1
|
Lu TY, Ji Y, Lyu C, Shen EN, Sun Y, Xiang Y, Meng-Saccoccio T, Feng GS, Chen S. Bioprinted high cell density liver model with improved hepatic metabolic functions. Biomaterials 2025; 320:123256. [PMID: 40101310 DOI: 10.1016/j.biomaterials.2025.123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
In vitro liver tissue models are valuable for studying liver function, understanding liver diseases, and screening candidate drugs for toxicity and efficacy. While three-dimensional (3D) bioprinting shows promise in creating various types of functional tissues, current efforts to engineer a functional liver tissue face challenges in replicating native high cell density (HCD) and maintaining long-term cell viability. HCD is crucial for establishing the cell-cell interactions necessary to mimic the liver's metabolic and detoxification functions. However, HCD bioinks exacerbate light scattering in light-based 3D bioprinting. In this study, we incorporated iodixanol into our bioink formulation to minimize light scattering, enabling the fabrication of hepatic tissue constructs with an HCD of 8 × 107 cells/mL while maintaining high cell viability (∼80 %). The printed dense hepatic tissue constructs showed enhanced cell-cell interactions, as evidenced by increased expression of E-cadherin and ZO-1. Furthermore, these constructs promoted albumin secretion, urea production, and P450 metabolic activity. Additionally, HCD hepatic tissue inactivated the YAP/TAZ pathway via cell-cell interactions, preserving primary hepatocyte functions. Further screening revealed that hepatocytes in the dense model were more sensitive to drug treatments than those in a lower-density hepatic model, highlighting the importance of HCD in recapitulating the physiological drug responses. Overall, our approach represents a significant advancement in liver tissue engineering, providing a promising platform for the development of physiologically relevant in vitro liver models for drug screening and toxicity testing.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yichun Ji
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cheng Lyu
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erin Nicole Shen
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yazhi Sun
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tobias Meng-Saccoccio
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gen-Sheng Feng
- Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA; Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Zhang HJ, Ming JJ, Zhang HX, Fang SYIH, Liu QW, Zhang HY. A Comprehensive Review: Advances in Mesenchymal Stem Cell Applications for Burn Wound Repair. Stem Cells Int 2025; 2025:6683745. [PMID: 40151391 PMCID: PMC11949610 DOI: 10.1155/sci/6683745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Tissue repair following skin injury is a complex process that encompasses hemostasis, inflammation, tissue cell proliferation, and structural remodeling. Mesenchymal stem cells (MSCs) are derived from the mesodermal layer of tissues and possess multidirectional differentiation potential and self-renewal capabilities. MSCs from various sources, including the bone marrow, adipose tissue, dental pulp, umbilical cord, and amniotic membrane, have demonstrated effectiveness in promoting skin injury repair. They aid in this process by fostering the formation of new blood vessels in damaged tissues, self-renewal, or transdifferentiation into skin or sweat gland cells. Moreover, MSCs promote the proliferation and migration of skin cells, reduce wound inflammation, and restore the extracellular matrix through paracrine secretion. In this paper, we review recent findings regarding MSCs and their role in burn wound repair. Additionally, we explore the potential of combining MSCs with various biomaterials for treating burn wounds and analyze clinical cases wherein MSCs were administered to patients, offering insights into ongoing research on MSC-based therapies for skin injuries.
Collapse
Affiliation(s)
- Hui-Juan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jing-Jie Ming
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong-Xiao Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shao-YI-Han Fang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang 330031, China
| | - Hong-Yan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Nam M, Lee JW, Cha GD. Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels. Gels 2024; 10:640. [PMID: 39451293 PMCID: PMC11507637 DOI: 10.3390/gels10100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels can be utilized in their pristine forms or as composites by integrating them with therapeutic filler materials. Given their primary application in implantable platforms, enzymatically crosslinked injectable hydrogels have been actively explored due to their excellent biocompatibility and easily controllable mechanical properties for the desired use. This review introduces the crosslinking mechanisms of such hydrogels, focusing on those mediated by horseradish peroxidase (HRP), transglutaminase (TG), and tyrosinase. Furthermore, several parameters and their relationships with the intrinsic properties of hydrogels are investigated. Subsequently, the representative biomedical applications of enzymatically crosslinked-injectable hydrogels are presented, including those for wound healing, preventing post-operative adhesion (POA), and hemostasis. Furthermore, hydrogel composites containing filler materials, such as therapeutic cells, proteins, and drugs, are analyzed. In conclusion, we examine the scientific challenges and directions for future developments in the field of enzymatically crosslinked-injectable hydrogels, focusing on material selection, intrinsic properties, and filler integration.
Collapse
Affiliation(s)
| | | | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; (M.N.); (J.W.L.)
