1
|
Zhang D, Ren C, Wang X, Cao W, Yu M, Xu Z, Li J, Bi H, Guo B. Treatment of glaucoma with drug-loaded contact lenses: A systematic review and meta-analysis. Eur J Pharmacol 2025; 995:177425. [PMID: 39993701 DOI: 10.1016/j.ejphar.2025.177425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE This study is a systematical review regarding the glaucoma treatment with drug-loaded contact lenses. The effectiveness and safety about that were summarized, which providing effective suggestions and guidance for clinical research. METHODS The studies published up to May 1, 2024 on the treatment of glaucoma with sustained-release contact lenses were searched from CNKI, Wanfang Data, VIP, PubMed, Embase, Cochrane Library, and Medline. CAMARADES was used to evaluate literature quality. The safety, endpoints of intraocular pressure reduction (IOPR) and duration of intraocular pressure (IOP) decline during glaucoma treatment were analyzed by means of qualitative and quantitative methods. The protocol registration number is CRD42024487157. RESULTS 47 studies were included. In clinical trials, glaucoma patients showed a 50% reduction in IOP and no corneal tissue destruction after wearing contact lenses. In animal experiments, the endpoint IOPR [MD = 0.58, 95%CI (0.37, 0.80), P < 0.00001] of the medicated contact lenses group was significantly better than that of the eye drops group. Subgroup analysis showed that contact lenses loaded with timolol (TML), with TML + dorzolamide, and with TML + latanoprost, which compared to eye drops, had a better effect on reducing IOP, while contact lenses loaded with puerarin, latanoprost, and TML + bimatoprost showed no statistical difference. Most studies demonstrated the duration of IOP reduction and drugs release in vitro for ≥3 days during contact lenses treatment. CONCLUSION Most drug-loaded contact lenses exhibit excellent effectiveness and safety. The nanoparticle-loaded contact lenses containing TML for glaucoma treatment is recommended in future clinical research.
Collapse
Affiliation(s)
- Diya Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Cong Ren
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250004, China; Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Xuan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenbo Cao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mingkun Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250004, China
| | - Zihang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250004, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250004, China; Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China.
| | - Hongsheng Bi
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250004, China; Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China.
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250004, China; Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China.
| |
Collapse
|
2
|
Chen Y, Li D, Chen Y, Fang H. Polyethylene Glycol Diacrylate Adapted Photopolymerization Material for Contact Lens with Improved Elastic Modulus Properties. MATERIALS (BASEL, SWITZERLAND) 2025; 18:827. [PMID: 40004350 PMCID: PMC11857340 DOI: 10.3390/ma18040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Four kinds of silicone hydrogel transparent contact lenses (CLs) with different formulations were prepared by the free radical photocuring polymerization. By mixing polyethylene glycol diacrylate (PEGDA) of 1000 Da with ethylene glycol dimethacrylate (EGDMA) and adding other silicone monomers and hydrophilic monomers, the transparency and flexibility of the material were successfully achieved. By optimizing the weight percentage of each component, the best balance of optical performance can be achieved. The photocuring properties of the materials were characterized by electronic universal test, double-beam UV-visible spectrophotometer, Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The results showed that the addition of higher PEGDA content reduces the elastic modulus, improves curing efficiency, improves equilibrium water content (EWC), and enhances light transmission. Hydrogels containing only high PEGDA but no EGDMA showed similar curing rates, water content, and elastic modulus, but had the worst optical transparency, far inferior to the materials mixed with PEGDA and EGDMA. Additionally, imaging performance of the CLs was further evaluated through simulation analysis using Ansys Zemax OpticStudio2024 software. This research provides a new choice of material consideration to improve the performance and wearing comfort of CLs.
Collapse
Affiliation(s)
- Yamin Chen
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen 518060, China; (Y.C.); (D.L.)
| | - Dianyang Li
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen 518060, China; (Y.C.); (D.L.)
| | - Yougen Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hui Fang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen 518060, China; (Y.C.); (D.L.)
| |
Collapse
|
3
|
Saini A, Sharma M, Singh I, Swami R. From Vision Correction to Drug Delivery: Unraveling the Potential of Therapeutic Contact Lens. Curr Drug Deliv 2025; 22:140-159. [PMID: 38213158 DOI: 10.2174/0115672018270396231213074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Contact lenses (CLs) have become an essential tool in ocular drug delivery, providing effective treatment options for specific eye conditions. In recent advancements, Therapeutic CLs (TCLs) have emerged as a promising approach for maintaining therapeutic drug concentrations on the eye surface. TCLs offer unique attributes, including prolonged wear and a remarkable ability to enhance the bioavailability of loaded medications by more than 50%, thus gaining widespread usage. They have proven beneficial in pain management, medication administration, corneal healing, and protection. To achieve sustained drug delivery from TCLs, researchers are exploring diverse systems, such as polymeric nanoparticulate systems, lipidic systems, and the incorporation of agents like vitamin E or rate-limiting polymers. However, despite breakthrough successes, certain challenges persist, including ensuring drug stability during processing and manufacturing, controlling release kinetics, and biomaterial interaction, reducing protein adhesion, and addressing drug release during packaging and storage etc. While TCLs have shown overall success in treating corneal and ocular surface disorders, careful consideration of potential issues and contraindications is vital. This review offers an insightful perspective on the critical aspects that need to be addressed regarding TCLs, with a specific emphasis on their advantages and limitations.
Collapse
Affiliation(s)
- Ankush Saini
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, India
| | - Mohit Sharma
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Indu Singh
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
4
|
Chawnani D, Ranch K, Patel C, Jani H, Jacob S, Al-Tabakha MM, Boddu SHS. Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2884-2908. [PMID: 39155730 DOI: 10.1080/09205063.2024.2391233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent in vitro drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.
Collapse
Affiliation(s)
- Disha Chawnani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Chirag Patel
- Deparment of Pharmacology, L. M. College of Pharmacy, Ahmedabad, India
| | - Harshilkumar Jani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Moawia M Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
5
|
Lim C, García-Montero M, Courtis A, Hainey P, Madrid-Costa D, Crooke A. Optimization of the Oxygen Permeability of Non-Silicone Hydrogel Contact Lenses Through Crosslinking Modifications. Gels 2024; 10:726. [PMID: 39590082 PMCID: PMC11593662 DOI: 10.3390/gels10110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main weakness of non-silicone hydrogel contact lenses is their low oxygen permeability (Dk). Hence, we have tried to optimize their Dk using various concentrations and lengths of the poly (ethylene glycol) dimethacrylate crosslinker in a mixture of N,N-Dimethylacrylamide and Cyclohexyl methacrylate monomers. After synthesizing the different contact lenses, we evaluated their chemical, optical, and mechanical properties. The resultant non-silicone hydrogel contact lenses presented similar high water contents (75.69-80.60%) and adequate optical (e.g., a transmittance ranging from 85.91% to 99.91% and a refractive index between 1.3630 and 1.3740) and elongation at break (178.95-356.05%) characteristics for clinical applications. Conversely, they presented high contact angles (81.00-100.00°) and a low Young's modulus (0.066-0.167 MPa). Regarding the impact of the crosslinking modifications, the water content, contact angle, refractive index, transmittance, and Young's modulus of the synthesized lenses were slightly affected by crosslinker conditions. In contrast, the elongation at break (178.95-356.05%) and, more importantly, the oxygen permeability, which reached values of up to 73.90 Fatt units, were considerably impacted by the crosslinker conditions. To our knowledge, this study demonstrates for the first time that, in addition to water, other usual hydrogel components, like crosslinkers, can modulate the Dk of non-silicone contact lenses. It also provides a simple and scalable method to fabricate more permeable non-silicone lenses.
