1
|
Kocaman Kabil F, Oral AY. Harnessing Thermoelectric Power in Self-Healing Wearables: A Review. ACS OMEGA 2025; 10:6337-6350. [PMID: 40028077 PMCID: PMC11865998 DOI: 10.1021/acsomega.4c10781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Wearable thermoelectric generators are sustainable devices that generate electricity from body heat to provide a continuous power supply for electronic devices. In healthcare, they are particularly valuable for powering wireless devices that transmit vital health signals, where maintaining an uninterrupted power source is a significant challenge. However, these generators are prone to failure over time or due to mechanical damage caused by mechanical stress or environmental factors, which can lead to the loss of critical healthcare data. To address these issues, the integration of self-healing capabilities alongside flexibility and longevity is essential for their reliable operation. To our knowledge, this review is one of the first to look in depth at self-healing materials specifically designed for wearable thermoelectric generators. It explores the latest innovations and applications in this field highlighting how these materials can improve the reliability and lifetime of such systems.
Collapse
Affiliation(s)
| | - Ahmet Yavuz Oral
- Department
of Material Science and Engineering, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
2
|
Tripathi S, Raheem A, Dash M, Kumar P, Elsebahy A, Singh H, Manivasagam G, Nanda HS. Surface engineering of orthopedic implants for better clinical adoption. J Mater Chem B 2024; 12:11302-11335. [PMID: 39412900 DOI: 10.1039/d4tb01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Musculoskeletal disorders are on the rise, and despite advances in alternative materials, treatment for orthopedic conditions still heavily relies on biometal-based implants and scaffolds due to their strength, durability, and biocompatibility in load-bearing applications. Bare metallic implants have been under scrutiny since their introduction, primarily due to their bioinert nature, which results in poor cell-material interaction. This challenge is further intensified by mechanical mismatches that accelerate failure, tribocorrosion-induced material degradation, and bacterial colonization, all contributing to long-term implant failure and posing a significant burden on patient populations. Recent efforts to improve orthopedic medical devices focus on surface engineering strategies that enhance the interaction between cells and materials, creating a biomimetic microenvironment and extending the service life of these implants. This review compiles various physical, chemical, and biological surface engineering approaches currently under research, providing insights into their potential and the challenges associated with their adoption from bench to bedside. Significant emphasis is placed on exploring the future of bioactive coatings, particularly the development of smart coatings like self-healing and drug-eluting coatings, the immunomodulatory effects of functional coatings and biomimetic surfaces to tackle secondary infections, representing the forefront of biomedical surface engineering. The article provides the reader with an overview of the engineering approaches to surface modification of metallic implants, covering both clinical and research perspectives and discussing limitations and future scope.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ahmad Elsebahy
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| |
Collapse
|
3
|
Sorin ES, Baimuratova RK, Zhidkov MV, Bubnova ML, Perepelitsina EO, Abukaev AF, Anokhin DV, Ivanov DA, Dzhardimalieva GI. High-Strength, Self-Healing Copolymers of Acrylamide and Acrylic Acid with Co(II), Ni(II), and Cu(II) Complexes of 4'-Phenyl-2,2':6',2″-terpyridine: Preparation, Structure, Properties, and Autonomous and pH-Triggered Healing. Polymers (Basel) 2024; 16:3127. [PMID: 39599219 PMCID: PMC11598322 DOI: 10.3390/polym16223127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The utilization of self-healing polymers is a promising way of solving problems associated with the wear and tear of polymer products, such as those caused by mechanical stress or environmental factors. In this study, a series of novel self-healing, high-strength copolymers of acrylamide, acrylic acid, and novel acrylic complexes of 4'-phenyl-2,2':6',2″-terpyridine [Co(II), Ni(II), and Cu(II)] was prepared. A systematic study of the composition and properties of the obtained polymers was carried out using a variety of physicochemical techniques (elemental analysis, gel permeation chromatography (GPC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR), ultraviolet-visible spectroscopy (UV-vis), small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), confocal laser scanning microscopy (CLSM), and tensile testing). All metallopolymer samples exhibit autonomous intrinsic healing along with maintaining high tensile strength values (for some samples, the initial tensile strength exceeded 100 MPa). The best values of healing efficiency are possessed by metallopolymers with a nickel complex (up to 83%), which is most likely due to the highest lability of the metal-heteroatom coordination bonds. The example of this system shows the ability to re-heal with negligible deterioration of the mechanical properties. The possibility of tuning the mechanical properties of self-healing films through the use of different metal ions has been demonstrated.
