1
|
Yang Y, Gao Q, Liang W, Zhang X, Qian L, Li Z, Chen X. Enhanced Stretchable 2D Metal-Graphene Membranes with Superior Mechanical Properties for Sieving Lithium from Brine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409950. [PMID: 39587005 DOI: 10.1002/smll.202409950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Designing mechanically robust, 2D membranes with elastic properties is crucial for advancing separation technologies, particularly in demanding environments such as saline lakes. Here, an innovative approach, the synthesis of silver nanosheets within graphene oxide (GO) membranes to form a 2D silver-graphene heterojunction, is introduced. This membrane exhibits exceptional mechanical strength (stress tolerance of 4.26 MPa and strain capacity of 123.03%), attributed to the reinforcing effect and ductility of silver nanosheets interacting synergistically with GO layers. Notably, the membrane demonstrates high selectivity for lithium ions in Salt Lake brine (Li⁺/Mg2⁺ ≈ 29.0, Na⁺/Mg2⁺ ≈ 183.3). Through dynamic stretching, the membrane enables precise modulation of ion permeability and selectivity, highlighting its versatility and practicality in complex separation processes. This study marks a significant advancement in membrane design, underscoring its potential in addressing challenges posed by diverse industrial applications, particularly in saline environments.
Collapse
Affiliation(s)
- Yunchao Yang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Qifeng Gao
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Wenbin Liang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Xin Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Lijuan Qian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, No. 3, Bayi Middle Road, Xining, 810007, China
| | - Ximeng Chen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, China
| |
Collapse
|
2
|
Shabalina AV, Kozlov VA, Popov IA, Gudkov SV. A Review on Recently Developed Antibacterial Composites of Inorganic Nanoparticles and Non-Hydrogel Polymers for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1753. [PMID: 39513834 PMCID: PMC11547681 DOI: 10.3390/nano14211753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Development of new antibacterial materials for solving biomedical problems is an extremely important and very urgent task. This review aims to summarize recent articles (from the last five and mostly the last three years) on the nanoparticle/polymer composites for biomedical applications. Articles on polymeric nanoparticles (NPs) and hydrogel-based systems were not reviewed, since we focused our attention mostly on the composites of polymeric matrix with at least one inorganic filler in the form of NPs. The fields of application of newly developed antibacterial NPs/polymer composites are described, along with their composition and synthetic approaches that allow researchers to succeed in preparing effective composite materials for medical and healthcare purposes.
Collapse
Affiliation(s)
- Anastasiia V. Shabalina
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119333 Moscow, Russia (S.V.G.)
| | - Valeriy A. Kozlov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119333 Moscow, Russia (S.V.G.)
| | - Ivan A. Popov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119333 Moscow, Russia (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119333 Moscow, Russia (S.V.G.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
El Sadda RR, Eissa MS, Elafndi RK, Moawed EA, El-Zahed MM, Saad HR. Synthesis and biological evaluation of titanium dioxide/thiopolyurethane composite: anticancer and antibacterial effects. BMC Chem 2024; 18:35. [PMID: 38368376 PMCID: PMC10874576 DOI: 10.1186/s13065-024-01138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Nanocomposites incorporating titanium dioxide (TiO2) have a significant potential for various industrial and medical applications. These nanocomposites exhibit selectivity as antimicrobial and anticancer agents. Antimicrobial activity is crucial for medical uses, including applications in food processing, packaging, and surgical instruments. Additionally, these nanocomposites exhibit selectivity as anticancer agents. A stable nanocomposite as a new anticancer and antibacterial chemical was prepared by coupling titanium dioxide nanoparticles with a polyurethane foam matrix through the thiourea group. The titanium dioxide/thiopolyurethane nanocomposite (TPU/TiO2) was synthesized from low-cost Ilmenite ore and commercial polyurethane foam. EDX analysis was used to determine the elemental composition of the titanium dioxide (TiO2) matrix. TiO2NPs were synthesized and were characterized using TEM, XRD, IR, and UV-Vis spectra. TiO2NPs and TPU foam formed a novel composite. The MTT assay assessed Cisplatin and HepG-2 and MCF-7 cytotoxicity in vitro. Its IC50 values for HepG-2 and MCF-7 were 122.99 ± 4.07 and 201.86 ± 6.82 µg/mL, respectively. The TPU/TiO2 exhibits concentration-dependent cytotoxicity against MCF-7 and HepG-2 cells in vitro. The selective index was measured against both cell lines; it showed its safety against healthy cells. Agar well-diffusion exhibited good inhibition zones against Escherichia coli (12 mm), Bacillus cereus (10 mm), and Aspergillus niger (19 mm). TEM of TPU/TiO2-treated bacteria showed ultrastructure changes, including plasma membrane detachment from the cell wall, which caused lysis and bacterial death. TPU/TiO2 can treat cancer and inhibit microbes in dentures and other items. Also, TPU/TiO2 inhibits E. coli, B. cereus, and A. niger microbial strains.
Collapse
Affiliation(s)
- Rana R El Sadda
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt.
| | - Mai S Eissa
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Rokaya K Elafndi
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Elhossein A Moawed
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Mohamed M El-Zahed
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Hoda R Saad
- Geology Department, Faulty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
5
|
Perera DC, Rasaiah JC. Computational Study of H 2O Adsorption, Hydrolysis, and Water Splitting on (ZnO) 3 Nanoclusters Deposited on Graphene and Graphene Oxides. ACS OMEGA 2023; 8:32185-32203. [PMID: 37692258 PMCID: PMC10483521 DOI: 10.1021/acsomega.3c04882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023]
Abstract
Graphene and graphene oxide (GO)-based metal oxides could play an important role in using metal oxide like zinc oxide (ZnO) as photocatalysts to split water. The π conjugation structure of GO shows greater electron mobility and could enhance the photocatalytic performance of the bare ZnO catalyst by increasing the electron-hole separation. In this work, we use density functional theory (DFT) with the B3LYP exchange functional and DGDZVP2 basis set to study the impact of adsorbing (ZnO)3 nanoparticles on graphene and four different GO models (GO1, GO2, GO4, and GO5) on the hydration and hydrolysis of water that precedes water splitting to produce H2 and O2 atoms in the gas phase and compare them with our previous studies on the bare catalyst in the absence of the substrate. The potential energy curves and activation energies are similar, but the triplet states are lower in energy than the singlet states in contrast to the bare (ZnO)3 catalyst. We extend our calculations to water splitting from the hydrolyzed (ZnO)3 on GO1 (GO1-(ZnO)3). The triplet state energy remains lower than the singlet state energy, and hydrogen production precedes the formation of oxygen, but there is no energy inter-crossing during the formation of O2 that occurs in the absence of a GO1 substrate. Although the hydrolysis reaction pathway follows similar steps in both the bare and GO1-(ZnO)3, water splitting with (ZnO)3 absorbed on the GO1 substrate skips two steps as it proceeds toward the production of the second H2. The production of two hydrogen molecules precedes oxygen formation during water splitting, and the first Zn-H bond formation step is the rate-determining step. The ZnO trimer deposited on GO systems could be potentially attractive nanocatalysts for water splitting.
