samples with various high-contents of graphene were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), sheet resistance analysis, and electrical heating performance analysis. Graphene nanoplatelet/PVDF-HFP coated cotton fabric improved the crystallinity and thermal stability with increasing thw high-content of GNP. With an increasing of the high-content of graphene nanoplatelet in the PVDF-HFP composite solution, the sheet resistance of samples tended to gradually decrease. That of, 64 wt% graphene nanoplatelet/PVDF-HFP composite coated sample (64 GR/cotton) was 44 Ω/sq. The electrical heating performance of graphene nanoplatelet/PVDF-HFP composite coated cotton fabric was improved with increasing the high-content of graphene nanoplatelet. When 5 V was applied to 64 GR/cotton, its surface temperature has been indicated to be about 48 °C and it could be used at a low voltage (<10 V). Thus, a horseshoe-pattern type electrical heating textile that is coated by high content of graphene nanoplatelet/PVDF-HFP composite solution sewn with silver-coated conductive yarn is expected to be applied to glove, shoes, jacket, and so on to improve its wearability and applicability.
Collapse
Affiliation(s)
- Hyelim Kim
- Research Institute of Convergence Design, Dong-A University, Busan 49315, Korea.
| | - Sunhee Lee
- Department of Fashion Design, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
9
|
Yan L, Jiang W, Zhang C, Zhang Y, He Z, Zhu K, Chen N, Zhang W, Han B, Zheng X. Enhancement by Metallic Tube Filling of the Mechanical Properties of Electromagnetic Wave Absorbent Polymethacrylimide Foam. Polymers (Basel) 2019; 11:E372. [PMID: 30960356 PMCID: PMC6419214 DOI: 10.3390/polym11020372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/20/2022] Open
Abstract
By the addition of a carbon-based electromagnetic absorbing agent during the foaming process, a novel electromagnetic absorbent polymethacrylimide (PMI) foam was obtained. The proposed foam exhibits excellent electromagnetic wave-absorbing properties, with absorptivity exceeding 85% at a large frequency range of 4.9⁻18 GHz. However, its poor mechanical properties would limit its application in load-carrying structures. In the present study, a novel enhancement approach is proposed by inserting metallic tubes into pre-perforated holes of PMI foam blocks. The mechanical properties of the tube-enhanced PMI foams were studied experimentally under compressive loading conditions. The elastic modulus, compressive strength, energy absorption per unit volume, and energy absorption per unit mass were increased by 127.9%, 133.8%, 54.2%, and 46.4%, respectively, by the metallic tube filling, and the density increased only by 5.3%. The failure mechanism of the foams was also explored. We found that the weaker interfaces between the foam and the electromagnetic absorbing agent induced crack initiation and subsequent collapses, which destroyed the structural integrity. The excellent mechanical and electromagnetic absorbing properties make the novel structure much more competitive in electromagnetic wave stealth applications, while acting simultaneously as load-carrying structures.
Collapse
Affiliation(s)
- Leilei Yan
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wei Jiang
- Department of Basic Sciences, Air Force Engineering University, Xi'an 710051, China.
| | - Chun Zhang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yunwei Zhang
- Department of Basic Sciences, Air Force Engineering University, Xi'an 710051, China.
| | - Zhiheng He
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Keyu Zhu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Niu Chen
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wanbo Zhang
- Department of Basic Sciences, Air Force Engineering University, Xi'an 710051, China.
| | - Bin Han
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
- Research Institute of Xi'an Jiaotong University, Hangzhou 311215, Zhejiang, China.
| | - Xitao Zheng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
10
|
Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z, Shao Q, Wang C, Liu H, Lu N, Wei R, Subramania A, Guo Z. Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. POLYM REV 2019. [DOI: 10.1080/15583724.2018.1546737] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dawei Jiang
- Department of Chemical Engineering and Technology, College of Science, Northeast Forestry University, Harbin, China
| | - Vignesh Murugadoss
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Electrochemical Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Ying Wang
- Department of Chemical Engineering and Technology, College of Science, Northeast Forestry University, Harbin, China
| | - Jing Lin
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Tao Ding
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| | - Zicheng Wang
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Department of Civil Engineering, Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Qian Shao
- Department of Applied Chemistry, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Chao Wang
- Department of Materials Science and Engineering, College of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Hu Liu
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Na Lu
- Department of Civil Engineering, Lyles School of Civil Engineering, School of Materials Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Renbo Wei
- Department of Chemistry, Research Branch of Advanced Functional Materials, University of Electronic Science and Technology of China, Chengdu, China
| | - Angaiah Subramania
- Electrochemical Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
11
|
Pucci A. Smart and Modern Thermoplastic Polymer Materials. Polymers (Basel) 2018; 10:E1211. [PMID: 30961136 PMCID: PMC6290610 DOI: 10.3390/polym10111211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/03/2022] Open
Abstract
Smart and modern thermoplastic polymer materials are defined as novel thermoplastic materials that are capable of responding to external stimuli through a macroscopic output in which the energy of the stimulus is transduced appropriately as a function of external interference. [...].
Collapse
Affiliation(s)
- Andrea Pucci
- Department of Chemistry and Industrial Chemistry of the University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
12
|
Raagulan K, Braveenth R, Jang HJ, Seon Lee Y, Yang CM, Mi Kim B, Moon JJ, Chai KY. Electromagnetic Shielding by MXene-Graphene-PVDF Composite with Hydrophobic, Lightweight and Flexible Graphene Coated Fabric. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1803. [PMID: 30249007 PMCID: PMC6213747 DOI: 10.3390/ma11101803] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 01/18/2023]
Abstract
MXene and graphene based thin, flexible and low-density composite were prepared by cost effective spray coating and solvent casting method. The fabricated composite was characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX). The prepared composites showed hydrophobic nature with higher contact angle of 126°, -43 mN·m-1 wetting energy, -116 mN·m-1 spreading Coefficient and 30 mN·m-1 lowest work of adhesion. The composites displayed excellent conductivity of 13.68 S·cm-1 with 3.1 Ω·sq-1 lowest sheet resistance. All the composites showed an outstanding thermal stability and constrain highest weight lost until 400 °C. The MXene-graphene foam exhibited excellent EMI shielding of 53.8 dB (99.999%) with reflection of 13.10 dB and absorption of 43.38 dB in 8⁻12.4 GHz. The single coated carbon fabric displayed outstanding absolute shielding effectiveness of 35,369.82 dB·cm²·g-1. The above results lead perspective applications such as aeronautics, radars, air travels, mobile phones, handy electronics and military applications.
Collapse
Affiliation(s)
- Kanthasamy Raagulan
- Division of Bio-Nanochemistry, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea.
| | - Ramanaskanda Braveenth
- Division of Bio-Nanochemistry, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea.
| | - Hee Jung Jang
- Division of Bio-Nanochemistry, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea.
| | - Yun Seon Lee
- Multifunctional Structural Composite Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup,Wanju-gun, Jeollabukdo 55324, Korea.
| | - Cheol-Min Yang
- Multifunctional Structural Composite Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup,Wanju-gun, Jeollabukdo 55324, Korea.
| | - Bo Mi Kim
- Department of Chemical Engineering, Wonkwang University, Iksan 570-749, Korea.
| | - Jai Jung Moon
- Clean & Science Co., Ltd., Jeongeup 3 Industrial Complex 15BL, 67, 3sandan 3-gil, Buk-myeon 56136, Jeongeup-si, Korea.
| | - Kyu Yun Chai
- Division of Bio-Nanochemistry, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea.
| |
Collapse
|