Collapse
Affiliation(s)
- Evgeny S. Sorin
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
| | - Rose K. Baimuratova
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
| | - Mikhail V. Zhidkov
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
| | - Maria L. Bubnova
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
| | - Evgeniya O. Perepelitsina
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
| | - Ainur F. Abukaev
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
| | - Denis V. Anokhin
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
- Department of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry A. Ivanov
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
- Department of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse (CNRS UMR 7361), 68057 Mulhouse, France
| | - Gulzhian I. Dzhardimalieva
- Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (R.K.B.); (M.V.Z.); (M.L.B.); (E.O.P.); (A.F.A.); (D.V.A.); (D.A.I.)
- Moscow Aviation Institute, National Research University, 125993 Moscow, Russia
| |
Collapse
|
4
|
Durão ML, Nobre L, Mota C, Bessa J, Cunha F, Fangueiro R. Self-Healing Composites: A Path to Redefining Material Resilience-A Comprehensive Recent Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4681. [PMID: 39410251 PMCID: PMC11477567 DOI: 10.3390/ma17194681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Polymeric composites are prone to undergoing damage, such as microcracks, during their operation, which can ultimately lead to catastrophic failure. To contradict such a problem, efforts have been carried out, by the scientific community, towards developing self-healing composites that, by mimicking biological systems, can autonomously and prematurely repair flaws, extending the durability and improving the security of materials. The present review explores the progress made in this area, focusing on extrinsic self-healing methods, as these can be employed to a variety of materials. Reservoir-based techniques, which resort to capsules, hollow fibers or microvascular networks, and thermoplastic-based ones are overviewed, prioritizing innovative approaches made in recent years. At last, promising practical applications for self-healing composites are highlighted and future challenges and opportunities are pointed out.
Collapse
Affiliation(s)
| | - Luís Nobre
- Fibrenamics, University of Minho, 4800-058 Guimarães, Portugal
| | - Carlos Mota
- Fibrenamics, University of Minho, 4800-058 Guimarães, Portugal
| | - João Bessa
- Fibrenamics, University of Minho, 4800-058 Guimarães, Portugal
| | - Fernando Cunha
- Fibrenamics, University of Minho, 4800-058 Guimarães, Portugal
| | - Raúl Fangueiro
- Fibrenamics, University of Minho, 4800-058 Guimarães, Portugal
- Department of Textile Engineering, University of Minho, Campus de Azurem, 4800-058 Guimarães, Portugal
| |
Collapse
|
5
|
Nazrin A, Kuan T, Mansour DEA, Farade RA, Ariffin AM, Rahman MA, Abdul Wahab NIB. Innovative approaches for augmenting dielectric properties in cross-linked polyethylene (XLPE): A review. Heliyon 2024; 10:e34737. [PMID: 39170543 PMCID: PMC11336368 DOI: 10.1016/j.heliyon.2024.e34737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Throughout the history of power systems, power cables have been used to securely and efficiently distribute electrical energy to the destined locations. Cross-linked polyethylene (XLPE), a commonly used insulator in high-voltage cables, have several desirable properties, such as low dielectric loss, high dielectric constant, high thermal conductivity, enhanced thermal stability, and superior resistance against electrical stress. However, further improvements of XLPE's performance are needed. The incorporation of large specific surface area nanoparticles, such as boron nitride nanosheets and graphene oxide, exhibited a great potential in enhancing XLPE's properties. These nanoparticles create numerous trapping sites, even at small loading levels, due to their large interfacial regions. In addition, voltage stabilisers with polar groups can scavenge high-energy electrons generated by local electric fields, thereby inhibiting the electrical tree growth. Another important aspect of enhancing XLPE's dielectric performance is the inclusion of antioxidants with phenolic groups. These antioxidants react with peroxyl radicals, mitigating their harmful effects. This review summarises the effects of nanoparticles, voltage stabilisers, antioxidants, and polymer amalgamation on dielectric performance of XLPE as an insulation material. The major challenges in dielectric insulation such as breakdown voltage strength, electrical tree growth, structural defect, space charge accumulation, and thermal aging are addressed.