| |
Collapse
|
4
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
5
|
Chen YC, Chuang EY, Tu YK, Hsu CL, Cheng NC. Human platelet lysate-cultured adipose-derived stem cell sheets promote angiogenesis and accelerate wound healing via CCL5 modulation. Stem Cell Res Ther 2024; 15:163. [PMID: 38853252 PMCID: PMC11163789 DOI: 10.1186/s13287-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND A rising population faces challenges with healing-impaired cutaneous wounds, often leading to physical disabilities. Adipose-derived stem cells (ASCs), specifically in the cell sheet format, have emerged as a promising remedy for impaired wound healing. Human platelet lysate (HPL) provides an attractive alternative to fetal bovine serum (FBS) for culturing clinical-grade ASCs. However, the potential of HPL sheets in promoting wound healing has not been fully investigated. This study aimed to explore the anti-fibrotic and pro-angiogenic capabilities of HPL-cultured ASC sheets and delve into the molecular mechanism. METHODS A rat burn model was utilized to evaluate the efficacy of HPL-cultured ASC sheets in promoting wound healing. ASC sheets were fabricated with HPL, and those with FBS were included for comparison. Various analyses were conducted to assess the impact of HPL sheets on wound healing. Histological examination of wound tissues provided insights into aspects such as wound closure, collagen deposition, and overall tissue regeneration. Immunofluorescence was employed to assess the presence and distribution of transplanted ASCs after treatment. Further in vitro studies were conducted to decipher the specific factors in HPL sheets contributing to angiogenesis. RESULTS HPL-cultured ASC sheets significantly accelerated wound closure, fostering ample and organized collagen deposition in the neo-dermis. Significantly more retained ASCs were observed in wound tissues treated with HPL sheets compared to the FBS counterparts. Moreover, HPL sheets mitigated macrophage recruitment and decreased subsequent wound tissue fibrosis in vivo. Immunohistochemistry also indicated enhanced angiogenesis in the HPL sheet group. The in vitro analyses showed upregulation of C-C motif chemokine ligand 5 (CCL5) and angiogenin in HPL sheets, including both gene expression and protein secretion. Culturing endothelial cells in the conditioned media compared to media supplemented with CCL5 or angiogenin suggested a correlation between CCL5 and the pro-angiogenic effect of HPL sheets. Additionally, through neutralizing antibody experiments, we further validated the crucial role of CCL5 in HPL sheet-mediated angiogenesis in vitro. CONCLUSIONS The present study underscores CCL5 as an essential factor in the pro-angiogenic effect of HPL-cultured ASC sheets during the wound healing process. These findings highlight the potential of HPL-cultured ASC sheets as a promising therapeutic option for healing-impaired cutaneous wounds in clinical settings. Furthermore, the mechanism exploration yields valuable information for optimizing regenerative strategies with ASC products. BRIEF ACKNOWLEDGMENT This research was supported by the National Science and Technology Council, Taiwan (NSTC112-2321-B-002-018), National Taiwan University Hospital (111C-007), and E-Da Hospital-National Taiwan University Hospital Joint Research Program (111-EDN0001, 112-EDN0002).
Collapse
Affiliation(s)
- Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei, 100, Taiwan
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei, 100, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Jabbari F, Babaeipour V. Bacterial cellulose as an ideal potential treatment for burn wounds: A comprehensive review. Wound Repair Regen 2024; 32:323-339. [PMID: 38445725 DOI: 10.1111/wrr.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Burn wound regeneration is a complex process, which has many serious challenges such as slow wound healing, secondary infection, and inflammation. Therefore, it is essential to utilise appropriate biomaterials to accelerate and guide the wound healing process. Bacterial cellulose (BC), a natural polymer synthesised by some bacteria, has attracted much attention for wound healing applications due to its unique properties including excellent physicochemical and mechanical properties, simple purification process, three-dimensional (3D) network structure similar to extracellular matrix, high purity, high water holding capacity and significant permeability to gas and liquid. BC's lack of antibacterial activity significantly limits its biomedical and tissue engineering application, but adding antimicrobial agents to it remarkably improves its performance in tissue regeneration applications. Burn wound healing is a complex long-lasting process. Using biomaterials in wound treatment has shown that they can satisfactorily accelerate wound healing. The purpose of this review is to elaborate on the importance of BC-based structures as one of the most widely used modern wound dressings in the treatment of burn wounds. In addition, the combination of various drugs, agents, cells and biomolecules with BC to expand its application in burn injury regeneration is discussed. Finally, the main challenges and future development direction of BC-based structures for burn wound repair are considered. The four most popular search engines PubMed/MEDLINE, Science Direct, Scopus and Google Scholar were used to help us find relevant papers. The most frequently used keywords were bacterial cellulose, BC-based biocomposite, wound healing, burn wound and vascular graft.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran, Iran
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Ahmadi M, Sabzini M, Rastgordani S, Farazin A. Optimizing Wound Healing: Examining the Influence of Biopolymers Through a Comprehensive Review of Nanohydrogel-Embedded Nanoparticles in Advancing Regenerative Medicine. INT J LOW EXTR WOUND 2024:15347346241244890. [PMID: 38619304 DOI: 10.1177/15347346241244890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Nanohydrogel wound healing refers to the use of nanotechnology-based hydrogel materials to promote the healing of wounds. Hydrogel dressings are made up of a three-dimensional network of hydrophilic polymers that can absorb and retain large amounts of water or other fluids. Nanohydrogels take this concept further by incorporating nanoscale particles or structures into the hydrogel matrix. These nanoparticles can be made of various materials, such as silver, zinc oxide, or nanoparticles derived from natural substances like chitosan. The inclusion of nanoparticles can provide additional properties and benefits to the hydrogel dressings. Nanohydrogels can be designed to release bioactive substances, such as growth factors or drugs, in a controlled manner. This allows for targeted delivery of therapeutics to the wound site, promoting healing and reducing inflammation. Nanoparticles can reinforce the structure of hydrogels, improving their mechanical strength and stability. Nanohydrogels often incorporate antimicrobial nanoparticles, such as silver or zinc oxide. These nanoparticles have shown effective antimicrobial activity against a wide range of bacteria, fungi, and other pathogens. By incorporating them into hydrogel dressings, nanohydrogels can help prevent or reduce the risk of infection in wounds. Nanohydrogels can be designed to encapsulate and release bioactive substances, such as growth factors, peptides, or drugs, in a controlled and sustained manner. This targeted delivery of therapeutic agents promotes wound healing by facilitating cell proliferation, reducing inflammation, and supporting tissue regeneration. The unique properties of nanohydrogels, including their ability to maintain a moist environment and deliver bioactive agents, can help accelerate the wound healing process. By creating an optimal environment for cell growth and tissue repair, nanohydrogels can promote faster and more efficient healing of wounds.
