1
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Int J Nanomedicine 2023; 18:5531-5559. [PMID: 37795042 PMCID: PMC10547015 DOI: 10.2147/ijn.s424872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023] Open
Abstract
The recent developments in the study of clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system have revolutionized the art of genome-editing and its applications for cellular differentiation and immune response behavior. This technology has further helped in understanding the mysteries of cancer progression and possible designing of novel antitumor immunotherapies. CRISPR/Cas9-based genome-editing is now often used to engineer universal T-cells, equipped with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, this technology is used in cytokine stimulation, antibody designing, natural killer (NK) cell transfer, and to overcome immune checkpoints. The innovative potential of CRISPR/Cas9 in preparing the building blocks of adoptive cell transfer (ACT) immunotherapy has opened a new window of antitumor immunotherapy and some of them have gained FDA approval. The manipulation of immunogenetic regulators has opened a new interface for designing, implementation and interpretation of CRISPR/Cas9-based screening in immuno-oncology. Several cancers like lymphoma, melanoma, lung, and liver malignancies have been treated with this strategy, once thought to be impossible. The safe and efficient delivery of CRISPR/Cas9 system within the immune cells for the genome-editing strategy is a challenging task which needs to be sorted out for efficient immunotherapy. Several targeting approaches like virus-mediated, electroporation, microinjection and nanoformulation-based methods have been used, but each procedure offers some limitations. Here, we elaborate the recent updates of cancer management through immunotherapy in partnership with CRISPR/Cas9 technology. Further, some innovative methods of targeting this genome-editing system within the immune system cells for reprogramming them, as a novel strategy of anticancer immunotherapy is elaborated. In addition, future prospects and clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Douglass M, Garren M, Devine R, Mondal A, Handa H. Bio-inspired hemocompatible surface modifications for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2022; 130:100997. [PMID: 36660552 PMCID: PMC9844968 DOI: 10.1016/j.pmatsci.2022.100997] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When blood first encounters the artificial surface of a medical device, a complex series of biochemical reactions is triggered, potentially resulting in clinical complications such as embolism/occlusion, inflammation, or device failure. Preventing thrombus formation on the surface of blood-contacting devices is crucial for maintaining device functionality and patient safety. As the number of patients reliant on blood-contacting devices continues to grow, minimizing the risk associated with these devices is vital towards lowering healthcare-associated morbidity and mortality. The current standard clinical practice primarily requires the systemic administration of anticoagulants such as heparin, which can result in serious complications such as post-operative bleeding and heparin-induced thrombocytopenia (HIT). Due to these complications, the administration of antithrombotic agents remains one of the leading causes of clinical drug-related deaths. To reduce the side effects spurred by systemic anticoagulation, researchers have been inspired by the hemocompatibility exhibited by natural phenomena, and thus have begun developing medical-grade surfaces which aim to exhibit total hemocompatibility via biomimicry. This review paper aims to address different bio-inspired surface modifications that increase hemocompatibility, discuss the limitations of each method, and explore the future direction for hemocompatible surface research.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Taslimi Y, Masoudzadeh N, Bahrami F, Rafati S. Cutaneous leishmaniasis: multiomics approaches to unravel the role of immune cells checkpoints. Expert Rev Proteomics 2022; 19:213-225. [PMID: 36191333 DOI: 10.1080/14789450.2022.2131545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cutaneous leishmaniasis (CL) is the most frequent form of leishmaniases, associated with skin inflammation and ulceration. Understanding the interaction of different phagocytic cells in the recognition and uptake of different Leishmania species is critical for controlling the infection. Phagocytic cells have a pivotal role as professional antigen-presenting cells that bridge the innate and adaptive immunity and shape the outcome of the disease. AREAS COVERED Here we reviewed new technologies with high-throughput data collection capabilities along with systems biology approaches which are recently being used to decode the paradox of CL immunology. EXPERT OPINION We emphasized on the crosstalk between DC and T-cells while focusing on the immune checkpoints interactions between the human immune system and the Leishmania species. Further, we discussed omics technologies including bulk RNA sequencing, reverse transcriptase-multiplex ligation dependent probe amplification (RT-MLPA), and proximity extension assay (PEA) in studies on human blood or tissue-driven samples from CL patients in which we have so far been involved.