Collapse
Affiliation(s)
- A. Nazrin
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, 97008, Sarawak, Malaysia
- Institute of Power Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - T.M. Kuan
- Institute of Power Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Diaa-Eldin A. Mansour
- Department of Electrical Power and Machines Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
- Department of Electrical Power Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Rizwan A. Farade
- Advanced Lightning, Power and Energy Research (ALPER), Department of Electrical and Electronics Engineering, Faculty of Engineering, University Putra Malaysia, 43400, Serdang, Malaysia
| | - A. Mohd Ariffin
- Institute of Power Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - M.S. Abd Rahman
- Institute of Power Engineering, Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Noor Izzri Bin Abdul Wahab
- Advanced Lightning, Power and Energy Research (ALPER), Department of Electrical and Electronics Engineering, Faculty of Engineering, University Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
6
|
Park H, Park JJ, Bui PD, Yoon H, Grigoropoulos CP, Lee D, Ko SH. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307586. [PMID: 37740699 DOI: 10.1002/adma.202307586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
The connection between laser-based material processing and additive manufacturing is quite deeply rooted. In fact, the spark that started the field of additive manufacturing is the idea that two intersecting laser beams can selectively solidify a vat of resin. Ever since, laser has been accompanying the field of additive manufacturing, with its repertoire expanded from processing only photopolymer resin to virtually any material, allowing liberating customizability. As a result, additive manufacturing is expected to take an even more prominent role in the global supply chain in years to come. Herein, an overview of laser-based selective material processing is presented from various aspects: the physics of laser-material interactions, the materials currently used in additive manufacturing processes, the system configurations that enable laser-based additive manufacturing, and various functional applications of next-generation additive manufacturing. Additionally, current challenges and prospects of laser-based additive manufacturing are discussed.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phuong-Danh Bui
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Daeho Lee
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
7
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
8
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
9
|
Ling L, Yang J, Yao W, Xing F, Sun H, Li Y. Preparation and Application of Nano-Calcined Excavation Soil as Substitute for Cement. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:850. [PMID: 38786806 PMCID: PMC11124497 DOI: 10.3390/nano14100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Rapid urbanization in many cities has produced massive amounts of problematic excavation soil. The direct disposal of untreated excavation soil often leads to significant land use and severe environmental concerns. A sustainable solution is to transform the soil waste into high-quality nano-calcined excavation soil (NCES) for application as a substitute for cement in construction. However, research in this area is very limited. This study presents a systematic investigation of the nano-sized calcined soil materials from preparation to application in cementitious material. The influence of milling parameters, including the rotational speed, milling duration, ball diameter, and milling strategy, was investigated to produce NCES with various specific surface areas. The effect of NCES substitution (15 wt% of Portland cement) in cementitious materials was then examined for mechanical performance, hydration dynamics, hydration products, and microstructure. A cement mix with very fine NCES (specific surface area of 108.76 m2/g) showed a 29.7% enhancement in mechanical strength and refined pore structure while a cement mix with un-grounded calcined soil showed a mechanical loss in comparison to the Control specimen. Delayed and reduced heat release at an early age was observed in a cement paste mixed with NCES. The underlying mechanism was investigated. The results of this work will contribute to the high-quality application of excavation soil waste.
Collapse
Affiliation(s)
- Li Ling
- Key Laboratory of Coastal Urban Resilient Infrastructures, Ministry of Education, Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (L.L.); (F.X.)
- Centre for Smart Infrastructure and Digital Construction, School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jindong Yang
- Fujian Communications Planning & Design Institute Co., Ltd., Research and Development Center of Transport Industry of New Materials, Technologies Application for Highway Construction and Maintenance of Offshore Areas, Fuzhou 350000, China;
| | - Wanqiong Yao
- State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China;
| | - Feng Xing
- Key Laboratory of Coastal Urban Resilient Infrastructures, Ministry of Education, Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (L.L.); (F.X.)
| | - Hongfang Sun
- Key Laboratory of Coastal Urban Resilient Infrastructures, Ministry of Education, Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (L.L.); (F.X.)