Collapse
Affiliation(s)
- Duwage C. Perera
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | | |
Collapse
|
6
|
Jin H, Cai M, Deng F. Antioxidation Effect of Graphene Oxide on Silver Nanoparticles and Its Use in Antibacterial Applications. Polymers (Basel) 2023; 15:3045. [PMID: 37514433 PMCID: PMC10386249 DOI: 10.3390/polym15143045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) have drawn great attention due to their outstanding antibacterial effect in a wide range of applications, such as biomass packaging materials, wound dressings, flexible sensors, etc. However, the oxidation of AgNPs limits the antibacterial effect. Firstly, the effects of pretreatment methods on the antibacterial property of AgNPs were investigated by the shake flask method and agar diffusion plate method. Secondly, graphene oxide/silver nanoparticle (GO/AgNPs) nanocomposite prepared by an in-situ growth method was used as antibacterial filler for polyacrylate emulsion via a blending method. The antibacterial mechanism of GO/AgNPs was revealed by comparing the actual contents of oxygen with the theoretically calculated contents of oxygen. Finally, the polyacrylate/graphene oxide/silver nanoparticles (PA/GO/AgNPs) composite emulsion was applied onto a leather surface using a layer-by-layer spraying method to improve the leather's antibacterial properties. The results showed that ultraviolet irradiation could better maintain the antibacterial property of AgNPs, while GO could improve the dispersibility of AgNPs and prevent their oxidation. The leather finished with the PA/GO/AgNPs-2 wt% composite emulsion showed the highest bacteriostatic rate of 74%, demonstrating its great potential in the application of antibacterial leather products.
Collapse
Affiliation(s)
- Hua Jin
- School of Design and Innovation, Wenzhou Polytechnic, Wenzhou 325000, China
| | - Mengyao Cai
- College of Art and Design, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuquan Deng
- College of Art and Design, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Zhang P, Gong J, Jiang Y, Long Y, Lei W, Gao X, Guo D. Application of Silver Nanoparticles in Parasite Treatment. Pharmaceutics 2023; 15:1783. [PMID: 37513969 PMCID: PMC10384186 DOI: 10.3390/pharmaceutics15071783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs. This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application of AgNPs in the prevention and control of parasitic diseases.
Collapse
Affiliation(s)
- Ping Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Weiqiang Lei
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
8
|
Liao W, Huang X, Zhong G, Ye L, Zheng S. Fabrication of poly (styrene-acrylate)/silver nanoparticle-graphene oxide composite antibacterial by in situ Pickering emulsion polymerization. J Mech Behav Biomed Mater 2023; 144:105877. [PMID: 37399763 DOI: 10.1016/j.jmbbm.2023.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 07/05/2023]
Abstract
Graphene oxide (GO) nanosheets decorated with silver nanoparticles (AgNPs) were easily synthesized by chemical reduction, and the prepared nanocomposite was then used as a stabilizer in the Pickering emulsion polymerization of poly (styrene-acrylate) to prepare PSA/AgNPs-GO composites. The AgNPs-GO nanocomposites were fully characterized by TEM, FTIR, Raman, SEM and XPS, which demonstrated that about 5-30 nm AgNPs with spherical, octahedral and cubic structures were decorated on the surface of wrinkled GO nanosheets. TEM photos and EDS spectrum of composites showed that the transparent GO nanosheets decorated with AgNPs were covered on the surface of PSA latexes and the AgNPs were uniformly dispersed on the surface of the PSA latexes without aggregation. The average diameter of composite latexes was obviously bigger than that of PSA latexes. However, the role of surfactant and the properties of hydrophilicity decreased the average diameter and WCA of composites while increasing the additions of AgNPs-GO nanocomposites. AFM images disclosed that wrinkled GO nanosheets decorated with AgNPs dispersed on the surface of composite films. XPS data proved clearly that silver was present only in metallic form and migration occurred during film-formation. TGA curves confirmed the composite film displayed better thermal stability than that of PSA. The results of antibacterial activity revealed that composite films had exhibited antibacterial properties against both E. coli and S. aureus, and the latter showed better antibacterial efficacy than the former. The nano-silver polyacrylate coatings with antibacterial activity explored in current work have wide application in the fields of wood coatings, leather finishing, and so on.
Collapse
Affiliation(s)
- Wenbo Liao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiangxuan Huang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Guoyu Zhong
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Lingyun Ye
- Basic Chemistry Experimental Teaching Center, Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
| | - Shaona Zheng
- Basic Chemistry Experimental Teaching Center, Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
9
|
Shankar K, Agarwal S, Mishra S, Bhatnagar P, Siddiqui S, Abrar I. A review on antimicrobial mechanism and applications of graphene-based materials. BIOMATERIALS ADVANCES 2023; 150:213440. [PMID: 37119697 DOI: 10.1016/j.bioadv.2023.213440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
In recent years, graphene and its derivatives, owing to their phenomenal surface, and mechanical, electrical, and chemical properties, have emerged as advantageous materials, especially in terms of their potential for antimicrobial applications. Particularly important among graphene's derivatives is graphene oxide (GO) due to the ease with which its surface can be modified, as well as the oxidative and membrane stress that it exerts on microbes. This review encapsulates all aspects regarding the functionalization of graphene-based materials (GBMs) into composites that are highly potent against bacterial, viral, and fungal activities. Governing factors, such as lateral size (LS), number of graphene layers, solvent and GBMs' concentration, microbial shape and size, aggregation ability of GBMs, and especially the mechanisms of interaction between composites and microbes are discussed in detail. The current and potential applications of these antimicrobial materials, especially in dentistry, osseointegration, and food packaging, have been described. This knowledge can further drive research that aims to look for the most suitable components for antimicrobial composites. The need for antimicrobial materials has seldom been more felt than during the COVID-19 pandemic, which has also been highlighted here. Possible future research areas include the exploration of GBMs' ability against algae.