Collapse
Affiliation(s)
- Mahsa Ahmadi
- Department of Microbiology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Mahdi Sabzini
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Shima Rastgordani
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Ashkan Farazin
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| |
Collapse
|
8
|
Keshavarz R, Olsen S, Almeida B. Using biomaterials to improve mesenchymal stem cell therapies for chronic, nonhealing wounds. Bioeng Transl Med 2024; 9:e10598. [PMID: 38193114 PMCID: PMC10771568 DOI: 10.1002/btm2.10598] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 01/10/2024] Open
Abstract
Historically, treatment of chronic, nonhealing wounds has focused on managing symptoms using biomaterial-based wound dressings, which do not adequately address the underlying clinical issue. Mesenchymal stem cells (MSCs) are a promising cell-based therapy for the treatment of chronic, nonhealing wounds, yet inherent cellular heterogeneity and susceptibility to death during injection limit their clinical use. Recently, researchers have begun to explore the synergistic effects of combined MSC-biomaterial therapies, where the biomaterial serves as a scaffold to protect the MSCs and provides physiologically relevant physicochemical cues that can direct MSC immunomodulatory behavior. In this review, we highlight recent progress in this field with a focus on the most commonly used biomaterials, classified based on their source, including natural biomaterials, synthetic biomaterials, and the combination of natural and synthetic biomaterials. We also discuss current challenges regarding the clinical translation of these therapies, as well as a perspective on the future outlook of the field.
Collapse
Affiliation(s)
- Romina Keshavarz
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| | - Sara Olsen
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| | - Bethany Almeida
- Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamNew YorkUSA
| |
Collapse
|
9
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
10
|
Malekzadeh H, Tirmizi Z, Arellano JA, Egro FM, Ejaz A. Application of Adipose-Tissue Derived Products for Burn Wound Healing. Pharmaceuticals (Basel) 2023; 16:1302. [PMID: 37765109 PMCID: PMC10534650 DOI: 10.3390/ph16091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Burn injuries are a significant global health concern, leading to high morbidity and mortality. Deep burn injuries often result in delayed healing and scar formation, necessitating effective treatment options. Regenerative medicine, particularly cell therapy using adipose-derived stem cells (ASCs), has emerged as a promising approach to improving burn wound healing and reducing scarring. Both in vitro and preclinical studies have demonstrated the efficacy of ASCs and the stromal vascular fraction (SVF) in addressing burn wounds. The application of ASCs for burn healing has been studied in various forms, including autologous or allogeneic cells delivered in suspension or within scaffolds in animal burn models. Additionally, ASC-derived non-cellular components, such as conditioned media or exosomes have shown promise. Injection of ASCs and SVF at burn sites have been demonstrated to enhance wound healing by reducing inflammation and promoting angiogenesis, epithelialization, and granulation tissue formation through their paracrine secretome. This review discusses the applications of adipose tissue derivatives in burn injury treatment, encompassing ASC transplantation, as well as the utilization of non-cellular components utilization for therapeutic benefits. The application of ASCs in burn healing in the future will require addressing donor variability, safety, and efficacy for successful clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Xu X, Li X, Qiu S, Zhou Y, Li L, Chen X, Zheng K, Xu Y. Concentration Selection of Biofriendly Enzyme-Modified Gelatin Hydrogels for Periodontal Bone Regeneration. ACS Biomater Sci Eng 2023; 9:4341-4355. [PMID: 37294274 DOI: 10.1021/acsbiomaterials.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Periodontitis is challenging to cure radically due to its complex periodontal structure and particular microenvironment of dysbiosis and inflammation. However, with the assistance of various materials, cell osteogenic differentiation could be improved, and the ability of hard tissue regeneration could be enhanced. This study aimed to explore the appropriate concentration ratio of biofriendly transglutaminase-modified gelatin hydrogels for promoting periodontal alveolar bone regeneration. Through a series of characterization and cell experiments, we found that all the hydrogels possessed multi-space network structures and demonstrated their biocompatibility. In vivo and in vitro osteogenic differentiation experiments also confirmed that the group 40-5 (transglutaminase-gelatin concentration ratio) possessed a favorable osteogenic potential. In summary, we conclude that such hydrogel with a 40-5 concentration is most conducive to promoting periodontal bone reconstruction, which might be a new route to deal with the dilemma of clinical periodontal treatment.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
12
|
Lee DH, Bhang SH. Development of Hetero-Cell Type Spheroids Via Core-Shell Strategy for Enhanced Wound Healing Effect of Human Adipose-Derived Stem Cells. Tissue Eng Regen Med 2023; 20:581-591. [PMID: 36708468 PMCID: PMC10313618 DOI: 10.1007/s13770-022-00512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Stem cell-based therapies have been developed to treat various types of wounds. Human adipose-derived stem cells (hADSCs) are used to treat skin wounds owing to their outstanding angiogenic potential. Although recent studies have suggested that stem cell spheroids may help wound healing, their cell viability and retention rate in the wound area require improvement to enhance their therapeutic efficacy. METHODS We developed a core-shell structured spheroid with hADSCs in the core and human dermal fibroblasts (hDFs) in the outer part of the spheroid. The core-shell structure was formed by continuous centrifugation and spheroid incubation. After optimizing the method for inducing uniform-sized core-shell spheroids, cell viability, cell proliferation, migration, and therapeutic efficacy were evaluated and compared to those of conventional spheroids. RESULTS Cell proliferation, migration, and involucrin expression were evaluated in keratinocytes. Tubular assays in human umbilical vein endothelial cells were used to confirm the improved skin regeneration and angiogenic efficacy of core-shell spheroids. Core-shell spheroids exhibited exceptional cell viability under hypoxic cell culture conditions that mimicked the microenvironment of the wound area. CONCLUSION The improvement in retention rate, survival rate, and angiogenic growth factors secretion from core-shell spheroids may contribute to the increased therapeutic efficacy of stem cell treatment for skin wounds.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea.