| | - Yali Li
- Centre for Smart Infrastructure and Digital Construction, School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
10
|
Islam MA, Talukder L, Al MF, Sarker SK, Muyeen SM, Das P, Hasan MM, Das SK, Islam MM, Islam MR, Moyeen SI, Badal FR, Ahamed MH, Abhi SH. A review on self-healing featured soft robotics. Front Robot AI 2023; 10:1202584. [PMID: 37953963 PMCID: PMC10637358 DOI: 10.3389/frobt.2023.1202584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023] Open
Abstract
Soft robots are becoming more popular because they can solve issues stiff robots cannot. Soft component and system design have seen several innovations recently. Next-generation robot-human interactions will depend on soft robotics. Soft material technologies integrate safety at the material level, speeding its integration with biological systems. Soft robotic systems must be as resilient as biological systems in unexpected, uncontrolled situations. Self-healing materials, especially polymeric and elastomeric ones, are widely studied. Since most currently under-development soft robotic systems are composed of polymeric or elastomeric materials, this finding may provide immediate assistance to the community developing soft robots. Self-healing and damage-resilient systems are making their way into actuators, structures, and sensors, even if soft robotics remains in its infancy. In the future, self-repairing soft robotic systems composed of polymers might save both money and the environment. Over the last decade, academics and businesses have grown interested in soft robotics. Despite several literature evaluations of the soft robotics subject, there seems to be a lack of systematic research on its intellectual structure and development despite the rising number of articles. This article gives an in-depth overview of the existing knowledge base on damage resistance and self-healing materials' fundamental structure and classifications. Current uses, problems with future implementation, and solutions to those problems are all included in this overview. Also discussed are potential applications and future directions for self-repairing soft robots.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Labanya Talukder
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Firoj Al
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Subrata K. Sarker
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - S. M. Muyeen
- Department of Electrical Engineering, Qatar University, Doha, Qatar
| | - Prangon Das
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Mehedi Hasan
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sajal K. Das
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Manirul Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Robiul Islam
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sumaya Ishrat Moyeen
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Faisal R. Badal
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Md. Hafiz Ahamed
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Sarafat Hussain Abhi
- Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| |
Collapse
|
11
|
Zarepour A, Ahmadi S, Rabiee N, Zarrabi A, Iravani S. Self-Healing MXene- and Graphene-Based Composites: Properties and Applications. NANO-MICRO LETTERS 2023; 15:100. [PMID: 37052734 PMCID: PMC10102289 DOI: 10.1007/s40820-023-01074-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Today, self-healing graphene- and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications. Different studies have focused on designing novel self-healing graphene- and MXene-based composites with enhanced sensitivity, stretchability, and flexibility as well as improved electrical conductivity, healing efficacy, mechanical properties, and energy conversion efficacy. These composites with self-healing properties can be employed in the field of wearable sensors, supercapacitors, anticorrosive coatings, electromagnetic interference shielding, electronic-skin, soft robotics, etc. However, it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability, suitable adhesiveness, ideal durability, high stretchability, immediate self-healing responsibility, and outstanding electromagnetic features. Besides, optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated. MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area, which are important to evolve biomedical and sensing applications. However, flexibility and stretchability are important criteria that need to be improved for their future applications. Herein, the most recent advancements pertaining to the applications and properties of self-healing graphene- and MXene-based composites are deliberated, focusing on crucial challenges and future perspectives.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia.
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Türkiye.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Esfahān, 81746-73461, Iran.
