1
|
Grassi L, Harris C, Zhu J, Hatton D, Dunn S. Next-generation sequencing: A powerful multi-purpose tool in cell line development for biologics production. Comput Struct Biotechnol J 2025; 27:1511-1517. [PMID: 40265158 PMCID: PMC12013335 DOI: 10.1016/j.csbj.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Within the biopharmaceutical industry, the cell line development (CLD) process generates recombinant mammalian cell lines for the expression of therapeutic proteins. Analytical methods for the extensive characterisation of the protein product are well established; however, over recent years, next-generation sequencing (NGS) technologies have rapidly become an integral part of the CLD workflow. NGS can be used for different applications to characterise the genome, epigenome and transcriptome of cell lines. The resulting extensive datasets, especially when integrated with systems biology models, can give comprehensive insights that can be applied to optimize cell lines, media, and fermentation processes. NGS also provides comprehensive methods to monitor genetic variability during CLD. High coverage NGS experiments can indeed be used to ensure the integrity of plasmids, identify integration sites, and verify monoclonality of the cell lines. This review summarises the role of NGS in advancing biopharmaceutical production to ensure safety and efficacy of therapeutic proteins.
Collapse
Affiliation(s)
- Luigi Grassi
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Claire Harris
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jie Zhu
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Diane Hatton
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah Dunn
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
2
|
Ohira S, Omasa T. Incorporating shaken 24-deep-well plate fed-batch culture shortens CHO cell line development time. Cytotechnology 2025; 77:64. [PMID: 39991703 PMCID: PMC11839547 DOI: 10.1007/s10616-025-00728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
In conventional Chinese hamster ovary (CHO) cell line development, static culture is used for early-stage screening, whereas suspension culture is generally used for the manufacturing process. Shaken flask (SF) fed-batch culture allows evaluation with culture mode, which is closer to the final process. However, due to its laborious and low-throughput characteristics, only a limited number of clones can be evaluated. To attain high-throughput fed-batch culture evaluation, a shaken 24-deep-well plate (24 DWP) culture process was developed. 24 DWP culture allows multiple plates to be run in parallel, and is therefore suitable for early-stage screening. One challenge of well plate culture is the nonuniform evaporation rate among wells, which may result in unnecessary bias on clone evaluation. The 'sandwich lid system' introduced here provides a uniform evaporation rate, and showed no significant difference in cell culture performance by well location. 192 antibody-producing CHO clones were evaluated by 24 DWP fed-batch culture, and 30 clones were selected. On comparison of clone sets selected by 24 DWP fed-batch culture and the conventional scheme, average antibody concentration in SF fed-batch culture was 3.6 g/L and 2.9 g/L, respectively. 24 DWP fed-batch culture process showed a high correlation ratio with SF fed-batch culture in antibody productivity and similar cell culture characteristics. These characteristics-high-throughput and sufficient culture volume to support cell culture performance monitoring-indicate that 24 DWP fed-batch culture can be applied in the clone selection stage in place of SF, and will shorten the time required for cell line development.
Collapse
Affiliation(s)
- Shunsuke Ohira
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
- Chemical and Biological Technology Laboratories, Astellas Pharma Inc, 5-2-3 Tokodai, Tsukuba, Ibaraki 300-2698 Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
3
|
Iida T, Nakamura Y, Yamamoto K, Maeda E, Ikeda Y. Accurate vector copy number determination in gammaretroviral vector producer cell clones using triplex digital droplet PCR. J Virol Methods 2025; 332:115075. [PMID: 39566661 DOI: 10.1016/j.jviromet.2024.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Gammaretroviral vectors are widely used in cellular and gene therapy products because of the availability of stable vector producer cells. Accurately assessing vector copy number (VCN) is critical for selecting appropriate clones to avoid the risks of homologous recombination and complications in mutation detection. Traditional methods such as quantitative polymerase chain reaction (PCR) and Southern blotting have limitations in accuracy and throughput. This study presents a triplex droplet digital PCR (ddPCR) method for analyzing the VCN in gammaretroviral vector producer cells. We designed a universal primer- probe set targeting the packaging signal sequence common to murine leukemia virus- and murine stem cell virus- based gammaretroviral vectors. Two reference genes were selected after karyotyping the PG13 gammaretroviral vector packaging cell line to identify stable chromosomes. The triplex ddPCR assay was optimized and verified using PG13 cells transduced with constructs of different transgene and vector backbones. The assay showed high concordance with Southern blot. Using multiple reference genes ensures accurate and robust VCN assessment, especially in cell lines with chromosomal instability. This method improves the clone selection process for gammaretroviral vector producer cells, accelerates the development of novel cellular and gene therapy products, and ensures their rapid delivery to patients.