| |
Collapse
|
13
|
Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. BURNS & TRAUMA 2023; 11:tkac058. [PMID: 36761088 PMCID: PMC9904183 DOI: 10.1093/burnst/tkac058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Background Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in in vivo conditions. In this review, a systematic literature search was performed on several databases to identify the most frequently used biomaterials for the development of successful wound healing agents against skin damage, along with their mechanisms of action. Method The relevant research articles of the last 5 years were identified, analysed and reviewed in this paper. The meta-analysis was carried out using PRISMA and the search was conducted in major scientific databases. The research of the most recent 5 years, from 2017-2021 was taken into consideration. The collected research papers were inspected thoroughly for further analysis. Recent advances in the utilization of natural and synthetic biomaterials (alone/in combination) to speed up the regeneration rate of injured cells in skin wounds were summarised. Finally, 23 papers were critically reviewed and discussed. Results In total, 2022 scholarly articles were retrieved from databases utilizing the aforementioned input methods. After eliminating duplicates and articles published before 2017, ~520 articles remained that were relevant to the topic at hand (biomaterials for wound healing) and could be evaluated for quality. Following different procedures, 23 publications were selected as best fitting for data extraction. Preferred Reporting Items for Systematic Reviews and Meta-Analyses for this review illustrates the selection criteria, such as exclusion and inclusion parameters. The 23 recent publications pointed to the use of both natural and synthetic polymers in wound healing applications. Information related to wound type and the mechanism of action has also been reviewed carefully. The selected publication showed that composites of natural and synthetic polymers were used extensively for both surgical and burn wounds. Extensive research revealed the effects of polymer-based biomaterials in wound healing and their recent advancement. Conclusions The effects of biomaterials in wound healing are critically examined in this review. Different biomaterials have been tried to speed up the healing process, however, their success varies with the severity of the wound. However, some of the biomaterials raise questions when applied on a wide scale because of their scarcity, high transportation costs and processing challenges. Therefore, even if a biomaterial has good wound healing qualities, it may be technically unsuitable for use in actual medical scenarios. All of these restrictions have been examined closely in this review.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata 700037, West Bengal, India
| | | |
Collapse
|
14
|
Schneider I, Calcagni M, Buschmann J. Adipose-derived stem cells applied in skin diseases, wound healing and skin defects: a review. Cytotherapy 2023; 25:105-119. [PMID: 36115756 DOI: 10.1016/j.jcyt.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
Adipose tissue presents a comparably easy source for obtaining stem cells, and more studies are increasingly investigating the therapeutic potential of adipose-derived stem cells. Wound healing, especially in chronic wounds, and treatment of skin diseases are some of the fields investigated. In this narrative review, the authors give an overview of some of the latest studies concerning wound healing as well as treatment of several skin diseases and concentrate on the different forms of application of adipose-derived stem cells.
Collapse
Affiliation(s)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
16
|
Li Q, Wang D, Jiang Z, Li R, Xue T, Lin C, Deng Y, Jin Y, Sun B. Advances of hydrogel combined with stem cells in promoting chronic wound healing. Front Chem 2022; 10:1038839. [PMID: 36518979 PMCID: PMC9742286 DOI: 10.3389/fchem.2022.1038839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 08/15/2023] Open
Abstract
Wounds can be divided into two categories, acute and chronic. Acute wounds heal through the normal wound healing process. However, chronic wounds take longer to heal, leading to inflammation, pain, serious complications, and an economic burden of treatment costs. In addition, diabetes and burns are common causes of chronic wounds that are difficult to treat. The rapid and thorough treatment of chronic wounds, including diabetes wounds and burns, represents a significant unmet medical need. Wound dressings play an essential role in chronic wound treatment. Various biomaterials for wound healing have been developed. Among these, hydrogels are widely used as wound care materials due to their good biocompatibility, moisturizing effect, adhesion, and ductility. Wound healing is a complex process influenced by multiple factors and regulatory mechanisms in which stem cells play an important role. With the deepening of stem cell and regenerative medicine research, chronic wound treatment using stem cells has become an important field in medical research. More importantly, the combination of stem cells and stem cell derivatives with hydrogel is an attractive research topic in hydrogel preparation that offers great potential in chronic wound treatment. This review will illustrate the development and application of advanced stem cell therapy-based hydrogels in chronic wound healing, especially in diabetic wounds and burns.
Collapse
Affiliation(s)
- Qirong Li
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Jenssen AB, Mohamed-Ahmed S, Kankuri E, Brekke RL, Guttormsen AB, Gjertsen BT, Mustafa K, Almeland SK. Administration Methods of Mesenchymal Stem Cells in the Treatment of Burn Wounds. EUROPEAN BURN JOURNAL 2022; 3:493-516. [PMID: 39600017 PMCID: PMC11571831 DOI: 10.3390/ebj3040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2024]
Abstract
Cellular therapies for burn wound healing, including the administration of mesenchymal stem or stromal cells (MSCs), have shown promising results. This review aims to provide an overview of the current administration methods in preclinical and clinical studies of bone-marrow-, adipose-tissue-, and umbilical-cord-derived MSCs for treating burn wounds. Relevant studies were identified through a literature search in PubMed and Embase and subjected to inclusion and exclusion criteria for eligibility. Additional relevant studies were identified through a manual search of reference lists. A total of sixty-nine studies were included in this review. Of the included studies, only five had clinical data from patients, one was a prospective case-control, three were case reports, and one was a case series. Administration methods used were local injection (41% in preclinical and 40% in clinical studies), cell-seeded scaffolds (35% and 20%), topical application (17% and 60%), and systemic injection (1% and 0%). There was great heterogeneity between the studies regarding experimental models, administration methods, and cell dosages. Local injection was the most common administration method in animal studies, while topical application was used in most clinical reports. The best delivery method of MSCs in burn wounds is yet to be identified. Although the potential of MSC treatment for burn wounds is promising, future research should focus on examining the effect and scalability of such therapy in clinical trials.