| |
Collapse
|
12
|
Coskuner-Weber O, Yuce-Erarslan E, Uversky VN. Paving the Way for Synthetic Intrinsically Disordered Polymers for Soft Robotics. Polymers (Basel) 2023; 15:polym15030763. [PMID: 36772065 PMCID: PMC9919048 DOI: 10.3390/polym15030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically disordered proteins. Bio-inspired intrinsically disordered smart and soft polymers designed using our deep understanding of intrinsically disordered proteins have the potential to open new avenues in soft robotics. Together with other desirable traits, such as robustness, dynamic self-organization, and self-healing abilities, these systems possess ideal characteristics that human-made formations strive for but often fail to achieve. Our main aim is to develop materials for soft robotics applications bio-inspired by intrinsically disordered proteins to address what we see as the largest current barriers in the practical deployment of future soft robotics in various areas, including defense. Much of the current literature has focused on the de novo synthesis of tailor-made polymers to perform specific functions. With bio-inspired polymers, the complexity of protein folding mechanisms has limited the ability of researchers to reliably engineer specific structures. Unlike existing studies, our work is focused on utilizing the high flexibility of intrinsically disordered proteins and their self-organization characteristics using synthetic quasi-foldamers.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
- Correspondence:
| | - Elif Yuce-Erarslan
- Chemical Engineering, Istanbul University-Cerrahpasa, Avcılar, Istanbul 34320, Turkey
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Tzoumani I, Iatridi Z, Fidelli AM, Krassa P, Kallitsis JK, Bokias G. Room-Temperature Self-Healable Blends of Waterborne Polyurethanes with 2-Hydroxyethyl Methacrylate-Based Polymers. Int J Mol Sci 2023; 24:2575. [PMID: 36768898 PMCID: PMC9916575 DOI: 10.3390/ijms24032575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The design of self-healing agents is a topic of important scientific interest for the development of high-performance materials for coating applications. Herein, two series of copolymers of 2-hydroxyethyl methacrylate (HEMA) with either the hydrophilic N,N-dimethylacrylamide (DMAM) or the epoxy group-bearing hydrophobic glycidyl methacrylate were synthesized and studied as potential self-healing agents of waterborne polyurethanes (WPU). The molar percentage of DMAM or GMA units in the P(HEMA-co-DMAMy) and P(HEMA-co-GMAy) copolymers varies from 0% up to 80%. WPU/polymer composites with a 10% w/w or 20% w/w copolymer content were prepared with the facile method of solution mixing. Thanks to the presence of P(HEMA-co-DMAMy) copolymers, WPU/P(HEMA-co-DMAMy) composite films exhibited surface hydrophilicity (water contact angle studies), and tendency for water uptake (water sorption kinetics studies). In contrast, the surfaces of the WPU/P(HEMA-co-GMAy) composites were less hydrophilic compared with the WPU/P(HEMA-co-DMAMy) ones. The room-temperature, water-mediated self-healing ability of these composites was investigated through addition of water drops on the damaged area. Both copolymer series exhibited healing abilities, with the hydrophilic P(HEMA-co-DMAMy) copolymers being more promising. This green healing procedure, in combination with the simple film fabrication process and simple healing triggering, makes these materials attractive for practical applications.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | - Athena M. Fidelli
- Megara Resins Anastassios Fanis S.A., Vathi Avlidas, GR-34100 Evia, Greece
| | - Poppy Krassa
- Megara Resins Anastassios Fanis S.A., Vathi Avlidas, GR-34100 Evia, Greece
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
14
|
Aiswarya S, Awasthi P, Banerjee SS. Self-healing thermoplastic elastomeric materials: Challenges, opportunities and new approaches. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Zhang A, Long J, Jia L, Gao Q, Fan H, Xiang J. Self‐healing and reprocess of crosslinked polyurethane based on dynamic oxime‐carbamate bond. J Appl Polym Sci 2022. [DOI: 10.1002/app.53478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Aiqin Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| | - Jian Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| | - Liang Jia
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| | - Qiang Gao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| | - Haojun Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Jun Xiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu China
| |
Collapse
|
16
|
Preparation and application of recyclable multifunctional self-healing thioctic acid-based materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Sempere-Torregrosa J, Ferri JM, de la Rosa-Ramírez H, Pavon C, Samper MD. Effect of Epoxidized and Maleinized Corn Oil on Properties of Polylactic Acid (PLA) and Polyhydroxybutyrate (PHB) Blend. Polymers (Basel) 2022; 14:polym14194205. [PMID: 36236152 PMCID: PMC9571960 DOI: 10.3390/polym14194205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The present work analyzes the influence of modified, epoxidized and maleinized corn oil as a plasticizing and/or compatibilizing agent in the PLA-PHB blend (75% PLA and 25% PHB wt.%). The chemical modification processes of corn oil were successfully carried out and different quantities were used, between 0 and 10% wt.%. The different blends obtained were characterized by thermal, mechanical, morphological, and disintegration tests under composting conditions. It was observed that to achieve the same plasticizing effect, less maleinized corn oil (MCO) is needed than epoxidized corn oil (ECO). Both oils improve the ductile properties of the PLA-PHB blend, such as elongation at break and impact absorb energy, however, the strength properties decrease. The ones that show the highest ductility values are those that contain 10% ECO and 5% MCO, improving the elongation of the break of the PLA-PHB blend by more than 400% and by more than 800% for the sample PLA.