Collapse
Affiliation(s)
- Clara Lim
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain (M.G.-M.); (D.M.-C.)
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
- Research and Development Group, Mark’ennovy, Widnes WA8 0RP, UK; (A.C.); (P.H.)
| | - María García-Montero
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain (M.G.-M.); (D.M.-C.)
- Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Andrew Courtis
- Research and Development Group, Mark’ennovy, Widnes WA8 0RP, UK; (A.C.); (P.H.)
| | - Paul Hainey
- Research and Development Group, Mark’ennovy, Widnes WA8 0RP, UK; (A.C.); (P.H.)
| | - David Madrid-Costa
- Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain (M.G.-M.); (D.M.-C.)
- Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
- Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| |
Collapse
|
6
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Liang L, Hu Y, Hong Y, Wu Z, Chen H, Lin Q. POSS and PEG Contained Copolymer for Antibioadhesive Rigid Contact Lenses Materials Application. Biomacromolecules 2024; 25:2728-2739. [PMID: 38563621 DOI: 10.1021/acs.biomac.3c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Myopia is a global public health issue. Rigid contact lenses (RCLs) are an effective way to correct or control myopia. However, bioadhesion issues remain one of the significant obstacles limiting its clinical application. Although enhancing hydrophilicity through various surface treatments can mitigate this problem, the duration of effectiveness is short-lived and the processing involved is complex and costly. Herein, an antiadhesive RCLs material was designed via 8-armed methacrylate-POSS (8MA-POSS), and poly(ethylene glycol) methacrylate (PEGMA) copolymerization with 3-[tris(trimethylsiloxy)silyl] propyl methacrylate (TRIS). The POSS and PEG segments incorporated P(TRIS-co-PEGMA-co-8MA-POSS) (PTPM) material was obtained and their optical transparency, refractive index, resolution, hardness, surface charge, thermal features, and wettability were tested and optimized. The antibioadhesion activities, including protein, lipid, and bacteria, were evaluated as well. In vitro and in vivo results indicated that the optimized antibioadhesive PTPM materials present good biocompatibility and biosafety. Thus, such POSS and PEG segments containing material were a potential antibioadhesive RCL material option.
Collapse
Affiliation(s)
- Lin Liang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yulin Hu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhihui Wu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
8
|
Kennedy SM, Vasanthanathan A, Jeen Robert RB, Vignesh Moorthi Pandian A. Impact of mechanical engineering innovations in biomedical advancements. IN VITRO MODELS 2024; 3:5-18. [PMID: 39872067 PMCID: PMC11756506 DOI: 10.1007/s44164-024-00065-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2025]
Abstract
Abstract The principal objective of the present paper is to meticulously review the family of biomaterials used in implants. A spectrum of applications of biomaterials in the perspective of prosthesis is also presented. This paper also emphasises on the review of the recent advancements in the field of biomedical implants with respect to mechanical engineering perspective. The latest technologies such as finite element modelling of prosthetic implants, additive manufacturing of implants and certain experimental methods adopted in the field of prosthesis are discussed. Moreover, various models were modelled using SOLIDWORKS® 2022 modelling software and analysed using ANSYS® 2021 R2 finite element analysing software and implant models were additive manufactured to make this review more interesting and for better understanding. Overall, the latest technology in the field of mechanical engineering that fuels its impact in life-saving biomedical engineering has been discussed briefly. Graphical abstract
Collapse
Affiliation(s)
- Senthil Maharaj Kennedy
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, 626005 India
| | - A Vasanthanathan
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005 India
| | - RB Jeen Robert
- Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, Tamil Nadu 641042 India
| | - A Vignesh Moorthi Pandian
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, 626005 India
| |
Collapse
|
9
|
Kirmic Cosgun SN, Ceylan Tuncaboylu D, Alemdar M. G-POSS connected double network starch gels for protein release. Int J Biol Macromol 2024; 257:128705. [PMID: 38081486 DOI: 10.1016/j.ijbiomac.2023.128705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Starch is one of the most frequently preferred natural polymers in hydrogel synthesis. Herein, we combined two strategies of associating brittle and ductile networks in a structure and incorporating inorganic particles into the polymeric gel to design mechanically enhanced nanocomposite double network (DN) starch gels. For the first time in the literature, nanocomposite starch gels (s-NC) were designed by cross-linking starch chains with 8-armed glycidyl-polyhedral oligomeric silsesquioxane (g-POSS) units. Fourier Transform Infrared Spectroscopy and Energy Dispersive X-Ray Spectroscopy analyses have proven that g-POSS is included in the gel structure and is homogeneously distributed throughout the network. More stable d-NC-DMA and d-NC-VP gels were obtained by incorporating N,N-dimethylacrylamide (DMA), or 1-vinyl-2-pyrrolidinone (VP) units, respectively, into g-POSS-linked starch gels, and the reaction kinetics were followed in situ. In SEM images, it was observed that d-NC-DMA had smaller pores and thicker pore walls compared to s-NC and d-NC-VP starch gels, and its mechanical strength was shown to be much superior by rheological tests, compression, and tensile analyses. In addition to increasing the mechanical strength of the gels, the potential of starch in protein release applications using amylase sensitivity has been demonstrated in vitro experiments using the model protein BSA.
Collapse
Affiliation(s)
- Seyma Nur Kirmic Cosgun
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey
| | - Deniz Ceylan Tuncaboylu
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey.
| | - Mahinur Alemdar
- Bezmialem Vakıf University Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey
| |
Collapse
|
10
|
Costa D, De Matteis V, Treso F, Montani G, Martino M, Rinaldi R, Corrado M, Cascione M. Impact of the physical properties of contact lens materials on the discomfort: role of the coefficient of friction. Colloids Surf B Biointerfaces 2024; 233:113630. [PMID: 37956592 DOI: 10.1016/j.colsurfb.2023.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Contact Lens Discomfort (CLD) is the main cause in contact lens (CLs) discontinuation, referred in literature as drop-out phenomenon. Despite such evidence was reported in several clinical studies, a relationship between physico-chemical properties of CLs and CLD is not still totally understood. In this regard, the friction of CLs surfaces seems to be related to discomfort feeling events, probably due to an alteration of the lubricate function of the tear film after the CL placement inside the ocular environment. In the last years, many studies have been finalized to the friction measurements of CLs surface, finding conflicting data due to a lack in standardized protocol. The aim of this review is primarily to show evident relationships between CLs surface properties (i.e. wettability, tear evaporation, tear film quality, etc.) and the coefficient of friction (CoF), resulting therefore the most relevant physical quantity in the CLs characterization. In addition, we reported the most recent studies in CLs tribology, which highlight that the introduction of a standard protocol in CoF measurements is necessary to obtain reproducible results, considering the aim to evaluate in a more precise way the relationship between this material surface property and comfort in CLs users.