Collapse
Affiliation(s)
- Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| |
Collapse
|
4
|
Wang L, Chen Y, Liu X, Li Z, Dai X. The Application of CRISPR/Cas9 Technology for Cancer Immunotherapy: Current Status and Problems. Front Oncol 2022; 11:704999. [PMID: 35111663 PMCID: PMC8801488 DOI: 10.3389/fonc.2021.704999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the main causes of disease-related deaths in the world. Although cancer treatment strategies have been improved in recent years, the survival time of cancer patients is still far from satisfied. Cancer immunotherapy, such as Oncolytic virotherapy, Immune checkpoints inhibition, Chimeric antigen receptor T (CAR-T) cell therapy, Chimeric antigen receptor natural killer (CAR-NK) cell therapy and macrophages genomic modification, has emerged as an effective therapeutic strategy for different kinds of cancer. However, many patients do not respond to the cancer immunotherapy which warrants further investigation to optimize this strategy. The clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9), as a versatile genome engineering tool, has become popular in the biology research field and it was also applied to optimize tumor immunotherapy. Moreover, CRISPR-based high-throughput screening can be used in the study of immunomodulatory drug resistance mechanism. In this review, we summarized the development as well as the application of CRISPR/Cas9 technology in the cancer immunotherapy and discussed the potential problems that may be caused by this combination.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xinrui Liu
- Neurosurgery Department, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai,
| |
Collapse
|
5
|
Nuge T, Liu X, Tshai KY, Lim SS, Nordin N, Hoque ME, Liu Z. Accelerated wound closure: Systematic evaluation of cellulose acetate effects on biologically active molecules release from amniotic fluid stem cells. Biotechnol Appl Biochem 2021; 69:906-919. [PMID: 33826152 DOI: 10.1002/bab.2162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/26/2021] [Indexed: 01/07/2023]
Abstract
Despite a lot of intensive research on cell-scaffold interaction, the focus is mainly on the capacity of construct scaffolds to regulate cell mobility, migration, and cytotoxicity. The effect of the scaffold's topographical and material properties on the expression of biologically active compounds from stem cells is not well understood. In this study, the influence of cellulose acetate (CA) on the electrospinnability of gelatin and the roles of gelatin-cellulose acetate (Ge-CA) on modulating the release of biologically active compounds from amniotic fluid stem cells (AFSCs) is emphasized. It was found that the presence of a small amount of CA could provide a better microenvironment that mimics AFSCs' niche. However, a large amount of CA exhibited no significant effect on AFSCs migration and infiltration. Further study on the effect of surface topography and mechanical properties on AFSCs showed that the tailored microenvironment provided by the Ge-CA scaffolds had transduced physical cues to biomolecules released into the culture media. It was found that the AFSCs seeded on electrospun scaffolds with less CA proportions have profound effects on the secretion of metabolic compounds compared to those with higher CA contained and gelatin coating. The enhanced secretion of biologically active molecules by the AFSCs on the electrospun scaffolds was proven by the accelerated wound closure on the injured human dermal fibroblast (HDF) model. The rapid HDF cell migration could be anticipated due to a higher level of paracrine factors in AFSCs media. Our study demonstrates that the fibrous topography and mechanical properties of the scaffold are a key material property that modulates the high expression of biologically active compounds from the AFSCs. The discovery elucidates a new aspect of material functions and scaffolds material-AFSC interaction for regulating biomolecules release to promote tissue regeneration/repair. To the best of our knowledge, this is the first report describing the scaffolds material-AFSC interaction and the efficacy of scratch assays on quantifying the cell migration in response to the AFSCs metabolic products.