Collapse
Affiliation(s)
- Krishna Shankar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Satakshi Agarwal
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Subham Mishra
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Pranshul Bhatnagar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Sufiyan Siddiqui
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Iyman Abrar
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India.
| |
Collapse
|
10
|
Das M, Sethy C, Kundu CN, Tripathy J. Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties. Int J Biol Macromol 2023; 239:124185. [PMID: 36977443 DOI: 10.1016/j.ijbiomac.2023.124185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Incorporating single or combined nanofillers in polymeric matrices is a promising approach for developing antimicrobial materials for applications in wound healing and packaging etc. This study reports a facile fabrication of antimicrobial nanocomposite films using biocompatible polymers sodium carboxymethyl cellulose (CMC) and sodium alginate (SA) reinforced with nanosilver (Ag) and graphene oxide (GO) using the solvent casting approach. Eco-friendly synthesis of Ag nanoparticles within a size range of 20-30 nm was carried out within the polymeric solution. GO was introduced into the CMC/SA/Ag solution in different weight percentages. The films were characterized by UV-Vis, FT-IR, Raman, XRD, FE-SEM, EDAX, and TEM. The results indicated the enhanced thermal and mechanical performance of CMC/SA/Ag-GO nanocomposites with increased GO weight %. The antibacterial efficacy of the fabricated films was evaluated on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The CMC/SA/Ag-GO2% nanocomposite exhibited the highest zone of inhibition of 21.30 ± 0.70 mm against E. coli and 18.00 ± 1.00 mm against S. aureus. The CMC/SA/Ag-GO nanocomposites exhibited excellent antibacterial activity as compared to CMC/SA and CMC/SA-Ag due to the synergetic bacterial growth inhibition activities of the GO and Ag. The cytotoxic activity of the prepared nanocomposite films was also assessed to investigate their biocompatibility.
Collapse
|
11
|
Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-Based Materials for Inhibition of Wound Infection and Accelerating Wound Healing. Biomed Pharmacother 2023; 158:114184. [PMID: 36587554 DOI: 10.1016/j.biopha.2022.114184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Bacterial infection of the wound could potentially cause serious complications and an enormous medical and financial cost to the rapid emergence of drug-resistant bacteria. Nanomaterials are an emerging technology, that has been researched as possible antimicrobial nanomaterials for the inhibition of wound infection and enhancement of wound healing. Graphene is 2-dimensional (2D) sheet of sp2 carbon atoms in a honeycomb structure. It has superior properties, strength, conductivity, antimicrobial, and molecular carrier abilities. Graphene and its derivatives, Graphene oxide (GO) and reduced GO (rGO), have antibacterial activity and could damage bacterial morphology and lead to the leakage of intracellular substances. Besides, for wound infection management, Graphene-platforms could be functionalized by different antibacterial agents such as metal-nanoparticles, natural compounds, and antibiotics. The Graphene structure can absorb near-infrared wavelengths, allowing it to be used as antimicrobial photodynamic therapy. Therefore, Graphene-based material could be used to inhibit pathogens that cause serious skin infections and destroy their biofilm community, which is one of the biggest challenges in treating wound infection. Due to its agglomerated structure, GO hydrogel could entrap and stack the bacteria; thus, it prevents their initial attachment and biofilm formation. The sharp edges of GO could destroy the extracellular polymeric substance surrounding the biofilm and ruin the biofilm biomass structure. As well as, Chitosan and different natural and synthetic polymers such as collagen and polyvinyl alcohol (PVA) also have attracted a great deal of attention for use with GO as wound dressing material. To this end, multi-functional polymers based on Graphene and blends of synthetic and natural polymers can be considered valid non-antibiotic compounds useful against wound infection and improvement of wound healing. Finally, the global wound care market size was valued at USD 20.8 billion in 2022 and is expected to expand at a compound annual growth rate (CAGR) of 5.4% from 2022 to 2027 (USD 27.2 billion). This will encourage academic as well as pharmaceutical and medical device industries to investigate any new materials such as graphene and its derivatives for the treatment of wound healing.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amelia Seifalian
- Department of Urogynaecology and Surgery, Imperial College London, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Perumal S, Atchudan R, Ramalingam S, Aldawood S, Devarajan N, Lee W, Lee YR. Silver nanoparticles loaded graphene-poly-vinylpyrrolidone composites as an effective recyclable antimicrobial agent. ENVIRONMENTAL RESEARCH 2023; 216:114706. [PMID: 36336094 DOI: 10.1016/j.envres.2022.114706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (AgNPs) are often used as antibacterial agents. Here, graphene-silver nanoparticles (G-Ag) and graphene-silver nanoparticles poly-vinylpyrrolidone (G-AgPVPy) were prepared by chemical reduction and in-situ polymerization of vinylpyrrolidone (VPy). The prepared G-Ag and G-AgPVPy composites were characterized using various techniques. The size of the AgNPs on the graphene surface in the prepared G-Ag and G-AgPVPy composites was measured as ∼20 nm. The graphene sheets size in the G-Ag and G-AgPVPy composites were measured as 6.0-2.0 μm and 4.0-0.10 μm, respectively, which are much smaller than graphene sheets in graphite powder (GP) (10.0-3.0 μm). The physicochemical analysis confirmed the formation of G-Ag and G-AgPVPy composites and even the distribution of AgNPs and PVPy on the graphene sheets. The synthesized composites (G-AgPVPy, G-Ag) exhibited a broad-spectrum antibacterial potential against both Gram-negative and Gram-positive bacteria. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were calculated as >40 μg/mL using G-Ag and GP, while G-AgPVPy showed as 10 μg/mL against Staphylococcus aureus. Among GP, G-Ag, and G-AgPVPy, G-AgPVPy disturbs the cell permeability, damages the cell walls, and causes cell death efficiently. Also, G-AgPVPy was delivered as a significant reusable antibacterial potential candidate. The MIC value (10 μg/mL) did not change up to six subsequent MIC analysis cycles.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea; School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - S Aldawood
- Department of Physics and Astronomy, College of Science, P.O. BOX 2455, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Natarajan Devarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Wonmok Lee
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
13
|
Homem NC, Miranda C, Teixeira MA, Teixeira MO, Domingues JM, Seibert D, Antunes JC, Amorim MTP, Felgueiras HP. Graphene oxide-based platforms for wound dressings and drug delivery systems: A 10 year overview. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Preparation of poly(ε-caprolactone) nanofibrous mats incorporating graphene oxide-silver nanoparticle hybrid composite by electrospinning method for potential antibacterial applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Farhan A, Rashid EU, Waqas M, Ahmad H, Nawaz S, Munawar J, Rahdar A, Varjani S, Bilal M. Graphene-based nanocomposites and nanohybrids for the abatement of agro-industrial pollutants in aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119557. [PMID: 35709916 DOI: 10.1016/j.envpol.2022.119557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Incessant release of a large spectrum of agro-industrial pollutants into environmental matrices remains a serious concern due to their potential health risks to humans and aquatic animals. Existing remediation techniques are unable to remove these pollutants, necessitating the development of novel treatment approaches. Due to its unique structure, physicochemical properties, and broad application potential, graphene has attracted a lot of attention as a new type of two-dimensional nanostructure. Given its chemical stability, large surface area, electron mobility, superior thermal conductivity, and two-dimensional structure, tremendous research has been conducted on graphene and its derived composites for environmental remediation and pollution mitigation. Various methods for graphene functionalization have facilitated the development of different graphene derivatives such as graphene oxide (GO), functional reduced graphene oxide (frGO), and reduced graphene oxide (rGO) with novel attributes for multiple applications. This review provides a comprehensive read on the recent progress of multifunctional graphene-based nanocomposites and nanohybrids as a promising way of removing emerging contaminants from aqueous environments. First, a succinct overview of the fundamental structure, fabrication techniques, and features of graphene-based composites is presented. Following that, graphene and GO functionalization, i.e., covalent bonding, non-covalent, and elemental doping, are discussed. Finally, the environmental potentials of a plethora of graphene-based hybrid nanocomposites for the abatement of organic and inorganic contaminants are thoroughly covered.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100013, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
16
|
Recent innovations in bionanocomposites-based food packaging films – A comprehensive review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Decorative Multi-Walled Carbon Nanotubes by ZnO: Synthesis, Characterization, and Potent Anti-Toxoplasmosis Activity. METALS 2022. [DOI: 10.3390/met12081246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Toxoplasmosis may become a fatal disease in immunodeficient, diabetic patients, pregnant women, and infants. Hence, the diligent search for new effective treatment is among the major concerns worldwide. The well-dispersed multi-walled carbon nanotubes lined with ZnO (ZnO-MWCNT), graphene oxide (GO-NPs), and zinc oxide (ZnO-NPs) were successfully synthesized through rapid and facile hydrothermal arc discharge technique (HTADT). The antiparasitic effects of ZnO-NPs, GO-NPs, and ZnO-MWCNT were investigated in mice infected with Toxoplasma gondii. The percent of tachyzoites reduction were detected. The observed results demonstrated that ZnO-MWCNT revealed a significant reduction in the parasite count reached 61% in brain tissues, followed by liver (52%), then spleen (45%). The assessments of antiparasitic, inflammatory, and anti-inflammatory cytokines confirmed the superior activity of ZnO-MWCNT as antiparasitic agent, which paves the way for the employment of ZnO-MWCNT as a treatment for the acute RH strain of T. gondii infection in vivo.
Collapse
|
18
|
Karthick Raja Namasivayam S, Nizar M, Samrat K, Sudarsan AV, Valli Nachiyar C, Arvind Bharani RS. Green Synthesis of Chitosan–Selenium Bionanocomposite with High Biocompatibility and Its Marked Impact on Las B and RhII Genes Expression in Pseudomonas aeruginosa. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
20
|
Sayed MA, El-Rahman TMAA, Abdelsalam HK, Ali AM, Hamdy MM, Badr YA, Rahman NHAE, El-Latif SMA, Mostafa SH, Mohamed SS, Ali ZM, El-Bassuony AAH. Attractive study of the antimicrobial, antiviral, and cytotoxic activity of novel synthesized silver chromite nanocomposites. BMC Chem 2022; 16:39. [PMID: 35624524 PMCID: PMC9145106 DOI: 10.1186/s13065-022-00832-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Antibiotic resistance is a global problem. This is the reason why scientists search for alternative treatments. In this regard, seven novel silver chromite nanocomposites were synthesized and assayed to evaluate their antimicrobial, antiviral, and cytotoxic activity. Five bacterial species were used in this study: three Gram-positive (Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Salmonella enterica). Three fungal species were also tested: Candida albicans, Aspergillus niger, and A. flavus. The MIC of the tested compounds was determined using the bifold serial dilution method. The tested compounds showed good antibacterial activity. Maximum antibacterial activity was attained in the case of 15 N [Cobalt Ferrite (0.3 CoFe2O4) + Silver chromite (0.7 Ag0.5Cr2.5O4)] against M. luteus. Concerning antifungal activity, C. albicans was the most susceptible fungal species. The maximum inhibition was recorded also in case of 15 N [Cobalt Ferrite (0.3 CoFe2O4) + Silver chromite (0.7 Ag0.5Cr2.5O4)]. The most promising antimicrobial compound 15 N [Cobalt Ferrite (0.3 CoFe2O4) + Silver chromite (0.7 Ag0.5Cr2.5O4)] was assayed for its antiviral and cytotoxic activity. The tested compound showed weak antiviral activity. The cytotoxic activity against Mammalian cells from African Green Monkey Kidney (Vero) cells was detected. The inhibitory effect against Hepatocellular carcinoma cells was detected using a MTT assay. The antimicrobial effect of the tested compounds depends on the tested microbial species. The tested compounds could be attractive and alternative antibacterial compounds that open a new path in chemotherapy.
Collapse
Affiliation(s)
- Mohsen A Sayed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - H K Abdelsalam
- Basic Science Department, Higher Institute of Applied Arts 5th Settlement, New Cairo, Egypt
| | - Ahmed M Ali
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mayar M Hamdy
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yara A Badr
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Sara H Mostafa
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sondos S Mohamed
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ziad M Ali
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
21
|
Nanoparticle-Containing Wound Dressing: Antimicrobial and Healing Effects. Gels 2022; 8:gels8060329. [PMID: 35735673 PMCID: PMC9222824 DOI: 10.3390/gels8060329] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023] Open
Abstract
The dressings containing nanoparticles of metals and metal oxides are promising types of materials for wound repair. In such dressings, biocompatible and nontoxic hydrophilic polymers are used as a matrix. In the present review, we take a look at the anti-microbial effect of the nanoparticle-modified wound dressings against various microorganisms and evaluate their healing action. A detailed analysis of 31 sources published in 2021 and 2022 was performed. Furthermore, a trend for development of modern antibacterial wound-healing nanomaterials was shown as exemplified in publications starting from 2018. The review may be helpful for researchers working in the areas of biotechnology, medicine, epidemiology, material science and other fields aimed at the improvement of the quality of life.
Collapse
|
22
|
Graphene-Based Functional Hybrid Membranes for Antimicrobial Applications: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene-based nanomaterials have shown wide applications in antimicrobial fields due to their accelerated rate of pathogen resistance and good antimicrobial properties. To apply graphene materials in the antimicrobial test, the graphene materials are usually fabricated as two-dimensional (2D) membranes. In addition, to improve the antimicrobial efficiency, graphene membranes are modified with various functional nanomaterials, such as nanoparticles, biomolecules, polymers, etc. In this review, we present recent advances in the fabrication, functional tailoring, and antimicrobial applications of graphene-based membranes. To implement this goal, we first introduce the synthesis of graphene materials and then the fabrication of 2D graphene-based membranes with potential techniques such as chemical vapor deposition, vacuum filtration, spin-coating, casting, and layer-by-layer self-assembly. Then, we present the functional tailoring of graphene membranes by adding metal and metal oxide nanoparticles, polymers, biopolymers, metal–organic frameworks, etc., with graphene. Finally, we focus on the antimicrobial mechanisms of graphene membranes, and demonstrate typical studies on the use of graphene membranes for antibacterial, antiviral, and antifungal applications. It is expected that this work will help readers to understand the antimicrobial mechanism of various graphene-based membranes and, further, to inspire the design and fabrication of functional graphene membranes/films for biomedical applications.