Collapse
Affiliation(s)
- D Costa
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy
| | - V De Matteis
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy.
| | - F Treso
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Centro di Ricerca in Contattologia Avanzata, Via Arnesano, Lecce 73100, Italy
| | - G Montani
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Centro di Ricerca in Contattologia Avanzata, Via Arnesano, Lecce 73100, Italy
| | - M Martino
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Centro di Ricerca in Contattologia Avanzata, Via Arnesano, Lecce 73100, Italy
| | - R Rinaldi
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
| | - M Corrado
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy
| | - M Cascione
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Arnesano, Lecce 73100, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy; Centro di Ricerca in Contattologia Avanzata, Via Arnesano, Lecce 73100, Italy.
| |
Collapse
|
11
|
Ioniță M, Vlăsceanu GM, Toader AG, Manole M. Advances in Therapeutic Contact Lenses for the Management of Different Ocular Conditions. J Pers Med 2023; 13:1571. [PMID: 38003886 PMCID: PMC10672201 DOI: 10.3390/jpm13111571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
In the advent of an increasingly aging population and due to the popularity of electronic devices, ocular conditions have become more prevalent. In the world of medicine, accomplishing eye medication administration has always been a difficult task. Despite the fact that there are many commercial eye drops, most of them have important limitations, due to quick clearance mechanisms and ocular barrers. One solution with tremendous potential is the contact lens used as a medication delivery vehicle to bypass this constraint. Therapeutic contact lenses for ocular medication delivery have attracted a lot of attention because they have the potential to improve ocular bioavailability and patient compliance, both with minimal side effects. However, it is essential not to compromise essential features such as water content, optical transparency, and modulus to attain positive in vitro and in vivo outcomes with respect to a sustained drug delivery profile from impregnated contact lenses. Aside from difficulties like drug stability and burst release, the changing of lens physico-chemical features caused by therapeutic or non-therapeutic components can limit the commercialization potential of pharmaceutical-loaded lenses. Research has progressed towards bioinspired techniques and smart materials, to improve the efficacy of drug-eluting contact lenses. The bioinspired method uses polymeric materials, and a specialized molecule-recognition technique called molecular imprinting or a stimuli-responsive system to improve biocompatibility and support the drug delivery efficacy of drug-eluting contact lenses. This review encompasses strategies of material design, lens manufacturing and drug impregnation under the current auspices of ophthalmic therapies and projects an outlook onto future opportunities in the field of eye condition management by means of an active principle-eluting contact lens.
Collapse
Affiliation(s)
- Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, 061344 Bucharest, Romania
| | - George Mihail Vlăsceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alin Georgian Toader
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Marius Manole
- Department of Prosthetics and Dental Materials, Faculty of Dentistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Shin SM, Park HI, Sung AY. Correlation Analysis of Surface and Physical Properties of Ophthalmic Lenses Containing Nanoparticles. MICROMACHINES 2023; 14:1883. [PMID: 37893320 PMCID: PMC10609528 DOI: 10.3390/mi14101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Since contact lenses directly contact the cornea, the surface roughness of the lens may cause various side effects. In addition, gold nanoparticles can realize a variety of colors and characteristics depending on their shape and size. In this study, the surface roughness of tinted lenses containing gold nanoparticles of various sizes was analyzed using atomic force microscopy (AFM) at aspect ratio(surface to volume ratio) ranging from 1:1 to 1:10. The characteristics of the lenses were then confirmed. As a result, tinted lenses with different colors depending on the size of the gold nanoparticles were manufactured. The surface roughness of the lens decreased with increasing size of the gold nanoparticles. However, at aspect ratio of 1:10, increase in surface roughness was observed. In addition, it was confirmed that the wettability and antibacterial properties of the lens had the same effect according to the average surface roughness value. Therefore, it was confirmed that the addition of gold nanoparticles reduced the surface roughness of the lens, which had a great effect on properties such as wettability and antimicrobial properties of the lens. The produced copolymer controls the surface roughness of the lens, and thus it is judged that it can be used as a material for various ophthalmology applications.
Collapse
Affiliation(s)
| | | | - A-Young Sung
- Department of Optometry & Vision Science, Daegu Catholic University, Gyeongsan 38430, Republic of Korea; (S.-M.S.); (H.-I.P.)
| |
Collapse
|
13
|
Ishihara K, Shi X, Fukazawa K, Yamaoka T, Yao G, Wu JY. Biomimetic-Engineered Silicone Hydrogel Contact Lens Materials. ACS APPLIED BIO MATERIALS 2023; 6:3600-3616. [PMID: 37616500 PMCID: PMC10521029 DOI: 10.1021/acsabm.3c00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Contact lenses are one of the most successful applications of biomaterials. The chemical structure of the polymers used in contact lenses plays an important role in determining the function of contact lenses. Different types of contact lenses have been developed based on the chemical structure of polymers. When designing contact lenses, materials scientists consider factors such as mechanical properties, processing properties, optical properties, histocompatibility, and antifouling properties, to ensure long-term wear with minimal discomfort. Advances in contact lens materials have addressed traditional issues such as oxygen permeability and biocompatibility, improving overall comfort, and duration of use. For example, silicone hydrogel contact lenses with high oxygen permeability were developed to extend the duration of use. In addition, controlling the surface properties of contact lenses in direct contact with the cornea tissue through surface polymer modification mimics the surface morphology of corneal tissue while maintaining the essential properties of the contact lens, a significant improvement for long-term use and reuse of contact lenses. This review presents the material science elements required for advanced contact lenses of the future and summarizes the chemical methods for achieving these goals.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Xinfeng Shi
- Alcon
Research, LLC, Fort Worth, Texas 76134, United States
| | - Kyoko Fukazawa
- National
Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Tetsuji Yamaoka
- National
Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - George Yao
- Alcon
Research, LLC, Duluth, Georgia 30097, United States
| | | |
Collapse
|
14
|
Yang H, Zhao M, Xing D, Zhang J, Fang T, Zhang F, Nie Z, Liu Y, Yang L, Li J, Wang D. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian J Pharm Sci 2023; 18:100847. [PMID: 37915758 PMCID: PMC10616140 DOI: 10.1016/j.ajps.2023.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 11/03/2023] Open
Abstract
The number of people with eye diseases has increased with the use of electronics. However, the bioavailability of eye drops remains low owing to the presence of the ocular barrier and other reasons. Although many drug delivery systems have been developed to overcome these problems, they have certain limitations. In recent years, the development of contact lenses that can deliver drugs for long periods with high bioavailability and without affecting vision has increased the interest in using contact lenses for drug delivery. Hence, a review of the current state of research on drug delivery contact lenses has become crucial. This article reviews the key physical and chemical properties of drug-laden contact lenses, development and classification of contact lenses, and features of the commonly used materials. A review of the methods commonly used in current research to create contact lenses has also been presented. An overview on how drug-laden contact lenses can overcome the problems of high burst and short release duration has been discussed. Overall, the review focuses on drug delivery methods using smart contact lenses, and predicts the future direction of research on contact lenses.