Collapse
Affiliation(s)
- Tamrin Nuge
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Kim Yeow Tshai
- Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Malaysia
| | - Siew Shee Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Malaysia
| | - Norshariza Nordin
- Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| |
Collapse
|
6
|
Nishiguchi A, Taguchi T. Development of an immunosuppressive camouflage-coating platform with nanocellulose and cell membrane vesicles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1912-1924. [PMID: 32538290 DOI: 10.1080/09205063.2020.1783060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Biomedical devices trigger immune responses when implanted in the body, as they are treated as foreign bodies. To avoid inflammatory responses and enhance the biocompatibility of biomedical devices, advanced coating technology that can modulate immune responses is essential. As a part of the immune response in the body, autologous cells evade attack from macrophages using CD47 ligands that function as markers for self. Inspired by this self-recognition system, we developed a camouflage coating for biomaterial surfaces using cell membrane vesicles that could suppress inflammatory responses. In this study, we used monocyte-derived cell membrane vesicles expressing CD47 for coating nanocellulose-coated substrates. Our data showed that presentation of CD47 to macrophages elicited negative signal transduction for immunosuppression. Further, for coating, we used cell membrane vesicles and plant-derived nanofibers. We observed that the supporting layer of cellulose nanofibers physically fixed cell membrane vesicles and provided hydrophilic surfaces to the polystyrene substrate. Based on CD47 signaling, cell membrane vesicle coating suppressed the inflammatory responses of stimulated macrophages. Camouflaging biomaterial surfaces with cell-derived components might serve as an advanced coating platform to suppress inflammatory responses and enhance tissue integrity for biomedical devices after implantation.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Inamdar VV, Fitzpatrick E, Alferiev I, Nagaswami C, Spruce LA, Fazelinia H, Bratinov G, Seeholzer SH, Levy RJ, Fishbein I, Stachelek SJ. Stability and bioactivity of pepCD47 attachment on stainless steel surfaces. Acta Biomater 2020; 104:231-240. [PMID: 31935523 DOI: 10.1016/j.actbio.2019.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022]
Abstract
In-stent restenosis (ISR) and late stent thrombosis are the major complications associated with the use of metal stents and drug eluting stents respectively. Our lab previously investigated the use of peptide CD47 in improving biocompatibility of bare metal stents in a rat carotid stent model and our results demonstrated a significant reduction in platelet deposition and ISR. However, this study did not characterize the stability of the pepCD47 on metal surfaces post storage, sterilization and deployment. Thus, the objective of the present study was 1) to test the stability of the peptide post - storage, sterilization, exposure to shear and mechanical stress and 2) to begin to expand our current knowledge of pepCD47 coated metal surfaces into the preclinical large animal rabbit model. Our results show that the maximum immobilization density of pepCD47 on metal surfaces is approximately 350 ng/cm2. 100% of the pepCD47 was retained on the metal surface post 24 weeks of storage at 4 °C, exposure to physiological shear stress, and mechanical stress of stent expansion. The bioactivity of the pepCD47 was found to be intact post 24 weeks of storage and ethylene oxide sterilization. Finally our ex vivo studies demonstrated that compared to bare metal the rabbit pepCD47 coated surfaces showed - 45% reduced platelet adhesion, a 10-fold decrease in platelet activation, and 93% endothelial cell retention. Thus, our data suggests that pepCD47 coating on metal surfaces is stable and rabbit pepCD47 shows promising preliminary results in preventing thrombosis and not inhibiting the growth of endothelial cells. STATEMENT OF SIGNIFICANCE: Biocompatibility of bare metal stents is a major challenge owing to the significantly high rates of in-stent restenosis. Previously we demonstrated that peptide CD47 functionalization improves the biocompatibility of bare metal stents in rat model. A similar trend was observed in our ex vivo studies where rabbit blood was perfused over the rabbit pepCD47 functionalized surfaces. These results provide valuable proof of concept data for future in vivo rabbit model studies. In addition, we investigated stability of the pepCD47 on metal surface and observed that pepCD47 coating is stable over time and resistant to industrially relevant pragmatic challenges.