Collapse
|
18
|
Goyal M, Agarwal SN, Bhatnagar N. A review on self‐healing polymers for applications in spacecraft and construction of roads. J Appl Polym Sci 2022. [DOI: 10.1002/app.52816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Megha Goyal
- Department of Chemistry Manipal University Jaipur Jaipur India
| | | | - Nitu Bhatnagar
- Department of Chemistry Manipal University Jaipur Jaipur India
| |
Collapse
|
19
|
Tzoumani I, Soto Beobide A, Iatridi Z, Voyiatzis GA, Bokias G, Kallitsis JK. Glycidyl Methacrylate-Based Copolymers as Healing Agents of Waterborne Polyurethanes. Int J Mol Sci 2022; 23:ijms23158118. [PMID: 35897694 PMCID: PMC9332020 DOI: 10.3390/ijms23158118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Self-healing materials and self-healing mechanisms are two topics that have attracted huge scientific interest in recent decades. Macromolecular chemistry can provide appropriately tailored functional polymers with desired healing properties. Herein, we report the incorporation of glycidyl methacrylate-based (GMA) copolymers in waterborne polyurethanes (WPUs) and the study of their potential healing ability. Two types of copolymers were synthesized, namely the hydrophobic P(BA-co-GMAy) copolymers of GMA with n-butyl acrylate (BA) and the amphiphilic copolymers P(PEGMA-co-GMAy) of GMA with a poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomer. We demonstrate that the blending of these types of copolymers with two WPUs leads to homogenous composites. While the addition of P(BA-co-GMAy) in the WPUs leads to amorphous materials, the addition of P(PEGMA-co-GMAy) copolymers leads to hybrid composite systems varying from amorphous to semi-crystalline, depending on copolymer or blend composition. The healing efficiency of these copolymers was explored upon application of two external triggers (addition of water or heating). Promising healing results were exhibited by the final composites when water was used as a healing trigger.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| | - Amaia Soto Beobide
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
- FORTH/ICE-HT, Stadiou Street, P.O. Box 1414, GR-26504 Patras, Greece;
| | - Zacharoula Iatridi
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
- Correspondence:
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| |
Collapse
|
20
|
Vintila IS, Ghitman J, Iovu H, Paraschiv A, Cucuruz A, Mihai D, Popa IF. A Microvascular System Self-Healing Approach on Polymeric Composite Materials. Polymers (Basel) 2022; 14:2798. [PMID: 35890572 PMCID: PMC9321720 DOI: 10.3390/polym14142798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
The paper addresses the synthesis of a nano-fibre network by coaxial electrospinning, embedding the healing agent dicyclopentadiene (DCPD) in polyacrylonitrile (PAN) fibres. Compared to other encapsulation methods, the use of nano-fibres filled with healing agent have no effect on the mechanical properties of the matrix and can address a larger healing area. Additionally, carbon nanotubes were added as nanofillers to enhance the reactivity between DCPD and the epoxydic matrix. The self-healing capability of the nano-fibre network was carried out by flexural tests, at epoxy resin level and composite level. Results obtained from Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) confirmed the successful encapsulation of DCPD healing agent in PAN fibres. Flexural tests indicate that after 48 h, the epoxy resin has recovered 84% of its flexural strength while the composite material recovered 93%.
Collapse
Affiliation(s)
- Ionut Sebastian Vintila
- National Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Avenue, 061126 Bucharest, Romania; (A.P.); (D.M.); (I.F.P.)