Collapse
Affiliation(s)
- Tomomine Iida
- Cell Therapy Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yoshiki Nakamura
- Cell Therapy Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Katsuhiko Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Quality Control, Global Quality, Hikari Plant, Takeda Pharmaceutical Company Limited, 4720, Takeda, Mitsui, Hikari, Yamaguchi 743-8502, Japan.
| | - Eiki Maeda
- Cell Therapy Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yukihiro Ikeda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
4
|
Saeki H, Fueki K, Maeda N. Enhancing monoclonal antibody production efficiency using CHO-MK cells and specific media in a conventional fed-batch culture. Cytotechnology 2025; 77:1. [PMID: 39568575 PMCID: PMC11573942 DOI: 10.1007/s10616-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Chinese hamster ovary (CHO) cell lines, derived as subclones from the original CHO cell line, are widely used hosts for current biopharmaceutical productions. Recently, a highly proliferative host cell line, CHO-MK, was established from the Chinese hamster ovary tissue. In this study, we assessed the fundamental culture characteristics and capabilities of CHO-MK cells for monoclonal antibody (mAb) production using specified chemically defined media. To achieve this, we established fed-batch cultures of model CHO-MK cells in shake flasks and ambr15 and 2 L bioreactors under various conditions. The mAb-producing CHO-MK cell line A produced 12.6 g/L of antibody within 7 days in the fed-batch culture using a 2 L bioreactor, with a seeding density of 1 × 106 cells/mL. This performance corresponded to a space-time yield of 1.80 g/L/day, representing a productivity level that could be challengingly attained in fed-batch cultures using conventional CHO cells. In addition, when we subjected six different mAb-producing CHO-MK cell lines to fed-batch culture in the ambr15 bioreactor for 7 days, the antibody production ranged between 5.1 and 10.8 g/L, confirming that combining CHO-MK cells and specified media leads to enhanced versatility. These discoveries underscore that CHO-MK cells combined with specified media might represent a next-generation production platform, which could potentially respond to an increasing demand for antibody drugs, reducing production costs, and shortening antibody drug development times. This study is expected to serve as a benchmark for future production process development using CHO-MK cells.