Collapse
Affiliation(s)
- Vaishali V Inamdar
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, United States
| | - Emmett Fitzpatrick
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, United States
| | - Ivan Alferiev
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, United States; The Proteomics Core Facility, The Children's Hospital of Philadelphia, Research Insititute, United States
| | - Chandrasekaran Nagaswami
- Perelman School of Medicine, The University of Pennsylvania, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, United States
| | - Lynn A Spruce
- The Proteomics Core Facility, The Children's Hospital of Philadelphia, Research Insititute, United States
| | - Hossein Fazelinia
- The Proteomics Core Facility, The Children's Hospital of Philadelphia, Research Insititute, United States
| | - George Bratinov
- Division of Orthopedics-Department of Pediatrics, The Children's Hospital of Philadelphia, United States
| | - Steven H Seeholzer
- The Proteomics Core Facility, The Children's Hospital of Philadelphia, Research Insititute, United States
| | - Robert J Levy
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, United States; Perelman School of Medicine, The University of Pennsylvania, United States
| | - Ilia Fishbein
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, United States; Perelman School of Medicine, The University of Pennsylvania, United States.
| | - Stanley J Stachelek
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, United States; Perelman School of Medicine, The University of Pennsylvania, United States.
| |
Collapse
|
8
|
Martins JA, Lach AA, Morris HL, Carr AJ, Mouthuy PA. Polydioxanone implants: A systematic review on safety and performance in patients. J Biomater Appl 2019; 34:902-916. [PMID: 31771403 PMCID: PMC7044756 DOI: 10.1177/0885328219888841] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Joana A Martins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Antonina A Lach
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Hayley L Morris
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Pierre-Alexis Mouthuy
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
9
|
Brzeziński M, Sejda A, Pęksa R, Pawlak M, Bury K, Adamiak Z, Kowalik M, Jagielak D, Bartus K, Hołda MK, Litwinowicz R, Rogowski J. Evaluation of Local Tissue Reaction After the Application of a 3D Printed Novel Holdfast Device for Left Atrial Appendage Exclusion. Ann Biomed Eng 2019; 48:133-143. [PMID: 31309369 PMCID: PMC6928093 DOI: 10.1007/s10439-019-02320-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
Abstract
The left atrial appendage (LAA) is a small, finger-like extension of the left atrium and its exclusion is used as a treatment strategy to prevent ischemic stroke. Existing holdfast devices may damage the tissue, are unisized and not adjustable. A novel holdfast device for LAA exclusion devoid of these shortcomings was designed and 3D-printed using the Selective Laser Sintering (SLS) technology with polyamide powder and tested it on animal model. We selected the SLS 3D printing technology due to its wid14e availability and low production costs which could provide on-site 3D printing for specific patient. The purpose of this study was to evaluate the biocompatibility of the reported holdfast device and compare the histological results obtained for local tissue reactions to those obtained for an established grafting material. Thirty swine subdivided into two groups were examined. The LAA exclusion device was implanted and was either coated with a polyester vascular implant or not coated at all and the histological response to the device’s presence was evaluated which is a standard approach to test the device biocompatibility. In all cases, complete occlusion was seen without any pathological findings during the incubation time. In both groups, the surface of the atrium under a holdfast device was smooth and shiny and had no clots. The foreign body reaction of the LAA holdfast device made of polyamide powder was insignificantly lower compared to the polyester graft. Thus, it fulfils the parameters of biocompatibility at the highest degree, and makes it suitable material for the manufacturing of LAA holdfast devices.