Collapse
Affiliation(s)
| | | | - Dandan Xing
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Faxing Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhihao Nie
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lihua Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
15
|
Ortega MA, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Diaz R, Coca S, Barrena-Blázquez S, Bujan J, García-Honduvilla N, Saez MA, Álvarez-Mon M, Saz JV. Unraveling the New Perspectives on Antimicrobial Hydrogels: State-of-the-Art and Translational Applications. Gels 2023; 9:617. [PMID: 37623072 PMCID: PMC10453485 DOI: 10.3390/gels9080617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The growing impact of infections and the rapid emergence of antibiotic resistance represent a public health concern worldwide. The exponential development in the field of biomaterials and its multiple applications can offer a solution to the problems that derive from these situations. In this sense, antimicrobial hydrogels represent a promising opportunity with multiple translational expectations in the medical management of infectious diseases due to their unique physicochemical and biological properties as well as for drug delivery in specific areas. Hydrogels are three-dimensional cross-linked networks of hydrophilic polymers that can absorb and retain large amounts of water or biological fluids. Moreover, antimicrobial hydrogels (AMH) present good biocompatibility, low toxicity, availability, viscoelasticity, biodegradability, and antimicrobial properties. In the present review, we collect and discuss the most promising strategies in the development of AMH, which are divided into hydrogels with inherent antimicrobial activity and antimicrobial agent-loaded hydrogels based on their composition. Then, we present an overview of the main translational applications: wound healing, tissue engineering and regeneration, drug delivery systems, contact lenses, 3D printing, biosensing, and water purification.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
16
|
Zhang ZQ, Ren KF, Ji J. Silane coupling agent in biomedical materials. Biointerphases 2023; 18:030801. [PMID: 37382394 DOI: 10.1116/6.0002712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Medical devices are becoming more and more significant in our daily life. For implantable medical devices, good biocompatibility is required for further use in vivo. Thus, surface modification of medical devices is really important, which gives a wide application scene for a silane coupling agent. The silane coupling agent is able to form a durable bond between organic and inorganic materials. The dehydration process provides linking sites to achieve condensation of two hydroxyl groups. The forming covalent bond brings excellent mechanical properties among different surfaces. Indeed, the silane coupling agent is a popular component in surface modification. Metals, proteins, and hydrogels are using silane coupling agent to link parts commonly. The mild reaction environment also brings advantages for the spread of the silane coupling agent. In this review, we summarize two main methods of using the silane coupling agent. One is acting as a crosslinker mixed in the whole system, and the other is to provide a bridge between different surfaces. Moreover, we introduce their applications in biomedical devices.
Collapse
Affiliation(s)
- Ze-Qun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Pillay R, Hansraj R, Rampersad N, Bissessur A. Environmental impact and end-of-life options of disposed polymeric spectacle and contact lenses. AFRICAN VISION AND EYE HEALTH 2023. [DOI: 10.4102/aveh.v82i1.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
18
|
Lee MJ, Park SY, Sung AY. Ophthalmic Hydrogel Contact Lens Material Containing Magnesium Oxide Nanoparticles and 3-(Trifluoromethyl)styrene for Biomedical Application. MICROMACHINES 2022; 13:1897. [PMID: 36363917 PMCID: PMC9694811 DOI: 10.3390/mi13111897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This research was conducted for the synthesis and application of ophthalmic lens materials with improved oxygen permeability and durability. Polyvinylpyrrolidone (PVP), N-vinyl-2-pyrrolidone (NVP), 3-(trifluoromethyl)styrene (3-TFMSt), and magnesium oxide nanoparticles were used as additives for the basic combination of 2-hydroxyethyl methacrylate (HEMA). Additionally, the materials were copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent and azobisisobutyronitrile (AIBN) as the initiator. The addition of magnesium oxide nanoparticles was found to increase the tensile strength from 0.0631 to 0.0842 kgf/mm2. Copolymerization with a small amount of 3-TFMSt of about 1% increased the tensile strength to 0.1506 kgf/mm2 and the oxygen permeability from 6.00 to 9.64 (cm2/s)∙(mLO2/mL·mmHg)∙10-11. The contact lens material produced using N-vinyl-2-pyrrolidone and magnesium oxide nanoparticles as additives satisfied the basic physical properties required for hydrogel contact lenses and is expected to be used usefully as a material for fabricating high-performance hydrogel lenses.
Collapse
Affiliation(s)
- Min-Jae Lee
- Department of Optometry, Jeju Tourism University, Jeju 63063, Korea
| | - Seon-Young Park
- Department of Optometry & Vision Science, Daegu Catholic University, Gyeongsan 38430, Korea
| | - A-Young Sung
- Department of Optometry & Vision Science, Daegu Catholic University, Gyeongsan 38430, Korea
| |
Collapse
|
19
|
Effect of poly(ethylene glycol) methacrylate on the ophthalmic properties of silicone hydrogel contact lenses. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Torğut G, Yazdıç FC, Gürler N. Synthesis, characterization, pH‐sensitive swelling and antimicrobial activities of chitosan–
graft
‐poly(hydroxyethyl methacrylate) hydrogel composites for biomedical applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gülben Torğut
- Department of Hotel Restaurant and Catering Services, Tunceli Vocational School Munzur University Tunceli Turkey
| | - Ferit Can Yazdıç
- Department of Biotechology, Institue of Graduate Studies in Science Munzur University Tunceli Turkey
| | - Nedim Gürler
- Department of Food Process, Tunceli Vocational School Munzur University Tunceli Turkey
| |
Collapse
|
21
|
Zhao C, Dong Z, Guo M, Liu L, Wu Y, Li Y, Xiang D, Li H, Lai J, Wang L. Fabrication of fatigue‐resistant hydrogel via annealing‐assisted salting‐out method as flexible strain sensors. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chunxia Zhao
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
| | - Zhonghua Dong
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
| | - Min Guo
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
| | - Liang Liu
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
| | - Yuanpeng Wu
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field Southwest Petroleum University Chengdu Sichuan China
| | - Yuntao Li
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
- State Key Laboratory Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu Sichuan China
| | - Dong Xiang
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
| | - Hui Li
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
| | - Jingjuan Lai
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
| | - Li Wang
- School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan China
| |
Collapse
|
22
|
Sorkhabi TS, Samberan MF, Ostrowski KA, Majka TM, Piechaczek M, Zajdel P. Preparation and Characterization of Novel Microgels Containing Nano-SiO 2 and Copolymeric Hydrogel Based on Poly (Acrylamide) and Poly (Acrylic Acid): Morphological, Structural and Swelling Studies. MATERIALS 2022; 15:ma15144782. [PMID: 35888249 PMCID: PMC9324521 DOI: 10.3390/ma15144782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023]
Abstract
In this paper, novel microgels containing nano-SiO2 were prepared by in situ copolymerization using nano-SiO2 particles as a reinforcing agent, nanosilica functional monomer (silane-modified nano-SiO2) as a structure and morphology director, acrylamide (AAm) as a monomer, acrylic acid (AAc) as a comonomer, potassium persulfate (KPS) as a polymerization initiator, and N,N'-methylene bis (acrylamide) (MBA) as a crosslinker. In addition, a conventional copolymeric hydrogel based on poly (acrylamide/acrylic acid) was synthesized by solution polymerization. The microgel samples, hydrogel and nanoparticles were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). A FESEM micrograph of copolymeric hydrogel showed the high porosity and 3D interconnected microstructure. Furthermore, FESEM results demonstrated that when nano-SiO2 particles were used in the AAm/AAc copolymerization process, the microstructure and morphology of product changed from porous hydrogel to a nanocomposite microgel with cauliflower-like morphology. According to FESEM images, the copolymerization of AAm and AAc monomers with a nanosilica functional monomer or polymerizable nanosilica particle as a seed led to a microgel with core-shell structure and morphology. These results demonstrated that the polymerizable vinyl group on nano-SiO2 particles have controlled the copolymerization and the product morphology. FTIR analysis showed that the copolymeric chains of polyacrylamide (PAAm) and poly (acrylic acid) (PAAc) were chemically bonded to the surfaces of the nano-SiO2 particles and silane-modified nano-SiO2. The particulate character of microgel samples and the existence of long distance among aggregations of particles led to rapid swelling and increasing of porosity and therefore increasing of degree of swelling.