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Horia Iovu
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Alexandru Paraschiv
- National Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Avenue, 061126 Bucharest, Romania; (A.P.); (D.M.); (I.F.P.)
| | - Andreia Cucuruz
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Dragos Mihai
- National Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Avenue, 061126 Bucharest, Romania; (A.P.); (D.M.); (I.F.P.)
| | - Ionut Florian Popa
- National Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Avenue, 061126 Bucharest, Romania; (A.P.); (D.M.); (I.F.P.)
| |
Collapse
|
21
|
Asyraf MRM, Syamsir A, Supian ABM, Usman F, Ilyas RA, Nurazzi NM, Norrrahim MNF, Razman MR, Zakaria SZS, Sharma S, Itam Z, Rashid MZA. Sugar Palm Fibre-Reinforced Polymer Composites: Influence of Chemical Treatments on Its Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3852. [PMID: 35683149 PMCID: PMC9181418 DOI: 10.3390/ma15113852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022]
Abstract
In the era of globalisation, decreasing synthetic resources, especially petroleum, have encouraged global communities to apply biomass waste as a substitute material for green technology development. The development of plastic products from lignocellulosic fibre-reinforced composites has been a hot topic among material scientists and engineers due to their abundance, sustainable in nature, and less toxic towards health. For the Malaysian scenario, sugar palm is a plant found in the wild and locally planted in certain areas in Malaysia and Indonesia. Generally, sugar palm can be harvested for traditional foods, fruits, starch sugar (gula kabung), and alcohol, whereas sugar palm fibre (SPF) is used in conventional products (brushes and brooms). Various researchers are working on the characterisation of fibre and its composites for engineering and packaging products. The main drawback of SPF is its hydrophilic behaviour, which leads to high moisture uptake and inhibits a good bond between the fibre and the matrix. Thus, a solution for this problem is by implementing chemical treatments on the fibre. From the literature review, no comprehensive review paper has been published on the influence of chemical treatment on the mechanical behaviour of SPF-reinforced polymer composites. Thus, the present review examines recent studies on the mechanical properties of sugar palm lignocellulosic fibres with various chemical treatments to evaluate their potential in structural applications.
Collapse
Affiliation(s)
- Muhammad Rizal Muhammad Asyraf
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.B.M.S.); (F.U.)
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
| | - Agusril Syamsir
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.B.M.S.); (F.U.)
| | - Abu Bakar Mohd Supian
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.B.M.S.); (F.U.)
| | - Fathoni Usman
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.B.M.S.); (F.U.)
| | - Rushdan Ahmad Ilyas
- Centre for Advanced Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Norizan Mohd Nurazzi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Gelugor 11800, Pulau Pinang, Malaysia;
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Sharifah Zarina Syed Zakaria
- Research Centre for Environmental, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India;
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, India
| | - Zarina Itam
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - Mohamad Zakir Abd Rashid
- TNB Grid Division, Grid Solution Expertise (GSE), Bangunan Dua Sentral No. 8, Jalan Tun Sambanthan, Kuala Lumpur 50470, Malaysia;
| |
Collapse
|
22
|
Kim KH, Mai HN, Hyun DC, Lee DH. New Autonomous Water-Enabled Self-Healing Coating Material with Antibacterial-Agent-Releasing Properties. Pharmaceutics 2022; 14:pharmaceutics14051005. [PMID: 35631591 PMCID: PMC9143542 DOI: 10.3390/pharmaceutics14051005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/07/2022] Open
Abstract
A new autonomous water-enabled self-healing coating with antibacterial-agent-releasing capability was developed for the first time by precipitating an aqueous solution of hydrogen-bonded tannic acid (TA) and polyethylene glycol (PEG) (TA: 5 mg/mL; PEG: 5 mg/mL with MW = 100 kDa) to form a smooth, uniform coating layer with an average roughness of 0.688 nm and thickness of 22.3 μm on a polymethyl methacrylate (PMMA) substrate after 10 min of incubation. Our method is cost- and time-efficient, as the hydrophilic coating (water contact angle = 65.1°) forms rapidly, binding strongly to the PMMA substrate (adhesive energy = 83 mJ/m2), without the need for pretreatment or surface modification, and is capable of rapid self-repair (approximately 5 min) through hydrogen bonding in aqueous media. Furthermore, adding 0.5 mg/mL of chlorhexidine acetate (CHX), a commonly used antibacterial agent in dentistry, into the TA–PEG emulsion allowed the release of 2.89 μg/mL of the drug from the coating layer, which is promising for actively inhibiting the vitality and growth of bacteria around PMMA dental restorations. The use of CHX-loaded TA–PEG hydrogen-bonded complexes is highly favorable for the fabrication of an autonomous self-healing biocoating with active antibacterial-agent-releasing capability, which can be applied not only in dentistry but also in other medical fields.