Collapse
Affiliation(s)
- Maciej Brzeziński
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, Gdańsk, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology, Medical University of Gdansk, Gdańsk, Poland
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdansk, Gdańsk, Poland
| | - Maciej Pawlak
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, Gdańsk, Poland
| | - Kamil Bury
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, Gdańsk, Poland
| | - Zbigniew Adamiak
- Department of Surgery and Roentgenology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Maciej Kowalik
- Department of Anesthesiology and Intensive Care, Medical University of Gdansk, Gdańsk, Poland
| | - Dariusz Jagielak
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, Gdańsk, Poland
| | - Krzysztof Bartus
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, Kraków, Poland
| | - Mateusz K Hołda
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, Kopernika 12, 31-034, Kraków, Poland.
| | - Radoslaw Litwinowicz
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Rogowski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
10
|
Slee JB, McLaughlin JS. Making it stick: A CURE designed to introduce students to the scientific process and the host response to foreign materials. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:417-425. [PMID: 31002463 DOI: 10.1002/bmb.21248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Often overlooked in many molecular cell biology laboratory and cell culture courses, suspension cells represent an important aspect of molecular cell biology and cell culture. Most primary cell cultures and cell lines are adherent cells which grow in monolayers on surfaces. However, other cells such as hematopoietic cells, certain tumor cells, and cells of the immune system are suspension cells which are anchorage-independent which grow and divide in solution. THP-1 cells are a commercially available, spontaneously immortalized monocyte-like cell line derived from the peripheral blood of a patient with acute monocytic leukemia. These cells are an excellent model for suspension cell culture and studies of the immune system. Researchers have used THP-1 cells to study the host response to implantable devices and biomaterials in vitro. Tissue contacting surfaces of implantable materials initiate a host inflammatory response characterized by many events, one of which includes macrophage attachment to the surface, which ultimately leads to degradation and failure of the material. Using the THP-1 adhesion assay embedded in this CURE, students can participate in the scientific process by testing substances which may prevent the host inflammatory response to implantable devices and biomaterials. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):417-425, 2019.
Collapse
Affiliation(s)
- Joshua B Slee
- Department of Natural Scienece, DeSales University, Center Valley, Pennsylvania 18034
| | - Jacqueline S McLaughlin
- Department of Biology, Penn State University, Lehigh Valley, Center Valley, Pennsylvania 18034
| |
Collapse
|
11
|
Ray M, Lee YW, Hardie J, Mout R, Yeşilbag Tonga G, Farkas ME, Rotello VM. CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconjug Chem 2018; 29:445-450. [PMID: 29298051 DOI: 10.1021/acs.bioconjchem.7b00768] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present here an integrated nanotechnology/biology strategy for cancer immunotherapy that uses arginine nanoparticles (ArgNPs) to deliver CRISPR-Cas9 gene editing machinery into cells to generate SIRP-α knockout macrophages. The NP system efficiently codelivers single guide RNA (sgRNA) and Cas9 protein required for editing to knock out the "don't eat me signal" in macrophages that prevents phagocytosis of cancer cells. Turning off this signal increased the innate phagocytic capabilities of the macrophages by 4-fold. This improved attack and elimination of cancer cells makes this strategy promising for the creation of "weaponized" macrophages for cancer immunotherapy.