Collapse
|
23
|
Pectin as a non-toxic crosslinker for durable and water-resistant biopolymer-based membranes with improved mechanical and functional properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Kandil H, Nour SA, Amin A. Promising antimicrobial material based on hyperbranched polyacrylic acid for biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2058942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Heba Kandil
- Polymers and Pigments department, Chemical industries research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| | - Shaimaa A. Nour
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| | - Amal Amin
- Polymers and Pigments department, Chemical industries research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| |
Collapse
|
25
|
Effect of Graphite Filler Type on the Thermal Conductivity and Mechanical Behavior of Polysulfone-Based Composites. Polymers (Basel) 2022; 14:polym14030399. [PMID: 35160388 PMCID: PMC8839912 DOI: 10.3390/polym14030399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
The goal of this study was to create a high-filled composite material based on polysulfone using various graphite materials. Composite material based on graphite-filled polysulfone was prepared using a solution method which allows the achievement of a high content of fillers up to 70 wt.%. Alongside the analysis of the morphology and structure, the thermal conductivity and mechanical properties of the composites obtained were studied. Structural analysis shows how the type of filler affects the structure of the composites with the appearance of pores in all samples which also has a noticeable effect on composites’ properties. In terms of thermal conductivity, the results show that using natural graphite as a filler gives the best results in thermal conductivity compared to artificial and expanded graphite, with the reduction of thermal conductivity while increasing temperature. Flexural tests show that using artificial graphite as a filler gives the composite material the best mechanical load transfer compared to natural or expanded graphite.
Collapse
|
26
|
Chausov DN, Smirnova VV, Burmistrov DE, Sarimov RM, Kurilov AD, Astashev ME, Uvarov OV, Dubinin MV, Kozlov VA, Vedunova MV, Rebezov MB, Semenova AA, Lisitsyn AB, Gudkov SV. Synthesis of a Novel, Biocompatible and Bacteriostatic Borosiloxane Composition with Silver Oxide Nanoparticles. MATERIALS 2022; 15:ma15020527. [PMID: 35057245 PMCID: PMC8780406 DOI: 10.3390/ma15020527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 01/16/2023]
Abstract
Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of interest. A borosiloxane (BS) can be used as one such material. A composite material combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm (half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than 0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and its characteristics are not inferior to the medical alloy nitinol.
Collapse
Affiliation(s)
- Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Alexander D. Kurilov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
| | | | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
| | - Maksim B. Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.N.C.); (V.V.S.); (D.E.B.); (R.M.S.); (A.D.K.); (M.E.A.); (O.V.U.); (V.A.K.); (M.V.V.); (M.B.R.)
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
27
|
Liang Y, Li H, Fan L, Li R, Cui Y, Ji X, Xiao H, Hu J, Wang L. Zwitterionic daptomycin stabilized palladium nanoparticles with enhanced peroxidase-like properties for glucose detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Antialgal Synergistic Polystyrene Blended with Polyethylene Glycol and Silver Sulfadiazine for Healthcare Applications. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/6627736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polystyrene (PS) was blended with polyethylene glycol (PEG) and silver sulfadiazine (SS) with different weight proportions to form polymeric blends. These synthesized blends were preliminary characterized in terms of functional groups through the FTIR technique. All compositions were subjected to thermogravimetric analysis for studying thermal transition and were founded thermally stable even at 280°C. The zeta potential and average diameter of algal strains of Dictyosphaerium sp. (DHM1), Dictyosphaerium sp. (DHM2), and Pectinodesmus sp. (PHM3) were measured to be -32.7 mV, -33.0 mV, and -25.7 mV and 179.6 nm, 102.6 nm, and 70.4 nm, respectively. Upon incorporation of PEG and SS into PS blends, contact angles were decreased while hydrophilicity and surface energy were increased. However, increase of surface energy did not led to decrease of antialgal activities. This has indicated that biofilm adhesion is not a major antialgal factor in these blended materials. The synergetic effect of PEG and SS in PS blends has exhibited significant antialgal activity via the agar disk diffusion method. The PSPS10 composition with 10
PEG and 10
SS has exhibited highest inhibition zones 10.8 mm, 10.8 mm, and 11.3 mm against algal strains DHM1, DHM2, and DHM3, respectively. This thermally stable polystyrene blends with improved antialgal properties have potential for a wide range of applications including marine coatings.
Collapse
|
29
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
30
|
Díez-Pascual AM. State of the Art in the Antibacterial and Antiviral Applications of Carbon-Based Polymeric Nanocomposites. Int J Mol Sci 2021; 22:10511. [PMID: 34638851 PMCID: PMC8509077 DOI: 10.3390/ijms221910511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
The development of novel approaches to prevent bacterial infection is essential for enhancing everyday life. Carbon nanomaterials display exceptional optical, thermal, and mechanical properties combined with antibacterial ones, which make them suitable for diverse fields, including biomedical and food applications. Nonetheless, their practical applications as antimicrobial agents have not been fully explored yet, owing to their relatively poor dispersibility, expensiveness, and scalability changes. To solve these issues, they can be integrated within polymeric matrices, which also exhibit antimicrobial activity in some cases. This review describes the state of the art in the antibacterial applications of polymeric nanocomposites reinforced with 0D fullerenes, 1D carbon nanotubes (CNTs), and 2D graphene (G) and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO). Given that a large number of such nanocomposites are available, only the most illustrative examples are described, and their mechanisms of antimicrobial activity are discussed. Finally, some applications of these antimicrobial polymeric nanocomposites are reviewed.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
31
|
Fatima N, Qazi UY, Mansha A, Bhatti IA, Javaid R, Abbas Q, Nadeem N, Rehan ZA, Noreen S, Zahid M. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers (Basel) 2021; 13:2105. [PMID: 34206821 PMCID: PMC8271513 DOI: 10.3390/polym13132105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
The incorporation of carbon-based nanostructures into polymer matrices is a relevant strategy for producing novel antimicrobial materials. By using nanofillers of different shapes and sizes, and polymers with different characteristics, novel antimicrobial nanocomposites with synergistic properties can be obtained. This article describes the state of art in the field of antimicrobial polymeric nanocomposites reinforced with graphene and its derivatives such as graphene oxide and reduced graphene oxide. Taking into account the vast number of articles published, only some representative examples are provided. A classification of the different nanocomposites is carried out, dividing them into acrylic and methacrylic matrices, biodegradable synthetic polymers and natural polymers. The mechanisms of antimicrobial activity of graphene and its derivatives are also reviewed. Finally, some applications of these antimicrobial nanocomposites are discussed. We aim to enhance understanding in the field and promote further work on the development of polymer-based antimicrobial nanocomposites incorporating graphene-based nanomaterials.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | | |
Collapse
|
33
|
Mousavi SM, Hashemi SA, Gholami A, Omidifar N, Zarei M, Bahrani S, Yousefi K, Chiang WH, Babapoor A. Bioinorganic Synthesis of Polyrhodanine Stabilized Fe 3O 4/Graphene Oxide in Microbial Supernatant Media for Anticancer and Antibacterial Applications. Bioinorg Chem Appl 2021; 2021:9972664. [PMID: 34257633 PMCID: PMC8257353 DOI: 10.1155/2021/9972664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Polyrhodanines have been broadly utilized in diverse fields due to their attractive features. The effect of polyrhodanine- (PR-) based materials on human cells can be considered a controversial matter, while many contradictions exist. In this study, we focused on the synthesis of polyrhodanine/Fe3O4 modified by graphene oxide and the effect of kombucha (Ko) supernatant on results. The general structure of synthetic compounds was determined in detail through Fourier-transform infrared spectroscopy (FT-IR). Also, obtained compounds were morphologically, magnetically, and chemically characterized using scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), energy dispersive X-ray (EDX) analysis. The antibacterial effects of all synthesized nanomaterials were done according to CLSI against four infamous pathogens. Also, the cytotoxic effects of the synthesized compounds on the human liver cancer cell line (Hep-G2) were assessed by MTT assay. Our results showed that Go/Fe has the highest average inhibitory effect against Escherichia coli and Pseudomonas aeruginosa, and this compound possesses the least antimicrobial effect on Staphylococcus aureus. Considering the viability percent of cells in the PR/GO/Fe3O4 compound and comparing it with GO/Fe3O4, it can be understood that the toxic effects of polyrhodanine can diminish the metabolic activity of cells at higher concentrations (mostly more than 50 µg/mL), and PR/Fe3O4/Ko exhibited some promotive effects on cell growth, which enhanced the viability percent to more than 100%. Similarly, the cell viability percent of PR/GO/Fe3O4/KO compared to PR/GO/Fe3O4 is much higher, which can be attributed to the presence of kombucha in the compound. Consequently, based on the results, it can be concluded that this novel polyrhodanine-based nanocompound can act as drug carriers due to their low toxic effects and may open a new window on the antibacterial agents.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarei
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sonia Bahrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadije Yousefi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| |
Collapse
|
34
|
Bunyatova U, Hammouda MB, Zhang J. Novel light-driven functional AgNPs induce cancer death at extra low concentrations. Sci Rep 2021; 11:13258. [PMID: 34168242 PMCID: PMC8225844 DOI: 10.1038/s41598-021-92689-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
The current study is aimed at preparing light-driven novel functional AgNPs- bio-hydrogel and evaluating anticancer potency against human melanoma cells. With an average size of 16-18 nm, the hydrogel nano-silver particle composite (AgNPs@C_MA_O) was synthesized using a soft white LED approach and analyzed by UV-Vis, DLS, FTIR, X-ray, SEM-EDX and TEM techniques. The anticancer activity of the obtained novel functionalized AgNPs@C_MA_O was tested in-vitro in the A375 melanoma cell line. Dose-response analysis showed that AgNPs at 0.01 mg/mL and 0.005 mg/mL doses reduced the viability of A375 cells by 50% at 24 and 48-h time-points, respectively. A375 cells treated with AgNPs@C_MA_O for 24 h at IC50 displayed abnormal morphology such as detachment edges and feet, shrinkage, membrane damage, and the loss of contact with adjacent cells. Our work is the first study showing that non-ionizing radiation mediated biofunctionalized AgNPs have an anti-tumoral effect at such a low concentration of 0.01 mg/mL. Our approach of using harmless wLED increased synergy between soft biopolymer compounds and AgNPs, and enhanced anticancer efficiency of the AgNPs@C_MA_O biohydrogel. Ultimately, the AgNPs accessed through the use of the wLED approach in colloidal syntheses can open new applications and combinatorial advanced cancer treatments and diagnostics.
Collapse
Affiliation(s)
- Ulviye Bunyatova
- Biomedical Department, Engineering Facility, Baskent University, Ankara, Turkey.
- Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA.
| | - Manel Ben Hammouda
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, USA
| | - Jennifer Zhang
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
35
|
Azizi-Lalabadi M, Jafari SM. Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Adv Colloid Interface Sci 2021; 292:102416. [PMID: 33872984 DOI: 10.1016/j.cis.2021.102416] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
The unique properties of graphene and graphene oxide (GO) nanocomposites make them suitable for a wide range of medical, industrial, and agricultural applications. The addition of graphene or GO to a polymeric matrix can ameliorate its thermo-mechanical, electrical, and barrier characteristics. The present paper reviews the literature on graphene/GO-based bio-nanocomposites and examines the various fabrication methods, such as chemical vapor deposition, chemical synthesis, microwave synthesis, the solvothermal method, molecular beam epitaxy, and colloidal suspension. Each procedure potentially has its disadvantages, especially for mass production. Therefore, introducing an effective method for fabricating graphene on a large scale with high quality is essential. Recent studies have shown that graphene-based bio-nanocomposites are promising materials given their excellent performance in the development of biosensors, drug delivery systems, antimicrobials, modified electrodes, and energy storage systems among other applications. In this review, we evaluate the various procedures used for developing graphene/GO-based bio-nanocomposites and examine the features and applications of the related products. Furthermore, the toxicity of these compounds and attempts to uncover the optimal combinations of biopolymers and carbon nanomaterials for industrial applications will be discussed.
Collapse
|
36
|
Novel Structures and Applications of Graphene-Based Semiconductor Photocatalysts: Faceted Particles, Photonic Crystals, Antimicrobial and Magnetic Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11051982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Graphene, graphene oxide, reduced graphene oxide and their composites with various compounds/materials have high potential for substantial impact as cheap photocatalysts, which is essential to meet the demands of global activity, offering the advantage of utilizing “green” solar energy. Accordingly, graphene-based materials might help to reduce reliance on fossil fuel supplies and facile remediation routes to achieve clean environment and pure water. This review presents recent developments of graphene-based semiconductor photocatalysts, including novel composites with faceted particles, photonic crystals, and nanotubes/nanowires, where the enhancement of activity mechanism is associated with a synergistic effect resulting from the presence of graphene structure. Moreover, antimicrobial potential (highly needed these days), and facile recovery/reuse of photocatalysts by magnetic field have been addresses as very important issue for future commercialization. It is believed that graphene materials should be available soon in the market, especially because of constantly decreasing prices of graphene, vis response, excellent charge transfer ability, and thus high and broad photocatalytic activity against both organic pollutants and microorganisms.