Collapse
Affiliation(s)
- Astrid Bjørke Jenssen
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ragnvald Ljones Brekke
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Anne Berit Guttormsen
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Anesthesia and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| | - Stian Kreken Almeland
- Norwegian National Burn Center, Department of Plastic, Hand, and Reconstructive Surgery, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
18
|
Xu X, Zhou Y, Zheng K, Li X, Li L, Xu Y. 3D Polycaprolactone/Gelatin-Oriented Electrospun Scaffolds Promote Periodontal Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46145-46160. [PMID: 36197319 DOI: 10.1021/acsami.2c03705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Periodontitis is a worldwide chronic inflammatory disease, where surgical treatment still shows an uncertain prognosis. To break through the dilemma of periodontal treatment, we fabricated a three-dimensional (3D) multilayered scaffold by stacking and fixing electrospun polycaprolactone/gelatin (PCL/Gel) fibrous membranes. The biomaterial displayed good hydrophilic and mechanical properties. Besides, we found human periodontal ligament stem cell (hPDLSC) adhesion and proliferation on it. The following scanning electron microscopy (SEM) and cytoskeleton staining results proved the guiding function of fibers to hPDLSCs. Then, we further analyzed periodontal regeneration-related proteins and mRNA expression between groups. In vivo results in a rat acute periodontal defect model confirmed that the topographic cues of materials could directly guide cellular orientation and might provide the prerequisite for further differentiation. In the aligned scaffold group, besides new bone regeneration, we also observed that angular concentrated fiber regeneration in the root surface of the defect is similar to the normal periodontal tissue. To sum up, we have constructed electrospun membrane-based 3D biological scaffolds, which provided a new treatment strategy for patients undergoing periodontal surgery.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| |
Collapse
|
19
|
Adipose stromal vascular fraction: a promising treatment for severe burn injury. Hum Cell 2022; 35:1323-1337. [PMID: 35906507 DOI: 10.1007/s13577-022-00743-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Thermal skin burn injury affects both adults and children globally. Severe burn injury affects a patient's life psychologically, cosmetically, and socially. The pathophysiology of burn injury is well known. Due to the complexity of burn pathophysiology, the development of specific treatment aiding in tissue regeneration is required. Treatment of burn injury depends on burn severity, size of the burn and availability of donor site. Burn healing requires biochemical and cellular events to ensure better cell response to biochemical signals of the healing process. This led to the consideration of using cell therapy for severe burn injury. Adult mesenchymal stem cells have become a therapeutic option because of their ability for self-renewal and differentiation. Adipose stromal vascular fraction (SVF), isolated from adipose tissues, is a heterogeneous cell population that contains adipose-derived stromal/stem cells (ADSC), stromal, endothelial, hematopoietic and pericytic lineages. SVF isolation has advantages over other types of cells; such as heterogeneity of cells, lower invasive extraction procedure, high yield of cells, and fast and easy isolation. Therefore, SVF has many characteristics that enable them to be a therapeutic option for burn treatment. Studies have been conducted mostly in animal models to investigate their therapeutic potential for burn injury. They can be used alone or in combination with other treatment options. Treatment with both ADSCs and/or SVF enhances burn healing through increasing re-epithelization, angiogenesis and decreasing inflammation and scar formation. Research needs to be conducted for a better understanding of the SVF mechanism in burn healing and to optimize current techniques for enhanced treatment outcomes.
Collapse
|
20
|
Gawor JP, Strøm P, Nemec A. Treatment of Naturally Occurring Periodontitis in Dogs With a New Bio-Absorbable Regenerative Matrix. Front Vet Sci 2022; 9:916171. [PMID: 35799840 PMCID: PMC9253764 DOI: 10.3389/fvets.2022.916171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Although periodontal disease is one of the most common (oral) diseases in dogs, an effective treatment approach to periodontitis lacks. The aim of this study was to evaluate the safety and efficacy of a regenerative, bio-absorbable implant biomaterial made of medical-grade porcine gelatin, which is cross-linked by transglutaminase into a porous scaffold for the treatment of periodontitis in dogs in a clinical setting. Nine client-owned dogs were included in this multicenter, prospective interventional clinical study. A split-mouth design was used to treat any teeth with periodontitis; teeth on one side of the mouth were treated with open periodontal therapy alone (control teeth) and teeth on the other side were treated with open periodontal therapy and the tested implant (teeth treated with the implant). A recheck under general anesthesia was performed 3 months after the initial treatment and included periodontal probing, dental radiographs, and/or cone-beam computed tomography (CBCT) of the teeth included in the study. This revealed a reduction of the probing depth (PD) at all teeth, but in teeth treated with the implant, a statistically significant improvement (average 2.0 mm) over control teeth (average 1.0 mm) was diagnosed. Similarly, alveolar bone height was increased at most of the teeth, but in teeth treated with the implant, a statistically significant improvement (average 1.26 mm palatally and 1.51 mm buccally) over control teeth (average 0.58 mm palatally and 0.7 mm buccally) was observed for the buccal site. Open periodontal therapy alone improves clinical parameters and alveolar bone height in dogs with periodontitis, which is further significantly improved by the addition of the implant used.