Collapse
Affiliation(s)
- Ki-Hak Kim
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41940, Korea;
| | - Hang-Nga Mai
- Institute for Translational Research in Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Dong-Choon Hyun
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41940, Korea;
- Correspondence: (D.-C.H.); (D.-H.L.); Tel.: +82-536-007-676 (D.-H.L.)
| | - Du-Hyeong Lee
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-C.H.); (D.-H.L.); Tel.: +82-536-007-676 (D.-H.L.)
| |
Collapse
|
23
|
Abstract
In this study, we successfully manufactured polyurethane microcapsules containing isocyanate prepolymer as a core material for self-healing protection coatings via interfacial polymerization of a commercial polyurethane curing agent (Bayer L-75) and 1,4-butanediol (BDO) as a chain extender in an emulsion solution. With an optical microscope (OM) and a scanning electron microscope (SEM), the resulting microcapsules showed a spherical shape and an ideal structure with a smooth surface. Fourier transform infrared spectra (FTIR) showed that the core material was successfully encapsulated. Thermal gravimetric analysis (TGA) showed that the initial evaporation temperature of the microcapsules was 270 °C. In addition, we examined the influence of the concentration of the emulsifier and chain extender on the structure and morphology of the microcapsules. The results indicate that the optimal parameters of the microcapsule are an emulsifier concentration of 7.5% and a chain extender concentration of 15.38%. Microcapsules were added to the epoxy resin coating to verify the coating’s self-healing performance by a surface scratch test, and the results showed that the cracks could heal in 24 h. Furthermore, the self-healing coating had excellent corrosion resistance.
Collapse
|
24
|
Bercea M. Self-Healing Behavior of Polymer/Protein Hybrid Hydrogels. Polymers (Basel) 2021; 14:130. [PMID: 35012155 PMCID: PMC8747654 DOI: 10.3390/polym14010130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
The paper presents the viscoelastic properties of new hybrid hydrogels containing poly(vinyl alcohol) (PVA), hydroxypropylcellulose (HPC), bovine serum albumin (BSA) and reduced glutathione (GSH). After heating the mixture at 55 °C, in the presence of GSH, a weak network is formed due to partial BSA unfolding. By applying three successive freezing/thawing cycles, a stable porous network structure with elastic properties is designed, as evidenced by SEM and rheology. The hydrogels exhibit self-healing properties when the samples are cut into two pieces; the intermolecular interactions are reestablished in time and therefore the fragments repair themselves. The effects of the BSA content, loaded deformation and temperature on the self-healing ability of hydrogels are presented and discussed through rheological data. Due to their versatile viscoelastic behavior, the properties of PVA/HPC/BSA hydrogels can be tuned during their preparation in order to achieve suitable biomaterials for targeted applications.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
25
|
Influence of Hybrid Sol-Gel Crosslinker on Self-Healing Properties for Multifunctional Coatings. MATERIALS 2021; 14:ma14185382. [PMID: 34576606 PMCID: PMC8465503 DOI: 10.3390/ma14185382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022]
Abstract
Self-healing polymers are a new class of material that has recently received a lot of attention because of the lifespan improvement it could bring to multiple applications. One of the major challenges is to obtain multifunctional materials which can self-heal and exhibit other interesting properties such as protection against corrosion. In this paper, the effect of the incorporation of an aminosilane on the properties of a self-healing organic polymer containing disulfide bond is studied on films and coatings for aluminium AA2024-T3 using simple one step in situ synthesis. Hybrid coatings with enhanced anticorrosion properties measured by EIS were obtained thanks to the formation of a protective oxide interface layer, while exhibiting wound closure after exposition at 75 °C. The thermal, mechanical and rheological properties of the films with different aminosilane amounts were characterized in order to understand the influence of the slight presence of the inorganic network. Stiffer and reprocessable hybrid films were obtained, capable to recover their mechanical properties after healing. The nanocomposite structure, confirmed by TEM, had a positive effect on the self-healing and stress relaxation properties. These results highlight the potential of sol-gel chemistry to obtain efficient anticorrosion and self-healing coatings.
Collapse
|