Collapse
Affiliation(s)
| | - Mehrab Fallahi Samberan
- Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar P.O. Box 5451116714, Iran;
- Correspondence:
| | - Krzysztof Adam Ostrowski
- Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; (K.A.O.); (M.P.); (P.Z.)
| | - Tomasz M. Majka
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Marcin Piechaczek
- Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; (K.A.O.); (M.P.); (P.Z.)
| | - Paulina Zajdel
- Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; (K.A.O.); (M.P.); (P.Z.)
| |
Collapse
|
23
|
Brinzolamide-loaded soft contact lens for ophthalmic delivery. Ther Deliv 2022; 13:233-247. [PMID: 35615865 DOI: 10.4155/tde-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: In this study, brinzolamide (BRZ) was loaded in balafilcon A silicone hydrogel soft contact lens to enhance delivery in glaucoma therapy. Materials & methods: BRZ-loaded soft contact lens was prepared by the soaking method with optimization of pH, temperature and concentration of drug loading solution. Results: At pH 7.4, loading temperature and concentration of 32°C and 3 mg/ml, respectively, enhanced drug loading capacity and release were observed. Diffusional experiments showed Higuchi model of release. BRZ loading brought no appreciable changes in the physical properties of soft contact lens, likewise, maintaining stability. Conclusion: The results demonstrated BRZ loading and delivery through silicone hydrogel soft contact lens which provides a potential alternative in glaucoma therapy.
Collapse
|
24
|
Preparation and Physical Properties of a Silicone Hydrogel Contact Lens Grafted with a Phosphorylcholine-Containing Hydrophilic Copolymer. Macromol Res 2022. [DOI: 10.1007/s13233-022-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
26
|
Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021; 5:031509. [PMID: 34368603 PMCID: PMC8318605 DOI: 10.1063/5.0046076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrogel has been an attractive biomaterial for tissue engineering, drug delivery, wound healing, and contact lens materials, due to its outstanding properties, including high water content, transparency, biocompatibility, tissue mechanical matching, and low toxicity. As hydrogel commonly possesses high surface hydrophilicity, chemical modifications have been applied to achieve the optimal surface properties to improve the performance of hydrogels for specific applications. Ideally, the effects of surface modifications would be stable, and the modification would not affect the inherent hydrogel properties. In recent years, a new type of surface modification has been discovered to be able to alter hydrogel properties by physically patterning the hydrogel surfaces with topographies. Such physical patterning methods can also affect hydrogel surface chemical properties, such as protein adsorption, microbial adhesion, and cell response. This review will first summarize the works on developing hydrogel surface patterning methods. The influence of surface topography on interfacial energy and the subsequent effects on protein adsorption, microbial, and cell interactions with patterned hydrogel, with specific examples in biomedical applications, will be discussed. Finally, current problems and future challenges on topographical modification of hydrogels will also be discussed.
Collapse
Affiliation(s)
- Linan Cui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
27
|
Torres-Luna C, Hu N, Domszy R, Fan X, Yang J, Briber RM, Wang NS, Yang A. Effect of Carbon Chain Length, Ionic Strength, and pH on the In Vitro Release Kinetics of Cationic Drugs from Fatty-Acid-Loaded Contact Lenses. Pharmaceutics 2021; 13:pharmaceutics13071060. [PMID: 34371751 PMCID: PMC8309118 DOI: 10.3390/pharmaceutics13071060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
This paper explores the use of fatty acids in silicone hydrogel contact lenses for extending the release duration of cationic drugs. Drug release kinetics was dependent on the carbon chain length of the fatty acid loaded in the lens, with 12-, 14- and 18-carbon chain length fatty acids increasing the uptake and the release duration of ketotifen fumarate (KTF) and tetracaine hydrochloride (THCL). Drug release kinetics from oleic acid-loaded lenses was evaluated in phosphate buffer saline (PBS) at different ionic strengths (I = 167, 500, 1665 mM); the release duration of KTF and THCL was decreased with increasing ionic strength of the release medium. Furthermore, the release of KTF and THCL in deionized water did not show a burst and was significantly slower compared to that in PBS. The release kinetics of KTF and THCL was significantly faster when the pH of the release medium was decreased from 7.4 towards 5.5 because of the decrease in the relative amounts of oleate anions in the lens mostly populated at the polymer–pore interfaces. The use of boundary charges at the polymer–pore interfaces of a contact lens to enhance drug partition and extend its release is further confirmed by loading cationic phytosphingosine in contact lenses to attract an anionic drug.
Collapse
Affiliation(s)
- Cesar Torres-Luna
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA;
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
| | - Naiping Hu
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
| | - Roman Domszy
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
| | - Xin Fan
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA;
| | - Jeff Yang
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
| | - Robert M. Briber
- Department of Materials Science & Engineering, University of Maryland, College Park, MD 20740, USA;
| | - Nam Sun Wang
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA;
- Correspondence: (N.S.W.); (A.Y.); Tel.: +1-(301)-405-1910 (N.S.W.); +1-(717)-522-1739 (A.Y.)
| | - Arthur Yang
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
- Correspondence: (N.S.W.); (A.Y.); Tel.: +1-(301)-405-1910 (N.S.W.); +1-(717)-522-1739 (A.Y.)
| |
Collapse
|
28
|
Tran NPD, Yang MC, Tran-Nguyen PL. Evaluation of silicone hydrogel contact lenses based on poly(dimethylsiloxane) dialkanol and hydrophilic polymers. Colloids Surf B Biointerfaces 2021; 206:111957. [PMID: 34216853 DOI: 10.1016/j.colsurfb.2021.111957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/01/2022]
Abstract
Silicone hydrogel lenses were prepared by copolymerizing PDMS-PEGMA macromer (PGP) with various combinations of DMA, NVP, and PEGMA through UV initiated polymerization process. The resultant PGP macromer were characterized by gel permeation chromatography (GPC), and scanning electron microscope (SEM-EDS). Characterization of all the resultant co-polymers included Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), equilibrium water content (EWC), oxygen permeability (Dk), optical transparency, contact angle, mechanical properties, zeta potential, protein deposition, and cytotoxicity. The results show that higher content of hydrophilic polymers increased water uptake ability as well as improved hydrophilicity and modulus of silicone hydrogel lenses; however, oxygen permeability decreased with the decrease of PDMS content (145 barrers of PGP to 37 barrers of DP0). In addition, these silicone hydrogel lenses exhibited relatively optical transparency, anti-protein deposition, and non-cytotoxic according to an in vitro L929 fibroblast assay. Therefore, these silicone hydrogel polymers would be applicable for making contact lens.
Collapse
Affiliation(s)
- Nguyen-Phuong-Dung Tran
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Phuong Lan Tran-Nguyen
- Department of Mechanical Engineering, Can Tho University, 3/2 Street, Cantho City, Viet Nam
| |
Collapse
|
29
|
Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles:Gallic Acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater 2021; 128:262-276. [PMID: 33866034 DOI: 10.1016/j.actbio.2021.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Contact lenses are widely used for visual corrections. However, while wearing contact lenses, eyes typically face discomforts (itching, irritation, burning, etc.) due to foreign object sensation, lack of oxygen permeability, and tear film disruption as opposed to a lack of wetting agents. Eyes are also prone to ocular infections such as bacterial keratitis (BK) and fungal keratitis (FK) and inflammatory events such as contact lens-related acute red eye (CLARE), contact lens peripheral ulcer (CLPU), and infiltrative keratitis (IK) caused by pathogenic bacterial and fungal strains that contaminate contact lenses. Therefore, a good design of contact lenses should adequately address the need for wetting, the supply of antioxidants, and antifouling and antimicrobial efficacy. Here, we developed multifunctional gallic acid (GA), phytomolecules-coated zinc oxide nanoparticles (ZN), and phytomolecules-coated zinc oxide nanoparticles + gallic acid + tobramycin (ZGT)-coated contact lenses using a sonochemical technique. The coated contact lenses exhibited significant antibacterial (>log10 5.60), antifungal, and antibiofilm performance against BK-causing multidrug resistant bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia. coli) and FK-related pathogenic fungal strains (Candida albicans, Aspergillus fumigatus, and Fusarium solani). The gallic acid, tobramycin, and phytomolecules-coated zinc oxide nanoparticles have different functionalities (-OH, -NH2, -COOH, -COH, etc.) that enhanced wettability of the coated contact lenses as compared to that of uncoated ones and further enabled them to exhibit remarkable antifouling property by prohibiting adhesion of platelets and proteins. The coated contact lenses also showed significant antioxidant activity by scavenging DPPH and good cytocompatibility to human corneal epithelial cells and keratinocytes cell lines. STATEMENT OF SIGNIFICANCE: • Multifunctional coated lenses were developed with an efficient sonochemical approach. • Lens surface was modified with nanocoatings of ZnO nanoparticles, gallic acid, and tobramycin. • This synergistic combination endowed the lenses with remarkable antimicrobial activity. • Coated lenses also showed noteworthy antifouling and biofilm inhibition activities. • Coated lenses showed good antioxidant, biocompatibility, and wettability characteristics.