Collapse
Affiliation(s)
| | | | - Ana Nemec
- Dentistry and Oral Surgery Department, Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Ana Nemec
| |
Collapse
|
21
|
Lukin I, Erezuma I, Maeso L, Zarate J, Desimone MF, Al-Tel TH, Dolatshahi-Pirouz A, Orive G. Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061177. [PMID: 35745750 PMCID: PMC9229474 DOI: 10.3390/pharmaceutics14061177] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue engineering has become a medical alternative in this society with an ever-increasing lifespan. Advances in the areas of technology and biomaterials have facilitated the use of engineered constructs for medical issues. This review discusses on-going concerns and the latest developments in a widely employed biomaterial in the field of tissue engineering: gelatin. Emerging techniques including 3D bioprinting and gelatin functionalization have demonstrated better mimicking of native tissue by reinforcing gelatin-based systems, among others. This breakthrough facilitates, on the one hand, the manufacturing process when it comes to practicality and cost-effectiveness, which plays a key role in the transition towards clinical application. On the other hand, it can be concluded that gelatin could be considered as one of the promising biomaterials in future trends, in which the focus might be on the detection and diagnosis of diseases rather than treatment.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
| | - Jon Zarate
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Martin Federico Desimone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Universidad de Buenos Aires, Buenos Aires 1113, Argentina;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs Lyngby, Denmark;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|
22
|
Yu KF, Lu TY, Li YCE, Teng KC, Chen YC, Wei Y, Lin TE, Cheng NC, Yu J. Design and Synthesis of Stem Cell-Laden Keratin/Glycol Chitosan Methacrylate Bioinks for 3D Bioprinting. Biomacromolecules 2022; 23:2814-2826. [PMID: 35438970 DOI: 10.1021/acs.biomac.2c00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With the advancements in tissue engineering and three-dimensional (3D) bioprinting, physiologically relevant three-dimensional structures with suitable mechanical and bioactive properties that mimic the biological tissue can be designed and fabricated. However, the available bioinks are less than demanded. In this research, the readily available biomass sources, keratin and glycol chitosan, were selected to develop a UV-curable hydrogel that is feasible for the 3D bioprinting process. Keratin methacrylate and glycol chitosan methacrylate were synthesized, and a hybrid bioink was created by combining this protein-polysaccharide cross-linked hydrogel. While human hair keratin could provide biological functions, the other composition, glycol chitosan, could further enhance the mechanical strength of the construct. The mechanical properties, degradation profile, swelling behavior, cell viability, and proliferation were investigated with various ratios of keratin methacrylate to glycol chitosan methacrylate. The composition of 2% (w/v) keratin methacrylate and 2% (w/v) chitosan methacrylate showed a significantly higher cell number and swelling percentage than other compositions and was designated as the bioink for 3D printing afterward. The feasibility of stem cell loading in the selected formula was examined with an extrusion-based bioprinter. The cells and spheroids can be successfully printed with the synthesized bioink into a specific shape and cultured. This work provides a potential option for bioinks and delivers insights into personalization research on stem cell-laden biofabricated hydrogels in the future.
Collapse
Affiliation(s)
- Kai-Fu Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yu Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.,Materials Science and Engineering Program, University of California, San Diego La Jolla, California 92093, United States
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 407, Taiwan
| | - Kuang-Chih Teng
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Tzu-En Lin
- Department of Electronics and Electrical Engineering, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
23
|
Kim SJ, Byun H, Lee S, Kim E, Lee GM, Huh SJ, Joo J, Shin H. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration. Acta Biomater 2022; 142:60-72. [PMID: 35085797 DOI: 10.1016/j.actbio.2022.01.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cell spheroids have been encapsulated in hydrogels for various applications because spheroids demonstrate higher cell activity than individual cells in suspension. However, there is limited information on the effect of distance between spheroids (inter-spheroid distance) on fusion or migration in a hydrogel. In this study, we developed temperature-responsive hydrogels with surface microwell patterns to culture adipose-derived stem cell (ASC) spheroids and deliver them into a Matrigel for the investigation of the effect of inter-spheroid distance on spheroid behavior. The ASC spheroids were encapsulated successfully in a Matrigel, denoted as sandwich culture, with a specific inter-spheroid distance ranging from 100 to 400 µm. Interestingly, ASCs migrated from the host spheroid and formed a bridge-like structure between spheroids, denoted as a cellular bridge, only when the inter-spheroid distance was 200 µm. Thus, we performed a sandwich culture of human umbilical vein endothelial cells (HUVECs) and ASCs in co-cultured spheroids in the Matrigel to create a homogeneous endothelial cell network in the hydrogel. The HUVECs sprouted through the ASC cellular bridge and directly interacted with the adjacent spheroid when the inter-spheroid distance was 200 µm. Similar results were obtained from an in vivo study. Thus, our study suggests the appropriate inter-spheroid distance for effective spheroid encapsulation in a hydrogel. STATEMENT OF SIGNIFICANCE: Recently, spheroid-based 3D tissue culture techniques such as spheroid encapsulation or 3D printing are being intensively investigated for various purposes. However, there is limited research regarding the effect of the inter-spheroid distance on spheroid communication. Here, we demonstrate a spatially arranged spheroid encapsulation method within a Matrigel by using a temperature-responsive hydrogel. Human adipose-derived stem cell spheroids are encapsulated with a precisely controlled inter-spheroid distance from 100 to 400 µm and show different tendencies in cell migration and spheroid fusion. Our results suggest that the inter-spheroid distance affects spheroid communication, and thus, the inter-spheroid distance needs to be considered carefully according to the purpose.
Collapse
Affiliation(s)
- Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Gyeong Min Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
24
|
Zhao S, Chen Z, Dong Y, Lu W, Zhu D. The Preparation and Properties of Composite Hydrogels Based on Gelatin and (3-Aminopropyl) Trimethoxysilane Grafted Cellulose Nanocrystals Covalently Linked with Microbial Transglutaminase. Gels 2022; 8:146. [PMID: 35323259 PMCID: PMC8952363 DOI: 10.3390/gels8030146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/22/2023] Open
Abstract
Mechanically enhanced gelatin-based composite hydrogels were developed in the presence of functionalized cellulose nanocrystals (CNCs) employing microbial transglutaminase (mTG) as a binding agent. In this work, the surfaces of CNCs were grafted with (3-Aminopropyl) trimethoxysilane with a NH2 functional group, and the success of CNCs' modification was verified by FTIR spectroscopy and XPS. The higher degree of modification in CNCs resulted in more covalent cross-linking and dispersibility within the gelatin matrix; thus, the as-prepared hydrogels showed significantly improved mechanical properties and thermo-stability, as revealed by dynamic rheological analysis, uniaxial compression tests and SEM. The biocompatibility of the obtained hydrogels was evaluated by the MTT method, and it was found that the grafted CNCs had no obvious inhibitory effect on cell proliferation. Hence, the mechanically enhanced gelatin-based hydrogels might have great potential in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - Deyi Zhu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (S.Z.); (Z.C.); (Y.D.); (W.L.)