Collapse
Affiliation(s)
- Hisashi Saeki
- Culture Media Technical Department, FUJIFILM Wako Pure Chemical Corp., 3-17-35 Niizo-Minami, Toda-Shi, Saitama 335-0026 Japan
| | - Kaori Fueki
- Culture Media Technical Department, FUJIFILM Wako Pure Chemical Corp., 3-17-35 Niizo-Minami, Toda-Shi, Saitama 335-0026 Japan
| | - Naoki Maeda
- Culture Media Technical Department, FUJIFILM Wako Pure Chemical Corp., 3-17-35 Niizo-Minami, Toda-Shi, Saitama 335-0026 Japan
| |
Collapse
|
5
|
Böhl E, Raddatz G, Roy S, Huang L, Sandhu JK, Igwe EI, Rodríguez-Paredes M, Böhl F, Lyko F. Analysis of population heterogeneity in CHO cells by genome-wide DNA methylation analysis and by multi-modal single-cell sequencing. J Biotechnol 2024; 396:72-79. [PMID: 39488254 DOI: 10.1016/j.jbiotec.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
CHO cells are major hosts for the industrial production of therapeutic proteins and their production stability is of considerable economic significance. It is widely known that CHO cells can rapidly acquire genetic alterations, which affects their genetic homogeneity over time. However, the role of non-genetic mechanisms, including epigenetic mechanisms such as DNA methylation, remains poorly understood. We have now used whole-genome bisulfite sequencing to establish single-base methylation maps of eight independent CHO cell lines. Our results identify CpG islands and low-methylated regions as conserved elements with dynamic DNA methylation. Interestingly, methylation patterns were found to cluster clearly along the three main branches of CHO evolution, with no directional changes over short culture periods. Furthermore, multi-ome single-cell sequencing of 9833 nuclei from three independent cultures revealed dynamic subpopulation structures characterized by robust expression differences in pathways related to protein production. Our findings thus provide novel insights into the epigenetic landscape and heterogeneity of CHO cells and support the development of epigenetic biomarkers that trace the emergence of subpopulations in CHO cultures.
Collapse
Affiliation(s)
- Elias Böhl
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Suki Roy
- Evonik (SEA) Pte Ltd, Asia Research Hub, 21 Biopolis Road, Nucleos Tower A (South), 138567, Singapore
| | - Lingzhi Huang
- Evonik (SEA) Pte Ltd, Asia Research Hub, 21 Biopolis Road, Nucleos Tower A (South), 138567, Singapore
| | - Jasrene Kaur Sandhu
- Evonik (SEA) Pte Ltd, Asia Research Hub, 21 Biopolis Road, Nucleos Tower A (South), 138567, Singapore
| | - Emeka Ignatius Igwe
- Evonik (SEA) Pte Ltd, Asia Research Hub, 21 Biopolis Road, Nucleos Tower A (South), 138567, Singapore
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| | - Florian Böhl
- Creavis, Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany.
| |
Collapse
|
6
|
Hsu T, Talley MJ, Yang P, Geiselhoeringer A, Yang C, Gorla A, Rahman MJ, Silva L, Chen D, Yang B. Identification of infectious viruses for risk-based virus testing of CHO unprocessed bulk using next-generation sequencing. Biotechnol Prog 2024; 40:e3485. [PMID: 39051853 DOI: 10.1002/btpr.3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.
Collapse
Affiliation(s)
- Tiffany Hsu
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Mary Jo Talley
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Ping Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Angela Geiselhoeringer
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Cindy Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Aditya Gorla
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - M Julhasur Rahman
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Lindsey Silva
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Dayue Chen
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Bin Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| |
Collapse
|
7
|
Csató-Kovács E, Salamon P, Fikó-Lászlo S, Kovács K, Koka A, András-Korodi M, Antal E, Brumă E, Tőrsők B, Gudor S, Miklóssy I, Orbán KC, Albert C, Bálint EÉ, Albert B. Development of a Mammalian Cell Line for Stable Production of Anti-PD-1. Antibodies (Basel) 2024; 13:82. [PMID: 39449324 PMCID: PMC11503334 DOI: 10.3390/antib13040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Immune checkpoint blockade, particularly targeting the programmed cell death 1 (PD-1) receptor, is a promising strategy in cancer immunotherapy. The interaction between PD-1 and its ligands, PD-L1 and PD-L2, is crucial in immune evasion by tumors. Blocking this interaction with monoclonal antibodies like Nivolumab can restore anti-tumor immunity. This study aims to develop a stable expression system for Nivolumab-based anti-PD-1 in the Chinese Hamster Ovary (CHO) DG44 cell line using two different expression vector systems with various signal sequences. Methods: The heavy chain (HC) and light chain (LC) of Nivolumab were cloned into two expression vectors, pOptiVEC and pcDNA3.3. Each vector was engineered with two distinct signal sequences, resulting in the creation of eight recombinant plasmids. These plasmids were co-transfected into CHO DG44 cells in different combinations, allowing for the assessment of stable antibody production. Results: Both pOptiVEC and pcDNA3.3 vectors were successful in stably integrating and expressing the Nivolumab-based anti-PD-1 antibody in CHO DG44 cells. This study found that the choice of signal sequence significantly influenced the quantity of antibodies produced. The optimization of production conditions further enhanced antibody yield, indicating the potential for large-scale production. Conclusions: This study demonstrates that both pOptiVEC and pcDNA3.3 expression systems are effective for the stable production of Nivolumab-based anti-PD-1 in CHO DG44 cells. Signal sequences play a critical role in determining the expression levels, and optimizing production conditions can further increase antibody yield, supporting future applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Erika Csató-Kovács
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
- Corax-Bioner CEU S.A., 1 Miko Str., et. 1, Cam. 100, 530174 Miercurea Ciuc, Romania; (M.A.-K.); (E.A.)