Collapse
Affiliation(s)
- Moumita Ray
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Joseph Hardie
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Gulen Yeşilbag Tonga
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Michelle E Farkas
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Dyskova T, Gallo J, Kriegova E. The Role of the Chemokine System in Tissue Response to Prosthetic By-products Leading to Periprosthetic Osteolysis and Aseptic Loosening. Front Immunol 2017; 8:1026. [PMID: 28883822 PMCID: PMC5573717 DOI: 10.3389/fimmu.2017.01026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Millions of total joint replacements are performed annually worldwide, and the number is increasing every year. The overall proportion of patients achieving a successful outcome is about 80–90% in a 10–20-years time horizon postoperatively, periprosthetic osteolysis (PPOL) and aseptic loosening (AL) being the most frequent reasons for knee and hip implant failure and reoperations. The chemokine system (chemokine receptors and chemokines) is crucially involved in the inflammatory and osteolytic processes leading to PPOL/AL. Thus, the modulation of the interactions within the chemokine system may influence the extent of PPOL. Indeed, recent studies in murine models reported that (i) blocking the CCR2–CCL2 or CXCR2–CXCL2 axis or (ii) activation of the CXCR4–CXCL12 axis attenuate the osteolysis of artificial joints. Importantly, chemokines, inhibitory mutant chemokines, antagonists of chemokine receptors, or neutralizing antibodies to the chemokine system attached to or incorporated into the implant surface may influence the tissue responses and mitigate PPOL, thus increasing prosthesis longevity. This review summarizes the current state of the art of the knowledge of the chemokine system in human PPOL/AL. Furthermore, the potential for attenuating cell trafficking to the bone–implant interface and influencing tissue responses through modulation of the chemokine system is delineated. Additionally, the prospects of using immunoregenerative biomaterials (including chemokines) for the prevention of failed implants are discussed. Finally, this review highlights the need for a more sophisticated understanding of implant debris-induced changes in the chemokine system to mitigate this response effectively.
Collapse
Affiliation(s)
- Tereza Dyskova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| | - Jiri Gallo
- Faculty of Medicine and Dentistry, Department of Orthopaedics, Palacky University Olomouc, University Hospital Olomouc, Olomouc, Czechia
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
13
|
Griffith M, Islam MM, Edin J, Papapavlou G, Buznyk O, Patra HK. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation. Front Bioeng Biotechnol 2016; 4:71. [PMID: 27668213 PMCID: PMC5016531 DOI: 10.3389/fbioe.2016.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost importance to develop integrative biomaterials based on multifunctional biopolymers and nanosystem for their practical and successful clinical translation.
Collapse
Affiliation(s)
- May Griffith
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Mohammad M. Islam
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Joel Edin
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Papapavlou
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Oleksiy Buznyk
- Department of Eye Burns, Ophthalmic Reconstructive Surgery, Keratoplasty and Keratoprosthesis, Filatov Institute of Eye diseases and Tissue Therapy of the NAMS of Ukraine, Odessa, Ukraine
| | - Hirak K. Patra
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Tengood JE, Levy RJ, Stachelek SJ. The use of CD47-modified biomaterials to mitigate the immune response. Exp Biol Med (Maywood) 2016; 241:1033-41. [PMID: 27190273 DOI: 10.1177/1535370216647130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Addressing the aberrant interactions between immune cells and biomaterials represents an unmet need in biomaterial research. Although progress has been made in the development of bioinert coatings, identifying and targeting relevant cellular and molecular pathways can provide additional therapeutic strategies to address this major healthcare concern. To that end, we describe the immune inhibitory motif, receptor-ligand pairing of signal regulatory protein alpha and its cognate ligand CD47 as a potential signaling pathway to enhance biocompatibility. The goals of this article are to detail the known roles of CD47-signal regulatory protein alpha signal transduction pathway and to describe how immobilized CD47 can be used to mitigate the immune response to biomaterials. Current applications of CD47-modified biomaterials will also be discussed herein.