Collapse
|
30
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
31
|
Li Z, Cheng H, Ke L, Liu M, Wang C, Jun Loh X, Li Z, Wu Y. Recent Advances in New Copolymer Hydrogel‐Formed Contact Lenses for Ophthalmic Drug Delivery. CHEMNANOMAT 2021; 7:564-579. [DOI: 10.1002/cnma.202100008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 02/05/2023]
Abstract
AbstractPharmaceuticals delivery to the eye sites of interest via the means of contact lenses (CLs) has attracted significant research attention in recent years. Compared with the conventional formulation in eye treatment such as eye drops, CLs administration has shown remarkable advantages in overcoming the challenges involved in ocular drug delivery such as higher bioavailability, longer drug residence and better medication compliance. This review will first detail each of the material components which have been used in the context of CLs, including HEMA, MAA, DMA, NVP, EGDMA, TRIS and PDMS. The pros and cons of each material in tailoring drug release rates of different encapsulated payloads will be discussed, with special focus on their impact on the therapeutic efficiency. In addition, the advancement of recent emerging copolymer CLs hydrogels, originated from these sophisticated monomers with distinct functions, are further summarized into several synthetic strategies in the means of copolymer architecture design and function‐performance relationship in ophthalmic applications. Finally, the possible considerations for future design of multifunctional CLs hydrogels by combing material selection rationales with biological interface science are proposed.
Collapse
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| | - Hongwei Cheng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| | - Chen‐Gang Wang
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 P. R. China
| |
Collapse
|
32
|
Lee MJ, Park SY, Sung AY. Characterization of Biocompatible Hydrogel Lenses Using Methacrylic Acid with Neodymium Oxide Nanoparticles. Polymers (Basel) 2021; 13:polym13101575. [PMID: 34069015 PMCID: PMC8156141 DOI: 10.3390/polym13101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
We prepared hydrogel contact lenses containing nanoparticles of neodymium oxide and methacrylic acid (MA) to investigate their effect on the physical and chemical properties of the lens. Neodymium oxide nanoparticles improved the tensile strength without affecting wettability. The tensile strength, wettability, and light transmittance were all increased when MA was added in a specific ratio. To confirm the safety of the newly used nanoparticles, test on absorbance, eluate, and pH change were conducted and it was found that the safety level was satisfactory. In conclusion, it was confirmed that durable contact lenses can be manufactured with neodymium oxide nanoparticles, and most of the basic elements of the lens such as transparency, strength, and wettability could be improved using MA, which is a hydrophilic material. It is believed that the study will be helpful as part of basic research to use new materials.
Collapse
Affiliation(s)
- Min-Jae Lee
- Department of Optometry, Jeju Tourism University, Jeju 63063, Korea;
| | - Seon-Young Park
- Department of Optometry & Vision Science, Daegu Catholic University, Gyeongsan 38430, Korea;
| | - A-Young Sung
- Department of Optometry & Vision Science, Daegu Catholic University, Gyeongsan 38430, Korea;
- Correspondence:
| |
Collapse
|
33
|
Resveratrol-Loaded Hydrogel Contact Lenses with Antioxidant and Antibiofilm Performance. Pharmaceutics 2021; 13:pharmaceutics13040532. [PMID: 33920327 PMCID: PMC8069945 DOI: 10.3390/pharmaceutics13040532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Contact lenses (CLs) are prone to biofilm formation, which may cause severe ocular infections. Since the use of antibiotics is associated with resistance concerns, here, two alternative strategies were evaluated to endow CLs with antibiofilm features: copolymerization with the antifouling monomer 2-methacryloyloxyethyl phosphorylcholine (MPC) and loading of the antioxidant resveratrol with known antibacterial activity. MPC has, so far, been used to increase water retention on the CL surface (Proclear® 1 day CLs). Both poly(hydroxyethyl methacrylate) (HEMA) and silicone hydrogels were prepared with MPC covering a wide range of concentrations (from 0 to 101 mM). All hydrogels showed physical properties adequate for CLs and successfully passed the hen’s egg-chorioallantoic membrane (HET-CAM) test. Silicone hydrogels had stronger affinity for resveratrol, with higher loading and a slower release rate. Ex vivo cornea and sclera permeability tests revealed that resveratrol released from the hydrogels readily accumulated in both tissues but did not cross through. The antibiofilm tests against Pseudomonas aeruginosa and Staphylococcus aureus evidenced that, in general, resveratrol decreased biofilm formation, which correlated with its concentration-dependent antibacterial capability. Preferential adsorption of lysozyme, compared to albumin, might also contribute to the antimicrobial activity. In addition, importantly, the loading of resveratrol in the hydrogels preserved the antioxidant activity, even against photodegradation. Overall, the designed hydrogels can host therapeutically relevant amounts of resveratrol to be sustainedly released on the eye, providing antibiofilm and antioxidant performance.
Collapse
|
34
|
CLEAR - Contact lens wettability, cleaning, disinfection and interactions with tears. Cont Lens Anterior Eye 2021; 44:157-191. [DOI: 10.1016/j.clae.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
|
35
|
Wu C, Or PW, Chong JIT, K Pathirage Don IK, Lee CHC, Wu K, Yu M, Lam DCC, Yang Y. Controllable release of pirfenidone by polyvinyl alcohol film embedded soft contact lenses in vitro and in vivo. Drug Deliv 2021; 28:634-641. [PMID: 33779455 PMCID: PMC8008939 DOI: 10.1080/10717544.2021.1895911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To increase the amount of pirfenidone (PFD) loaded in polyvinyl alcohol (PVA) film embedded soft contact lens (SCL), and evaluate its function of sustaining delivery of drug in vitro and in vivo. Drug loading efficiency within PVA film and SCLs, drug release from SCLs in vitro, and the effects of parameters of SCLs and external environment on drug release in vitro were evaluated by ultraviolet–visible spectrophotometer at 312 nm. Safety of SCLs was evaluated in vitro by transformed human corneal epithelial cell. Safety in vivo was determined by optical coherence tomography and histology of anterior segment of rabbits. Drug release study in tear fluid and aqueous humor were measured by ultra-performance liquid chromatography. SCLs had smooth surface and were fit for experimental rabbits. Amount of PFD in PVA film and SCLs were 153.515 μg ± 12.508 and 127.438 μg ± 19.674, respectively, PFD in PVA film was significantly higher than SCLs (p=.006) and closed to 150 μg (targeting amount of PFD to be loaded). Thickness of SCLs, molecular weight of PVA, and amount of PVA used in SCLs affected drug release in vitro significantly. Thickness of PVA film and amount of drug in SCLs had no effect on drug release rate in vitro. SCLs were safe in vitro and in vivo, PFD released from SCLs could be detected around 12 hours in tears and aqueous humor, and the concentration of drug was higher than eye drop at all detected time points while amount of PFD in SCLs was lower than eye drop. Drug loaded PVA film embedded SCLs may be a promising ocular drug delivery system.