| | - Pál Salamon
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
- Corax-Bioner CEU S.A., 1 Miko Str., et. 1, Cam. 100, 530174 Miercurea Ciuc, Romania; (M.A.-K.); (E.A.)
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Szilvia Fikó-Lászlo
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Krisztina Kovács
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Alice Koka
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
| | - Mónika András-Korodi
- Corax-Bioner CEU S.A., 1 Miko Str., et. 1, Cam. 100, 530174 Miercurea Ciuc, Romania; (M.A.-K.); (E.A.)
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Emőke Antal
- Corax-Bioner CEU S.A., 1 Miko Str., et. 1, Cam. 100, 530174 Miercurea Ciuc, Romania; (M.A.-K.); (E.A.)
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Emília Brumă
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Brigitta Tőrsők
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Szilárd Gudor
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
| | - Ildikó Miklóssy
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
- C. D. Nenițescu Institute of Organic Chemistry, 202B Splaiul Independenței, Sector 6, 060023 București, Romania
| | - Kálmán Csongor Orbán
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
- Corax-Bioner CEU S.A., 1 Miko Str., et. 1, Cam. 100, 530174 Miercurea Ciuc, Romania; (M.A.-K.); (E.A.)
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Csilla Albert
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
- Corax-Bioner CEU S.A., 1 Miko Str., et. 1, Cam. 100, 530174 Miercurea Ciuc, Romania; (M.A.-K.); (E.A.)
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| | - Emese Éva Bálint
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
- Corax-Bioner CEU S.A., 1 Miko Str., et. 1, Cam. 100, 530174 Miercurea Ciuc, Romania; (M.A.-K.); (E.A.)
| | - Beáta Albert
- Department of Bioengineering, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 1 Libertatii Sq, 530104 Miercurea Ciuc, Romania; (E.C.-K.); (P.S.); (A.K.); (S.G.); (I.M.); (K.C.O.); (C.A.); (E.É.B.)
- Corax-Bioner CEU S.A., 1 Miko Str., et. 1, Cam. 100, 530174 Miercurea Ciuc, Romania; (M.A.-K.); (E.A.)
- Faculty of Natural Sciences, University of Pécs, 7 Ifjúság Útja St., 7624 Pécs, Hungary; (S.F.-L.); (K.K.); (E.B.); (B.T.)