| |
Collapse
|
25
|
Mahmood A, Patel D, Hickson B, DesRochers J, Hu X. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. Int J Mol Sci 2022; 23:1415. [PMID: 35163339 PMCID: PMC8836285 DOI: 10.3390/ijms23031415] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/23/2022] Open
Abstract
Hydrogels from biopolymers are readily synthesized, can possess various characteristics for different applications, and have been widely used in biomedicine to help with patient treatments and outcomes. Polysaccharides, polypeptides, and nucleic acids can be produced into hydrogels, each for unique purposes depending on their qualities. Examples of polypeptide hydrogels include collagen, gelatin, and elastin, and polysaccharide hydrogels include alginate, cellulose, and glycosaminoglycan. Many different theories have been formulated to research hydrogels, which include Flory-Rehner theory, Rubber Elasticity Theory, and the calculation of porosity and pore size. All these theories take into consideration enthalpy, entropy, and other thermodynamic variables so that the structure and pore sizes of hydrogels can be formulated. Hydrogels can be fabricated in a straightforward process using a homogeneous mixture of different chemicals, depending on the intended purpose of the gel. Different types of hydrogels exist which include pH-sensitive gels, thermogels, electro-sensitive gels, and light-sensitive gels and each has its unique biomedical applications including structural capabilities, regenerative repair, or drug delivery. Major biopolymer-based hydrogels used for cell delivery include encapsulated skeletal muscle cells, osteochondral muscle cells, and stem cells being delivered to desired locations for tissue regeneration. Some examples of hydrogels used for drug and biomolecule delivery include insulin encapsulated hydrogels and hydrogels that encompass cancer drugs for desired controlled release. This review summarizes these newly developed biopolymer-based hydrogel materials that have been mainly made since 2015 and have shown to work and present more avenues for advanced medical applications.
Collapse
Affiliation(s)
- Ayaz Mahmood
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
| | - Dev Patel
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (D.P.); (B.H.); (J.D.)
| | - Brandon Hickson
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (D.P.); (B.H.); (J.D.)
| | - John DesRochers
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (D.P.); (B.H.); (J.D.)
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (D.P.); (B.H.); (J.D.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
26
|
Zhang F, Yin C, Qi X, Guo C, Wu X. Silk fibroin crosslinked glycyrrhizic acid and silver hydrogels for accelerated bacteria-infected wound healing. Macromol Biosci 2021; 22:e2100407. [PMID: 34939312 DOI: 10.1002/mabi.202100407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Antibacterial hydrogels have been intensively studied as wound dressings. Silk fibroin (SF) was chemical crosslinked to glycyrrhizic acid (GA) and silver to fabricate a hydrogel dressing with both antibacterial and anti-inflammatory properties. The SF/Ag/GA hydrogel exhibited high water content with acceptable mechanical properties, combined the good biocompatibility and biodegradability of SF, the antibacterial activity of silver, and the anti-inflammatory property of GA, capable to promote tissue regeneration during wound healing process, offering great potential as an alternative for wound dressings. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Chuanjin Yin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| |
Collapse
|
27
|
Chen YH, Chuang EY, Jheng PR, Hao PC, Hsieh JH, Chen HL, Mansel BW, Yeh YY, Lu CX, Lee JW, Hsiao YC, Bolouki N. Cold-atmospheric plasma augments functionalities of hybrid polymeric carriers regenerating chronic wounds: In vivo experiments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112488. [PMID: 34857274 DOI: 10.1016/j.msec.2021.112488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/05/2023]
Abstract
The skin possesses an epithelial barrier. Delivering growth factors to deeper wounds is usually rather challenging, and these typically restrict the therapeutic efficacy for chronic wound healing. Efficient healing of chronic wounds also requires abundant blood flow. Therefore, addressing these concerns is crucial. Among presently accessible biomedical materials, tailored hydrogels are favorable for translational medicine. However, these hydrogels display insufficient mechanical properties, hampering their biomedical uses. Cold-atmospheric plasma (CAP) has potent cross-linking/polymerizing abilities. The CAP was characterized spectroscopically to identify excited radiation and species (hydroxyl and UV). CAP was used to polymerize pyrrole (creating Ppy) and crosslink hybrid polymers (Ppy, hyaluronic acid (HA), and gelatin (GEL)) as a multimodal dressing for chronic wounds (CAP-Ppy/GEL/HA), which were used to incorporate therapeutic platelet proteins (PPs). Herein, the physicochemical and biological features of the developed CAP-Ppy/GEL/HA/PP complex were assessed. CAP-Ppy/GEL/HA/PPs had positive impacts on wound healing in vitro. In addition, the CAP-Ppy/GEL/HA complex has improved mechanical aspects, therapeutics sustained-release/retention effect, and near-infrared (NIR)-driven photothermal-hyperthermic effects on lesions that drive the expression of heat-shock protein (HSP) with anti-inflammatory properties for boosted restoration of diabetic wounds in vivo. These in vitro and in vivo outcomes support the use of CAP-Ppy/GEL/HA/PPs for diabetic wound regeneration.
Collapse
Affiliation(s)
- Yun-Hsuan Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ping-Chien Hao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bradley W Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Yen Yeh
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chu-Xuan Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan.
| | - Nima Bolouki
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
28
|
Teoh JH, Tay SM, Fuh J, Wang CH. Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing. J Control Release 2021; 341:80-94. [PMID: 34793918 DOI: 10.1016/j.jconrel.2021.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022]
Abstract
In recent times, 3D printing has been gaining traction as a fabrication platform for customizable drug dosages as a form of personalized medicine. While this has been recently demonstrated as oral dosages, there is potential to provide the same customizability and personalization as topical applications for wound healing. In this paper, the application of 3D printing to fabricate hydrogel wound dressings with customizable architectures and drug dosages was investigated. Chitosan methacrylate was synthesized and mixed with Lidocaine Hydrochloride and Levofloxacin respectively along with a photoinitiator before being used to print wound dressings of various designs. These designs were then investigated for their effect on drug release rates and profiles. Our results show the ability of 3D printing to customize drug dosages and drug release rates through co-loading different drugs at various positions and varying the thickness of drug-free layers over drug-loaded layers in the wound dressing respectively. Two scale-up approaches were also investigated for their effects on drug release rates from the wound dressing. The influence that each wound dressing design has on the release profile of drugs was also shown by fitting them with drug release kinetic models. This study thus shows the feasibility of utilizing 3D printing to fabricate wound dressings with customizable shapes, drug dosage and drug release rates that can be tuned according to the patient's requirements.