Collapse
Affiliation(s)
- Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Wai Or
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Jones Iok Tong Chong
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Isuru K K Pathirage Don
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ching Hymn Christopher Lee
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - David C C Lam
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Ishihara K, Fukazawa K, Sharma V, Liang S, Shows A, Dunbar DC, Zheng Y, Ge J, Zhang S, Hong Y, Shi X, Wu JY. Antifouling Silicone Hydrogel Contact Lenses with a Bioinspired 2-Methacryloyloxyethyl Phosphorylcholine Polymer Surface. ACS OMEGA 2021; 6:7058-7067. [PMID: 33748619 PMCID: PMC7970573 DOI: 10.1021/acsomega.0c06327] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
Inspired by the cell membrane surface as well as the ocular tissue, a novel and clinically applicable antifouling silicone hydrogel contact lens material was developed. The unique chemical and biological features on the surface on a silicone hydrogel base substrate were achieved by a cross-linked polymer layer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), which was considered important for optimal on-eye performance. The effects of the polymer layer on adsorption of biomolecules, such as lipid and proteins, and adhesion of cells and bacteria were evaluated and compared with several conventional silicone hydrogel contact lens materials. The MPC polymer layer provided significant resistance to lipid deposition as visually demonstrated by the three-dimensional confocal images of whole contact lenses. Also, fibroblast cell adhesion was decreased to a 1% level compared with that on the conventional silicone hydrogel contact lenses. The movement of the cells on the surface of the MPC polymer-modified lens material was greater compared with other silicone hydrogel contact lenses indicating that lubrication of the contact lenses on ocular tissue might be improved. The superior hydrophilic nature of the MPC polymer layer provides improved surface properties compared to the underlying silicone hydrogel base substrate.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department
of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Fukazawa
- Department
of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Vinay Sharma
- Alcon
Vision LLC, Fort Worth, Texas 76134, United States
| | - Shuang Liang
- Alcon
Vision LLC, Fort Worth, Texas 76134, United States
| | - Amanda Shows
- Alcon
Vision LLC, Fort Worth, Texas 76134, United States
| | | | - Yang Zheng
- Alcon
Vision LLC, Duluth, Georgia 30097, United
States
| | - Junhao Ge
- Alcon
Vision LLC, Duluth, Georgia 30097, United
States
| | - Steve Zhang
- Alcon
Vision LLC, Duluth, Georgia 30097, United
States
| | - Ye Hong
- Alcon
Vision LLC, Duluth, Georgia 30097, United
States
| | - Xinfeng Shi
- Alcon
Vision LLC, Fort Worth, Texas 76134, United States
| | | |
Collapse
|
37
|
Silicon-Containing Polymeric Materials. Polymers (Basel) 2021; 13:polym13020188. [PMID: 33430192 PMCID: PMC7825594 DOI: 10.3390/polym13020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
When thinking about a chemical element that has contributed to the technological progress over the last two centuries, carbon and all carbon-based materials immediately come to mind [...].
Collapse
|
38
|
Wu C, Or PW, Chong JIT, Pathirage Don IKK, Lee CHC, Wu K, Yu M, Lam DCC, Yang Y. Extended Delivery of Pirfenidone with Novel, Soft Contact Lenses In Vitro and In Vivo. J Ocul Pharmacol Ther 2020; 37:75-83. [PMID: 33297836 DOI: 10.1089/jop.2020.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of this study was to fabricate pirfenidone (PFD)-loaded soft contact lenses (SCLs), explore their characteristics, and evaluate their efficiency on extended delivery of PFD in vitro and in vivo. Methods: PFD-loaded SCLs were fabricated by embedding an insert of PFD and polyvinyl alcohol (PVA) into 2 layers of silicone elastomer. The optical transparency, water content, and protein deposition were measured. Transformed human corneal epithelial cells were used to test the cytotoxicity of SCLs. The release rate of PFD by SCLs in vitro was evaluated by an ultraviolet-visible spectrophotometer. Toxicity of SCLs was assessed by inspection of ocular surface irritation in rabbits before and after contact lens wear. The concentrations of PFD in tears and aqueous humor of rabbits' eyes as a function of time were determined by high-performance liquid chromatography for SCLs and 30 μL of 0.5% PFD eye drops. Results: SCLs possessed good light transmittance. Blank SCLs had poor water content (0.548% ± 0.330), and an improved water content was found in PVA film-loaded SCLs (11.022% ± 1.508, P = 0.010). No lysozyme and human serum albumin were found in SCLs. There was no significant toxicity of SCLs in vitro and in vivo. SCLs prolonged the residence time of PFD in tears and aqueous humor of rabbit eyes by 5 times compared with the eye drop instillation while around 1/10 of the eye drop dosage was loaded in SCLs. Conclusions: PFD-loaded SCLs can significantly prolong the residence time of PFD and may be a promising ocular drug delivery system.
Collapse
Affiliation(s)
- Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Wai Or
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jones Iok Tong Chong
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Isuru K K Pathirage Don
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ching Hymn Christopher Lee
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - David C C Lam
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Reduction of Physical Strength and Enhancement of Anti-Protein and Anti-Lipid Adsorption Abilities of Contact Lenses by Adding 2-Methacryloyloxyethyl Phosphorylcholine. Macromol Res 2020. [DOI: 10.1007/s13233-020-8149-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Tran NPD, Ting CC, Lin CH, Yang MC. A Novel Approach to Increase the Oxygen Permeability of Soft Contact Lenses by Incorporating Silica Sol. Polymers (Basel) 2020; 12:polym12092087. [PMID: 32937918 PMCID: PMC7569976 DOI: 10.3390/polym12092087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/04/2022] Open
Abstract
This study presents a novel approach to increase the oxygen permeability of hydrogel by the addition of silica sol. Herein, 2-hydroxyethyl methacrylate (HEMA) was copolymerized with N-vinyl-2-pyrrolidone (NVP) after mixing with silica sol. The resultant hydrogel was subject to characterizations including Fourier-transform infrared (FTIR), equilibrium water content (EWC), contact angle, optical transmittance, oxygen permeability (Dk), tensile test, anti-deposition of proteins, and cytotoxicity. The results showed that with the increase of silica content, the Dk values and Young’s moduli increased, the optical transmittance decreased slightly, whereas the EWC and contact angle, and protein deposition were not much affected. Moreover, the cytotoxicity of the resultant poly(HEMA-co-NVP)-SNPs indicated that the presence of silica sol was non-toxic and caused no effect to the growth of L929 cells. Thus, this approach increased the Dk of soft contact lenses without affecting their hydrophilicity.