| |
Collapse
|
8
|
Desmurget C, Perilleux A, Souquet J, Borth N, Douet J. Molecular biomarkers identification and applications in CHO bioprocessing. J Biotechnol 2024; 392:11-24. [PMID: 38852681 DOI: 10.1016/j.jbiotec.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Biomarkers are valuable tools in clinical research where they allow to predict susceptibility to diseases, or response to specific treatments. Likewise, biomarkers can be extremely useful in the biomanufacturing of therapeutic proteins. Indeed, constraints such as short timelines and the need to find hyper-productive cells could benefit from a data-driven approach during cell line and process development. Many companies still rely on large screening capacities to develop productive cell lines, but as they reach a limit of production, there is a need to go from empirical to rationale procedures. Similarly, during bioprocessing runs, substrate consumption and metabolism wastes are commonly monitored. None of them possess the ability to predict the culture behavior in the bioreactor. Big data driven approaches are being adapted to the study of industrial mammalian cell lines, enabled by the publication of Chinese hamster and CHO genome assemblies which allowed the use of next-generation sequencing with these cells, as well as continuous proteome and metabolome annotation. However, if these different -omics technologies contributed to the characterization of CHO cells, there is a significant effort remaining to apply this knowledge to biomanufacturing methods. The correlation of a complex phenotype such as high productivity or rapid growth to the presence or expression level of a specific biomarker could save time and effort in the screening of manufacturing cell lines or culture conditions. In this review we will first discuss the different biological molecules that can be identified and quantified in cells, their detection techniques, and associated challenges. We will then review how these markers are used during the different steps of cell line and bioprocess development, and the inherent limitations of this strategy.
Collapse
Affiliation(s)
- Caroline Desmurget
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Arnaud Perilleux
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jonathan Souquet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julien Douet
- Merck Biotech Development Center, Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland.
| |
Collapse
|
9
|
Yamada T, Tsukakoshi K, Furusho A, Sugiyama E, Mizuno H, Hayashi H, Yamano T, Kumobayashi H, Hasebe T, Ikebukuro K, Toyo'oka T, Todoroki K. Simple and fast one-step FRET assay of therapeutic mAb bevacizumab using anti-idiotype DNA aptamer for process analytical technology. Talanta 2024; 277:126349. [PMID: 38852342 DOI: 10.1016/j.talanta.2024.126349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
We developed an aptamer-based fluorescence resonance energy transfer (FRET) assay capable of recognizing therapeutic monoclonal antibody bevacizumab and rapidly quantifying its concentration with just one mixing step. In this assay, two fluorescent dyes (fluorescein and tetramethylrhodamine) labeled aptamers bind to two Fab regions on bevacizumab, and FRET fluorescence is observed when both dyes come into close proximity. We optimized this assay in three different formats, catering to a wide range of analytical needs. When applied to hybridoma culture samples in practical settings, this assay exhibited a signal response that was concentration-dependent, falling within the range of 50-2000 μg/mL. The coefficients of determination (r2) ranged from 0.998 to 0.999, and bias and precision results were within ±24.0 % and 20.3 %, respectively. Additionally, during thermal and UV stress testing, this assay demonstrated the ability to detect denatured samples in a manner comparable to conventional Size Exclusion Chromatography. Notably, it offers the added advantage of detecting decreases in binding activity without changes in molecular weight. In contrast to many existing process analytical technology tools, this assay not only identifies bevacizumab but also directly measures the quality attributes related to mAb efficacy, such as the binding activity. As a result, this assay holds great potential as a valuable platform for providing highly reliable quality attribute information in real-time. We consider this will make a significant contribution to the worldwide distribution of high-quality therapeutic mAbs in various aspects of antibody manufacturing, including production monitoring, quality control, commercial lot release, and stability testing.