Collapse
Affiliation(s)
- Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Sook Muay Tay
- Department of Surgical Intensive Care, Division of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Jerry Fuh
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
29
|
Effectiveness of the adipose stem cells in burn wound healing: literature review. Cell Tissue Bank 2021; 23:615-626. [PMID: 34561790 DOI: 10.1007/s10561-021-09961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Adipose- stem cells (ASCs) have received much attention in the recent years and several articles have investigated the role of these cells on burn wound healing. To understand the outcomes of the ASCs therapy on burn wound healing, a systematic review was performed. This study was conducted by searching in Pubmed, ISI, and Scopus until May 2021. Thirty-six animal studies were included in this study. The findings revealed that although treatment with ASCs somewhat enhanced the healing rate, cultured ASCs on scaffolds or its combination with hydrogels could significantly increase the viability of ASCs and promote rate of healing. However, clinical studies are necessary to gain a better understanding of the role of ASCs in burn wound healing.
Collapse
|
30
|
Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021; 9:1235. [PMID: 34572421 PMCID: PMC8472341 DOI: 10.3390/biomedicines9091235] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds do not progress through the wound healing process in a timely manner and are considered a burden for healthcare system; they are also the most common reason for decrease in patient quality of life. Traditional wound dressings e.g., bandages and gauzes, although highly absorbent and effective for dry to mild, exudating wounds, require regular application, which therefore can cause pain upon dressing change. In addition, they have poor adhesional properties and cannot provide enough drainage for the wound. In this regard, the normalization of the healing process in chronic wounds is an extremely urgent task of public health and requires the creation and implementation of affordable dressings for patients with chronic wounds. Modern wound dressings (WDs) are aimed to solve these issues. At the same time, hydrogels, unlike other types of modern WDs (foam, films, hydrocolloids), have positive degradation properties that makes them the perfect choice in applications where a targeted delivery of bioactive substances to the wound is required. This mini review is focused on different types of traditional and modern WDs with an emphasis on hydrogels. Advantages and disadvantages of traditional and modern WDs as well as their applicability to different chronic wounds are elucidated. Furthermore, an effectiveness comparison between hydrogel WDs and the some of the frequently used biotechnologies in the field of regenerative medicine (adipose-derived mesenchymal stem cells (ADMSCs), mesenchymal stem cells, conditioned media, platelet-rich plasma (PRP)) is provided.
Collapse
Affiliation(s)
| | - Tatiana Astrelina
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, 123098 Moscow, Russia; (V.B.); (T.M.); (A.S.)
| | | | | |
Collapse
|
31
|
Gibler P, Gimble J, Hamel K, Rogers E, Henderson M, Wu X, Olesky S, Frazier T. Human Adipose-Derived Stromal/Stem Cell Culture and Analysis Methods for Adipose Tissue Modeling In Vitro: A Systematic Review. Cells 2021; 10:1378. [PMID: 34204869 PMCID: PMC8227575 DOI: 10.3390/cells10061378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.
Collapse
Affiliation(s)
- Peyton Gibler
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Jeffrey Gimble
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Katie Hamel
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Emma Rogers
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Michael Henderson
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Spencer Olesky
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Trivia Frazier
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
32
|
Yao Y, Zhang A, Yuan C, Chen X, Liu Y. Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomater Sci 2021; 9:4523-4540. [PMID: 34047308 DOI: 10.1039/d1bm00411e] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute and chronic wounds can cause severe physical trauma to patients and also result in an immense socio-economic burden. Thus, wound management has attracted increasing attention in recent years. However, burn wound management is still a major challenge in wound management. Autografts are often considered the gold-standard for burn care, but their application is limited by many factors. Hence, ideal burn dressings and skin substitute dressings are desirable. With the development of biomaterials and progress of tissue engineering technology, some innovative dressings and tissue engineering scaffolds, such as nanofibers, films, foams and hydrogels, have been widely used in the field of biomedicine, especially in wound management. Among them, hydrogels have attracted tremendous attention with their unique advantages. In this review, we discuss the challenges in burn wound management, several crucial design considerations with respect to hydrogels for burn wound healing, and available polymers for hydrogels in burn wound care. In addition, the potential application and plausible prospect of hydrogels are also highlighted.
Collapse
Affiliation(s)
- Yingxia Yao
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Andi Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Congshan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China. and Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
33
|
Riha SM, Maarof M, Fauzi MB. Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review. Polymers (Basel) 2021; 13:1546. [PMID: 34065898 PMCID: PMC8150744 DOI: 10.3390/polym13101546] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Stem cell therapy is used to treat a wide range of injuries and degenerative diseases of the skin. Nevertheless, many related studies demonstrated modest improvement in organ functions due to the low survival rate of transplanted cells at the targeted injured area. Thus, incorporating stem cells into biomaterial offer niches to transplanted stem cells, enhancing their delivery and therapeutic effects. Currently, through the skin tissue engineering approach, many attempts have employed biomaterials as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. This review aims to identify the limitations of stem cell therapy in wound healing treatment and potentially highlight how the use of various biomaterials can enhance the therapeutic efficiency of stem cells in tissue regeneration post-implantation. Moreover, the review discusses the combined effects of stem cells and biomaterials in in vitro and in vivo settings followed by identifying the key factors contributing to the treatment outcomes. Apart from stem cells and biomaterials, the role of growth factors and other cellular substitutes used in effective wound healing treatment has been mentioned. In conclusion, the synergistic effect of biomaterials and stem cells provided significant effectiveness in therapeutic outcomes mainly in wound healing improvement.
Collapse
Affiliation(s)
| | | | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.M.R.); (M.M.)
| |
Collapse
|