Collapse
Affiliation(s)
| | | | | | - Ming-Chien Yang
- Correspondence: ; Tel.: +886-2-2737-6528; Fax: +886-2-2737-6544
| |
Collapse
|
41
|
Sharma A, Bhat S, Dasgupta D, Samantara L, Kalyanachakravarthi K, Manchanda B, Shah C, Saxena A, Choudhury V, Mondal T. Structure–property correlation of silicone hydrogels based on 3‐[tris(trimethylsilyloxy)silyl]propyl methacrylate monomer. J Appl Polym Sci 2020. [DOI: 10.1002/app.49198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Asmita Sharma
- Corporate R&DMomentive Performance Materials (India) Pvt. Ltd. Bangalore India
| | - Shreedhar Bhat
- Corporate R&DMomentive Performance Materials (India) Pvt. Ltd. Bangalore India
| | - Debarshi Dasgupta
- Corporate R&DMomentive Performance Materials (India) Pvt. Ltd. Bangalore India
| | - Laxmi Samantara
- Corporate R&DMomentive Performance Materials (India) Pvt. Ltd. Bangalore India
| | | | - Bindu Manchanda
- Department of Material Science and EngineeringIndian Institute of Technology New Delhi India
| | - Chetan Shah
- Corporate R&DMomentive Performance Materials (India) Pvt. Ltd. Bangalore India
| | - Anubhav Saxena
- Corporate R&DMomentive Performance Materials (India) Pvt. Ltd. Bangalore India
| | - Veena Choudhury
- Department of Material Science and EngineeringIndian Institute of Technology New Delhi India
| | - Titash Mondal
- Corporate R&DMomentive Performance Materials (India) Pvt. Ltd. Bangalore India
| |
Collapse
|
42
|
Poly(2-hydroxyethyl methacrylate)/β-cyclodextrin-hyaluronan contact lens with tear protein adsorption resistance and sustained drug delivery for ophthalmic diseases. Acta Biomater 2020; 110:105-118. [PMID: 32339710 DOI: 10.1016/j.actbio.2020.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
A series of poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels containing cross-linked β-cyclodextrin-hyaluronan (β-CD-crHA), with tear protein adsorption resistance and sustained drug delivery, were developed as contact lens materials for eye diseases. β-CD-HA was synthesized from aminated β-CD and HA and then crosslinked within pHEMA hydrogel using polyethylenimine as a crosslinker. The synthesized β-CD-HA was characterized by 1H NMR analysis, and β-CD-crHA immobilized in pHEMA hydrogel was confirmed by FT-IR, SEM, and AFM analyses. The incorporation of β-CD-crHA significantly improved the surface hydrophilicity, water uptake ability, oxygen permeability, and flexibility of pHEMA hydrogel, but did not compromise light transmission. pHEMA/β-CD-crHA hydrogels not only decreased the tear protein adsorption because of the electrostatically mutual repulsion and the improved hydrophilicity, leading to the reduced adhesion of Staphylococcus aureus on the hydrogel surface, but also enhanced the encapsulation capacity and the sustainable delivery of diclofenac due to the formation of inclusion complexes between β-CD and drugs. All the hydrogels were nontoxic to 3T3 mouse fibroblasts by in vitro cell viability analysis. Among these hydrogels with different β-CD-crHA contents, pHEMA/β-CD-crHA10 hydrogel showed the lowest water contact angle of 52 °, the highest water content of 65%, the largest Dk value of 36.4 barrer, and the optimal modulus of 1.8 MPa, as well as a good light transmission of over 90%. The in vivo conjunctivitis treatment of rabbits for 72 h indicated that drug-loaded pHEMA/β-CD-crHA10 hydrogel presented a better therapeutic effect than both one dose administration of drug solution per day and drug-loaded pHEMA hydrogel. Thus, pHEMA/β-CD-crHA10 hydrogel is a promising contact lens material for ophthalmic diseases. STATEMENT OF SIGNIFICANCE: Topical eye drops are currently the most popular treatment for ophthalmic diseases, but frequent dosing is necessary to acquire the desirable clinical effect at the expense of systemic side-effects. Drug-loaded contact lenses, as an alternative of eye drops, possess many good performances and show potential applications. However, the sustained drug delivery and the tear protein adsorption resistance are still challenging for contact lenses. Hence, we developed a novel pHEMA/β-CD-crHA hydrogel by incorporating β-CD-crHA crosslinked network into pHEMA hydrogel. Besides the improvements in surface hydrophilicity, water uptake ability, oxygen permeability, and flexibility, pHEMA/β-CD-crHA hydrogel also reduced the adsorption of tear proteins and the adhesion of Staphylococcus aureus, enhanced the drug encapsulation, and prolonged the drug delivery, with better effect in the conjunctivitis treatment of rabbits. Thus, pHEMA/β-CD-crHA hydrogel is a potential contact lens material for treating ophthalmic diseases.
Collapse
|
43
|
The Ophthalmic Performance of Hydrogel Contact Lenses Loaded with Silicone Nanoparticles. Polymers (Basel) 2020; 12:polym12051128. [PMID: 32423074 PMCID: PMC7284626 DOI: 10.3390/polym12051128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023] Open
Abstract
In this study, silicone nanoparticles (SiNPs) were prepared from polydimethylsiloxane (PDMS) and tetraethyl orthosilicate (TEOS) via the sol-gel process. The resultant SiNPs were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and scanning electron microscope (SEM). These SiNPs were then blended with 2-hydroxyethylmethacrylate (HEMA) and 1-vinyl-2-pyrrolidinone (NVP) before polymerizing into hydrogel contact lenses. All hydrogels were subject to characterization, including equilibrium water content (EWC), contact angle, and oxygen permeability (Dk). The average diameter of SiNPs was 330 nm. The results indicated that, with the increase of SiNPs content, the oxygen permeability increased, while the EWC was affected insignificantly. The maximum oxygen permeability attained was 71 barrer for HEMA-NVP lens containing 1.2 wt% of SiNPs with an EWC of 73%. These results demonstrate that by loading a small amount of SiNPs, the Dk of conventional hydrogel lenses can be improved greatly. This approach would be a new method to produce oxygen-permeable contact lenses.
Collapse
|
44
|
Phan CM, Walther H, Qiao H, Shinde R, Jones L. Development of an Eye Model With a Physiological Blink Mechanism. Transl Vis Sci Technol 2019; 8:1. [PMID: 31534830 PMCID: PMC6727780 DOI: 10.1167/tvst.8.5.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 01/26/2023] Open
Abstract
Purpose To develop an eye model with a physiological blink mechanism. Methods All parts of the eye model were designed using computer-aided design software. The eyelid consisted of a unique 3D printed structure containing teeth to physically secure a flexible membrane. Both the eyeball and eyelid membrane were synthesized using polyvinyl alcohol (PVA). Four molecular weights of PVA (89–98, 85–124, 130, and 146–186 kDa) were tested at a range of concentrations between 5% and 30% weight/volume. The wettability and water content of these materials were compared with the bovine cornea and sclera. The model was connected to a microfluidic pump, which delivers artificial tear solution (ATS) to the eyelid. A corneal topographer was used to evaluate the tear break-up and tear film regeneration. Results The eyelid flexes and slides across the eyeball during each blink, which ensures direct contact between the two surfaces. When loaded with an ATS, this mechanism evenly spreads the solution over the eyeball to generate an artificial tear film. The artificial tear film in this eye model had a tear break-up time (TBUT) of 5.13 ± 0.09 seconds at 1.4 μL/min flow rate, 6 blinks/min, and <25% humidity. Conclusions This model simulates a physiological blink actuation and an artificial tear film layer. Future studies will examine variations in flow rates and ATS composition to simulate clinical values of TBUT. Translational Relevance The eye model could be used to study in vitro TBUT, tear deposition, and simple drug delivery.
Collapse
Affiliation(s)
- Chau-Min Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Hendri Walther
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Ha Qiao
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Ra Shinde
- Manipal Academy of Higher Education, Manipal Institute of Technology, Madhav Nagar, Manipal, Karnataka, India
| | - Lyndo Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|