Collapse
Affiliation(s)
- Tomohiro Yamada
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Analytical Research, Pharmaceutical Science and Technology Unit, Pharmaceutical Profiling and Development Function, DHBL, Eisai Co. Ltd., Ibaraki, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Aogu Furusho
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Eiji Sugiyama
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Laboratory of Analytical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan
| | - Hajime Mizuno
- Laboratory of Analytical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan
| | - Hideki Hayashi
- Laboratory of Community Pharmaceutical Practice and Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Takeshi Yamano
- Analytical Research, Pharmaceutical Science and Technology Unit, Pharmaceutical Profiling and Development Function, DHBL, Eisai Co. Ltd., Ibaraki, Japan
| | - Hideki Kumobayashi
- Analytical Research, Pharmaceutical Science and Technology Unit, Pharmaceutical Profiling and Development Function, DHBL, Eisai Co. Ltd., Ibaraki, Japan
| | - Takashi Hasebe
- Analytical Research, Pharmaceutical Science and Technology Unit, Pharmaceutical Profiling and Development Function, DHBL, Eisai Co. Ltd., Ibaraki, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
10
|
Hisada T, Imai Y, Takemoto Y, Kanie K, Kato R. Prediction of antibody production performance change in Chinese hamster ovary cells using morphological profiling. J Biosci Bioeng 2024; 137:453-462. [PMID: 38472072 DOI: 10.1016/j.jbiosc.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Monoclonal antibodies (mAbs) represent a significant segment of biopharmaceuticals, with the market for mAb therapeutics expected to reach $200 billion in 2021. Chinese Hamster Ovary (CHO) cells are the industry standard for large-scale mAb production owing to their adaptability and genetic engineering capabilities. However, maintaining consistent product quality is challenging, primarily because of the inherent genetic instability of CHO cells. In this study, we address the need for advanced technologies for quality monitoring of host cells in biopharmaceuticals. We highlight the limitations of traditional cell assessment techniques such as flow cytometry and propose a noninvasive, label-free image-based analysis method. By utilizing advanced image processing and machine learning, this technique aims to non-invasively and quantitatively evaluate subtle quality changes in suspension cells. The research aims to investigate the use of morphological analysis for identifying subtle alterations in mAb productivity of CHO cells, employing cells stimulated by compounds as a model for this study. Our results show that the mAb productivity of CHO cells (day 8) can be predicted only from their early morphological profile (day 3). Our study also discusses the importance of strategic methods for forecasting host cell mAb productivity using morphological profiles, as inferred from our machine learning models specialized in predictive score prediction and anomaly prediction.
Collapse
Affiliation(s)
- Takumi Hisada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuto Takemoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, 1 Umanobe, Takaya, Higashi-Hiroshima 739-2116, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Institute of Nano-Life-Systems, Institute for Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
11
|
Masuda K, Kubota M, Nakazawa Y, Iwama C, Watanabe K, Ishikawa N, Tanabe Y, Kono S, Tanemura H, Takahashi S, Makino T, Okumura T, Horiuchi T, Nonaka K, Murakami S, Kamihira M, Omasa T. Establishment of a novel cell line, CHO-MK, derived from Chinese hamster ovary tissues for biologics manufacturing. J Biosci Bioeng 2024; 137:471-479. [PMID: 38472071 DOI: 10.1016/j.jbiosc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.
Collapse
Affiliation(s)
- Kenji Masuda
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan; Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Michi Kubota
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan; Chitose Laboratory Corp., KSP EAST511, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Yuto Nakazawa
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Chigusa Iwama
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan; Chitose Laboratory Corp., KSP EAST511, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Kazuhiko Watanabe
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Naoto Ishikawa
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Yumiko Tanabe
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Satoru Kono
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Hiroki Tanemura
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Shinichi Takahashi
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Tomohiro Makino
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Takeshi Okumura
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan; Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Takayuki Horiuchi
- Chitose Laboratory Corp., KSP EAST511, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Koichi Nonaka
- Biologics Division, Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan; Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Sei Murakami
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Masamichi Kamihira
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan; Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Omasa
- Manufacturing Technology Association of Biologics, 2-6-16 Shinkawa, Chuo-ku, Tokyo 104-0033, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Raab N, Zeh N, Kretz R, Weiß L, Stadermann A, Lindner B, Fischer S, Stoll D, Otte K. Nature as blueprint: Global phenotype engineering of CHO production cells based on a multi-omics comparison with plasma cells. Metab Eng 2024; 83:110-122. [PMID: 38561148 DOI: 10.1016/j.ymben.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Especially for the production of artificial, difficult to express molecules a further development of the CHO production cell line is required to keep pace with the continuously increasing demands. However, the identification of novel targets for cell line engineering to improve CHO cells is a time and cost intensive process. Since plasma cells are evolutionary optimized for a high antibody expression in mammals, we performed a comprehensive multi-omics comparison between CHO and plasma cells to exploit optimized cellular production traits. Comparing the transcriptome, proteome, miRNome, surfaceome and secretome of both cell lines identified key differences including 392 potential overexpression targets for CHO cell engineering categorized in 15 functional classes like transcription factors, protein processing or secretory pathway. In addition, 3 protein classes including 209 potential knock-down/out targets for CHO engineering were determined likely to affect aggregation or proteolysis. For production phenotype engineering, several of these novel targets were successfully applied to transient and transposase mediated overexpression or knock-down strategies to efficiently improve productivity of CHO cells. Thus, substantial improvement of CHO productivity was achieved by taking nature as a blueprint for cell line engineering.