Collapse
Affiliation(s)
- Jillian E Tengood
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stanley J Stachelek
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Slee JB, Alferiev IS, Nagaswami C, Weisel JW, Levy RJ, Fishbein I, Stachelek SJ. Enhanced biocompatibility of CD47-functionalized vascular stents. Biomaterials 2016; 87:82-92. [PMID: 26914699 DOI: 10.1016/j.biomaterials.2016.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/27/2016] [Accepted: 02/07/2016] [Indexed: 12/21/2022]
Abstract
The effectiveness of endovascular stents is hindered by in-stent restenosis (ISR), a secondary re-obstruction of treated arteries due to unresolved inflammation and activation of smooth muscle cells in the arterial wall. We previously demonstrated that immobilized CD47, a ubiquitously expressed transmembrane protein with an established role in immune evasion, can confer biocompatibility when appended to polymeric surfaces. In present studies, we test the hypothesis that CD47 immobilized onto metallic surfaces of stents can effectively inhibit the inflammatory response thus mitigating ISR. Recombinant CD47 (recCD47) or a peptide sequence corresponding to the Ig domain of CD47 (pepCD47), were attached to the surfaces of both 316L-grade stainless steel foils and stents using bisphosphonate coordination chemistry and thiol-based conjugation reactions to assess the anti-inflammatory properties of CD47-functionalized surfaces. Initial in vitro and ex vivo analysis demonstrated that both recCD47 and pepCD47 significantly reduced inflammatory cell attachment to steel surfaces without impeding on endothelial cell retention and expansion. Using a rat carotid stent model, we showed that pepCD47-functionalized stents prevented fibrin and platelet thrombus deposition, inhibited inflammatory cell attachment, and reduced restenosis by 30%. It is concluded that CD47-modified stent surfaces mitigate platelet and inflammatory cell attachment, thereby disrupting ISR pathophysiology.
Collapse
Affiliation(s)
- Joshua B Slee
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA
| | - Ivan S Alferiev
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, USA
| | - Robert J Levy
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA
| | - Ilia Fishbein
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA.
| | - Stanley J Stachelek
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA.
| |
Collapse
|
16
|
Kzhyshkowska J, Gudima A, Riabov V, Dollinger C, Lavalle P, Vrana NE. Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol 2015; 98:953-62. [PMID: 26168797 DOI: 10.1189/jlb.5vmr0415-166r] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/15/2015] [Indexed: 01/08/2023] Open
Abstract
Implants, transplants, and implantable biomedical devices are mainstream solutions for a wide variety of human pathologies. One of the persistent problems around nondegradable metallic and polymeric implants is failure of macrophages to resolve the inflammation and their tendency to stay in a state, named "frustrated phagocytosis." During the initial phase, proinflammatory macrophages induce acute reactions to trauma and foreign materials, whereas tolerogenic anti-inflammatory macrophages control resolution of inflammation and induce the subsequent healing stage. However, implanted materials can induce a mixed pro/anti-inflammatory phenotype, supporting chronic inflammatory reactions accompanied by microbial contamination and resulting in implant failure. Several materials based on natural polymers for improved interaction with host tissue or surfaces that release anti-inflammatory drugs/bioactive agents have been developed for implant coating to reduce implant rejection. However, no definitive, long-term solution to avoid adverse immune responses to the implanted materials is available to date. The prevention of implant-associated infections or chronic inflammation by manipulating the macrophage phenotype is a promising strategy to improve implant acceptance. The immunomodulatory properties of currently available implant coatings need to be improved to develop personalized therapeutic solutions. Human primary macrophages exposed to the implantable materials ex vivo can be used to predict the individual's reactions and allow selection of an optimal coating composition. Our review describes current understanding of the mechanisms of macrophage interactions with implantable materials and outlines the prospects for use of human primary macrophages for diagnostic and therapeutic approaches to personalized implant therapy.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- *Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia; Protip SAS, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, Strasbourg, France; and Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Alexandru Gudima
- *Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia; Protip SAS, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, Strasbourg, France; and Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Vladimir Riabov
- *Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia; Protip SAS, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, Strasbourg, France; and Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Camille Dollinger
- *Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia; Protip SAS, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, Strasbourg, France; and Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Philippe Lavalle
- *Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia; Protip SAS, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, Strasbourg, France; and Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Nihal Engin Vrana
- *Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia; Protip SAS, Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, Strasbourg, France; and Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| |
Collapse
|