Collapse
|
37
|
Wu S, Lei L, Zhang H, Liu J, Weir MD, Schneider A, Zhao L, Liu J, Xu HH. Nanographene oxide‐calcium phosphate to inhibit
Staphylococcus aureus
infection and support stem cells for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1779-1791. [PMID: 33025745 DOI: 10.1002/term.3139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital Sichuan University Chengdu China
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hui Zhang
- Department of Orthopedic Surgery, West China Hospital Sichuan University Chengdu China
| | - Jin Liu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology Xi'an Jiaotong University Xi'an China
| | - Michael D. Weir
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences University of Maryland School of Dentistry Baltimore MD USA
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hockin H.K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
- Marlene and Stewart Greenebaum Cancer Center University of Maryland School of Medicine Baltimore MD USA
- Center for Stem Cell Biology and Regenerative Medicine University of Maryland School of Medicine Baltimore MD USA
| |
Collapse
|
38
|
Azizi-Lalabadi M, Hashemi H, Feng J, Jafari SM. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci 2020; 284:102250. [PMID: 32966964 DOI: 10.1016/j.cis.2020.102250] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Recently, antibiotic resistance of pathogens has grown given the excessive and inappropriate usage of common antimicrobial agents. Hence, producing novel antimicrobial compounds is a necessity. Carbon nanomaterials (CNMs) such as carbon nanotubes, graphene/graphene oxide, and fullerenes, as an emerging class of novel materials, can exhibit a considerable antimicrobial activity, especially in the nanocomposite forms suitable for different fields including biomedical and food applications. These nanomaterials have attracted a great deal of interest due to their broad efficiency and novel features. The most important factor affecting the antimicrobial activity of CNMs is their size. Smaller particles with a higher surface to volume ratio can easily attach onto the microbial cells and affect their cell membrane integrity, metabolic procedures, and structural components. As these unique characteristics are found in CNMs, a wide range of possibilities have raised in terms of antimicrobial applications. This study aims to cover the antimicrobial activities of CNMs (both as individual forms and in nanocomposites) and comprehensively explain their mechanisms of action. The results of this review will present a broad perspective, summarizes the most remarkable findings, and provides an outlook regarding the antimicrobial properties of CNMs and their potential applications.
Collapse
|
39
|
Wu S, Liu Y, Lei L, Zhang H. Nanographene oxides carrying antisense walR RNA regulates the Enterococcus faecalis biofilm formation and its susceptibility to chlorhexidine. Lett Appl Microbiol 2020; 71:451-458. [PMID: 32654154 DOI: 10.1111/lam.13354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 02/05/2023]
Abstract
Enterococcus faecalis is the dominant pathogen for persistent periapical periodontitis. The chlorhexidine (CHX) is used as conversional irrigation agents during endodontic root canal therapy. It was reported that the antisense walR RNA (ASwalR) suppressed the biofilm organization. The aim of this study was to investigate the antimicrobial effects of novel graphene oxide (GO)-polyethylenimine (PEI)-based antisense walR (ASwalR) on the inhibition of E. faecalis biofilm and its susceptibility to chlorhexidine. The recombinant ASwalR plasmids were modified with a gene encoding enhanced green fluorescent protein (ASwalR-eGFP) as a reporter gene so that the transformation efficiency could be evaluated by the fluorescence intensity. The GO-PEI-based ASwalR vector transformation strategy was developed to be transformed into E. faecalis and to over-produce ASwalR in biofilms. Colony forming units (CFU) and confocal laser scanning microscopy were used to investigate whether the antibacterial properties of antisense walR interference strategy sensitize E. faecalis biofilm to the CHX. The results indicated that overexpression of ASwalR by GO-PEI-based transformation strategy could inhibit biofilm formation, decrease the EPS synthesis and increase the susceptibility of E. faecalis biofilms to CHX. Our reports demonstrated that antisense walR RNA will be a supplementary strategy in treating E. faecalis with irrigation agents.
Collapse
Affiliation(s)
- S Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Y Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - L Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Linhares AMF, Borges CP, Fonseca FV. Investigation of Biocidal Effect of Microfiltration Membranes Impregnated with Silver Nanoparticles by Sputtering Technique. Polymers (Basel) 2020; 12:polym12081686. [PMID: 32751052 PMCID: PMC7463648 DOI: 10.3390/polym12081686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Silver nanoparticles were loaded in microfiltration membranes by sputtering technique for the development of biocidal properties and biofouling resistance. This technology allows good adhesion between silver nanoparticles and the membranes, and fast deposition rate. The microfiltration membranes (15 wt.% polyethersulfone and 7.5 wt.% polyvinylpyrrolidone in N,N-dimethylacetamide) were prepared by phase inversion method, and silver nanoparticles were deposited on their surface by the physical technique of vapor deposition in a sputtering chamber. The membranes were characterized by Field Emission Scanning Electron Microscopy, and the presence of silver was investigated by Energy-Dispersive Spectroscopy and X-ray Diffraction. Experiments of silver leaching were carried out through immersion and filtration tests. After 10 months of immersion in water, the membranes still presented ~90% of the initial silver, which confirms the efficiency of the sputtering technique. Moreover, convective experiments indicated that 98.8% of silver remained in the membrane after 24 h of operation. Biocidal analyses (disc diffusion method and biofouling resistance) were performed against Pseudomonas aeruginosa and confirmed the antibacterial activity of these membranes with 0.6 and 0.7 log reduction of viable planktonic and sessile cells, respectively. These results indicate the great potential of these new membranes to reduce biofouling effects.
Collapse
Affiliation(s)
- Aline M. F. Linhares
- School of Chemistry, Federal University of Rio de Janeiro, Horacio Macedo Av, 2030, Technology Center, I-124, University City, Rio de Janeiro 21941-909, Brazil;
- Correspondence:
| | - Cristiano P. Borges
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Horacio Macedo Av, 2030, Technology Center, G-115, University City, Rio de Janeiro 21941-450, Brazil;
| | - Fabiana V. Fonseca
- School of Chemistry, Federal University of Rio de Janeiro, Horacio Macedo Av, 2030, Technology Center, I-124, University City, Rio de Janeiro 21941-909, Brazil;
| |
Collapse
|
41
|
Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S, Tavakoli M, Razzaghi M, Ismail AF, RamaKrishna S, Berto F. Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers (Basel) 2020; 12:polym12071469. [PMID: 32629907 PMCID: PMC7407371 DOI: 10.3390/polym12071469] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Every year, millions of people in the world get bone diseases and need orthopedic surgery as one of the most important treatments. Owing to their superior properties, such as acceptable biocompatibility and providing great primary bone fixation with the implant, polymethyl methacrylate (PMMA)-based bone cements (BCs) are among the essential materials as fixation implants in different orthopedic and trauma surgeries. On the other hand, these BCs have some disadvantages, including Lack of bone formation and bioactivity, and low mechanical properties, which can lead to bone cement (BC) failure. Hence, plenty of studies have been concentrating on eliminating BC failures by using different kinds of ceramics and polymers for reinforcement and also by producing composite materials. This review article aims to evaluate mechanical properties, self-setting characteristics, biocompatibility, and bioactivity of the PMMA-based BCs composites containing carbon nanotubes (CNTs), graphene oxide (GO), and carbon-based compounds. In the present study, we compared the effects of CNTs and GO as reinforcement agents in the PMMA-based BCs. Upcoming study on the PMMA-based BCs should concentrate on trialing combinations of these carbon-based reinforcing agents as this might improve beneficial characteristics.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
- Correspondence: or (H.R.B.-R.); (F.B.)