Collapse
Affiliation(s)
- Nadja Raab
- Biberach University of Applied Sciences, Germany.
| | - Nikolas Zeh
- Biberach University of Applied Sciences, Germany; Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Robin Kretz
- Hochschule Albstadt Sigmaringen, Germany; NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Linus Weiß
- Biberach University of Applied Sciences, Germany
| | - Anna Stadermann
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Benjamin Lindner
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dieter Stoll
- NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Kerstin Otte
- Biberach University of Applied Sciences, Germany
| |
Collapse
|
13
|
Huang Z, Habib A, Zhao G, Ding X. CRISPR-Cas9 Mediated Stable Expression of Exogenous Proteins in the CHO Cell Line through Site-Specific Integration. Int J Mol Sci 2023; 24:16767. [PMID: 38069090 PMCID: PMC10706275 DOI: 10.3390/ijms242316767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are a popular choice in biopharmaceuticals because of their beneficial traits, including high-density suspension culture, safety, and exogenously produced proteins that closely resemble natural proteins. Nevertheless, a decline in the expression of exogenous proteins is noted as culture time progresses. This is a consequence of foreign gene recombination into chromosomes by random integration. The current investigation employs CRISPR-Cas9 technology to integrate foreign genes into a particular chromosomal location for sustained expression. Results demonstrate the successful integration of enhanced green fluorescent protein (EGFP) and human serum albumin (HSA) near base 434814407 on chromosome NC_048595.1 of CHO-K1 cells. Over 60 successive passages, monoclonal cell lines were produced that consistently expressed all relevant external proteins without discernible variation in expression levels. In conclusion, the CHO-K1 cell locus, NC_048595.1, proves an advantageous locus for stable exogenous protein expression. This study provides a viable approach to establishing a CHO cell line capable of enduring reliable exogenous protein expression.
Collapse
Affiliation(s)
- Zhipeng Huang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Kim SH, Shin S, Baek M, Xiong K, Karottki KJLC, Hefzi H, Grav LM, Pedersen LE, Kildegaard HF, Lewis NE, Lee JS, Lee GM. Identification of hyperosmotic stress-responsive genes in Chinese hamster ovary cells via genome-wide virus-free CRISPR/Cas9 screening. Metab Eng 2023; 80:66-77. [PMID: 37709005 DOI: 10.1016/j.ymben.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Chinese hamster ovary (CHO) cells are the preferred mammalian host cells for therapeutic protein production that have been extensively engineered to possess the desired attributes for high-yield protein production. However, empirical approaches for identifying novel engineering targets are laborious and time-consuming. Here, we established a genome-wide CRISPR/Cas9 screening platform for CHO-K1 cells with 111,651 guide RNAs (gRNAs) targeting 21,585 genes using a virus-free recombinase-mediated cassette exchange-based gRNA integration method. Using this platform, we performed a positive selection screening under hyperosmotic stress conditions and identified 180 genes whose perturbations conferred resistance to hyperosmotic stress in CHO cells. Functional enrichment analysis identified hyperosmotic stress responsive gene clusters, such as tRNA wobble uridine modification and signaling pathways associated with cell cycle arrest. Furthermore, we validated 32 top-scoring candidates and observed a high rate of hit confirmation, demonstrating the potential of the screening platform. Knockout of the novel target genes, Zfr and Pnp, in monoclonal antibody (mAb)-producing recombinant CHO (rCHO) cells and bispecific antibody (bsAb)-producing rCHO cells enhanced their resistance to hyperosmotic stress, thereby improving mAb and bsAb production. Overall, the collective findings demonstrate the value of the screening platform as a powerful tool to investigate the functions of genes associated with hyperosmotic stress and to discover novel targets for rational cell engineering on a genome-wide scale in CHO cells.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Minhye Baek