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologes in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahmood Razzaghi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor 81310, Malaysia;
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence: or (H.R.B.-R.); (F.B.)
| |
Collapse
|
42
|
Wang Z, Cao Y, Pan D, Hu S. Vertically Aligned and Interconnected Graphite and Graphene Oxide Networks Leading to Enhanced Thermal Conductivity of Polymer Composites. Polymers (Basel) 2020; 12:E1121. [PMID: 32422928 PMCID: PMC7284507 DOI: 10.3390/polym12051121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
Natural graphite flakes possess high theoretical thermal conductivity and can notably enhance the thermal conductive property of polymeric composites. Currently, because of weak interaction between graphite flakes, it is hard to construct a three-dimensional graphite network to achieve efficient heat transfer channels. In this study, vertically aligned and interconnected graphite skeletons were prepared with graphene oxide serving as bridge and support via freeze-casting method. Three freezing temperatures were utilized, and the resulting graphite and graphene oxide network was filled in a polymeric matrix. Benefiting from the ultralow freezing temperature of -196 °C, the network and its composite occupied a more uniform and denser structure, which lead to enhanced thermal conductivity (2.15 W m-1 K-1) with high enhancement efficiency and prominent mechanical properties. It can be significantly attributed to the well oriented graphite and graphene oxide bridges between graphite flakes. This simple and effective strategy may bring opportunities to develop high-performance thermal interface materials with great potential.
Collapse
Affiliation(s)
- Ziming Wang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China; (Y.C.); (D.P.); (S.H.)
| | | | | | | |
Collapse
|
43
|
Khosravi F, Nouri Khorasani S, Khalili S, Esmaeely Neisiany R, Rezvani Ghomi E, Ejeian F, Das O, Nasr-Esfahani MH. Development of a Highly Proliferated Bilayer Coating on 316L Stainless Steel Implants. Polymers (Basel) 2020; 12:E1022. [PMID: 32369977 PMCID: PMC7284519 DOI: 10.3390/polym12051022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
In this research, a bilayer coating has been applied on the surface of 316 L stainless steel (316LSS) to provide highly proliferated metallic implants for bone regeneration. The first layer was prepared using electrophoretic deposition of graphene oxide (GO), while the top layer was coated utilizing electrospinning of poly (ε-caprolactone) (PCL)/gelatin (Ge)/forsterite solutions. The morphology, porosity, wettability, biodegradability, bioactivity, cell attachment and cell viability of the prepared coatings were evaluated. The Field Emission Scanning Electron Microscopy (FESEM) results revealed the formation of uniform, continuous, and bead-free nanofibers. The Energy Dispersive X-ray (EDS) results confirmed well-distributed forsterite nanoparticles in the structure of the top coating. The porosity of the electrospun nanofibers was found to be above 70%. The water contact angle measurements indicated an improvement in the wettability of the coating by increasing the amount of nanoparticles. Furthermore, the electrospun nanofibers containing 1 and 3 wt.% of forsterite nanoparticles showed significant bioactivity after soaking in the simulated body fluid (SBF) solution for 21 days. In addition, to investigate the in vitro analysis, the MG-63 cells were cultured on the PCL/Ge/forsterite and GO-PCL/Ge/forsterite coatings. The results confirmed an excellent cell adhesion along with considerable cell growth and proliferation. It should be also noted that the existence of the forsterite nanoparticles and the GO layer substantially enhanced the cell proliferation of the coatings.
Collapse
Affiliation(s)
- Fatemeh Khosravi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Erfan Rezvani Ghomi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119260, Singapore;
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran;
| | - Oisik Das
- Material Science Division, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran;
| |
Collapse
|
44
|
Pinto J, Barroso-Solares S, Magrì D, Palazon F, Lauciello S, Athanassiou A, Fragouli D. Melamine Foams Decorated with In-Situ Synthesized Gold and Palladium Nanoparticles. Polymers (Basel) 2020; 12:polym12040934. [PMID: 32316645 PMCID: PMC7240623 DOI: 10.3390/polym12040934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
A versatile and straightforward route to produce polymer foams with functional surface through their decoration with gold and palladium nanoparticles is proposed. Melamine foams, used as polymeric porous substrates, are first covered with a uniform coating of polydimethylsiloxane, thin enough to assure the preservation of their original porous structure. The polydimethylsiloxane layer allows the facile in-situ formation of metallic Au and Pd nanoparticles with sizes of tens of nanometers directly on the surface of the struts of the foam by the direct immersion of the foams into gold or palladium precursor solutions. The effect of the gold and palladium precursor concentration, as well as the reaction time with the foams, to the amount and sizes of the nanoparticles synthesized on the foams, was studied and the ideal conditions for an optimized functionalization were defined. Gold and palladium contents of about 1 wt.% were achieved, while the nanoparticles were proven to be stably adhered to the foam, avoiding potential risks related to their accidental release.
Collapse
Affiliation(s)
- Javier Pinto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (S.B.-S.); (D.M.); (S.L.); (A.A.)
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, University of Valladolid, 47011 Valladolid, Spain
- Correspondence: (J.P.); (D.F.)
| | - Suset Barroso-Solares
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (S.B.-S.); (D.M.); (S.L.); (A.A.)
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, University of Valladolid, 47011 Valladolid, Spain
| | - Davide Magrì
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (S.B.-S.); (D.M.); (S.L.); (A.A.)
| | - Francisco Palazon
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
- Instituto de Ciencia Molecular, Universidad de Valencia, C/Beltrán 2, 46980 Paterna, Spain
| | - Simone Lauciello
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (S.B.-S.); (D.M.); (S.L.); (A.A.)
| | - Athanassia Athanassiou
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (S.B.-S.); (D.M.); (S.L.); (A.A.)
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (S.B.-S.); (D.M.); (S.L.); (A.A.)
- Correspondence: (J.P.); (D.F.)
| |
Collapse
|