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Kai Xiong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Karen Julie la Cour Karottki
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Departments of Pediatrics and Bioengineering, University of California, San Diego, USA
| | - Hooman Hefzi
- Departments of Pediatrics and Bioengineering, University of California, San Diego, USA
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, USA
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
15
|
Reichstein IS, König M, Wojtysiak N, Escher BI, Henneberger L, Behnisch P, Besselink H, Thalmann B, Colas J, Hörchner S, Hollert H, Schiwy A. Replacing animal-derived components in in vitro test guidelines OECD 455 and 487. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161454. [PMID: 36638987 DOI: 10.1016/j.scitotenv.2023.161454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.
Collapse
Affiliation(s)
- Inska S Reichstein
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany; Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | | | | | - Julien Colas
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah Hörchner
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| | - Andreas Schiwy
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| |
Collapse
|
16
|
Joubert S, Stuible M, Lord-Dufour S, Lamoureux L, Vaillancourt F, Perret S, Ouimet M, Pelletier A, Bisson L, Mahimkar R, Pham PL, L Ecuyer-Coelho H, Roy M, Voyer R, Baardsnes J, Sauvageau J, St-Michael F, Robotham A, Kelly J, Acel A, Schrag JD, El Bakkouri M, Durocher Y. A CHO stable pool production platform for rapid clinical development of trimeric SARS-CoV-2 spike subunit vaccine antigens. Biotechnol Bioeng 2023. [PMID: 36987713 DOI: 10.1002/bit.28387] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.
Collapse
Affiliation(s)
- Simon Joubert
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Simon Lord-Dufour
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Linda Lamoureux
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - François Vaillancourt
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Manon Ouimet
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Louis Bisson
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Rohan Mahimkar
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Helene L Ecuyer-Coelho
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Marjolaine Roy
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Robert Voyer
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Janelle Sauvageau
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Frank St-Michael
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Joseph D Schrag
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Majida El Bakkouri
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Nguyen M, Zimmer A. A reflection on the improvement of Chinese Hamster ovary cell-based bioprocesses through advances in proteomic techniques. Biotechnol Adv 2023; 65:108141. [PMID: 37001570 DOI: 10.1016/j.biotechadv.2023.108141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chinese hamster ovary (CHO) cells are the preferred mammalian host for the large-scale production of recombinant proteins in the biopharmaceutical industry. Research endeavors have been directed to the optimization of CHO-based bioprocesses to increase protein quantity and quality, often in an empirical manner. To provide a rationale for those achievements, a myriad of CHO proteomic studies has arisen in recent decades. This review gives an overview of significant advances in LC-MS-based proteomics and sheds light on CHO proteomic studies, with a particular focus on CHO cells with superior bioprocessing phenotypes (growth, viability, titer, productivity and cQA), that have exploited novel proteomic or sub-omic techniques. These proteomic findings expand the current knowledge and understanding about the underlying protein clusters, protein regulatory networks and biological pathways governing such phenotypic changes. The proteomic studies, highlighted herein, will help in the targeted modulation of these cell factories to the desired needs.
Collapse
|
18
|
Yamano-Adachi N, Nakanishi Y, Tanaka W, Lai Y, Yamazaki M, Zenner L, Hata H, Omasa T. Artificial induction of chromosome aneuploidy in CHO cells alters their function as host cells. Biotechnol Bioeng 2023; 120:659-673. [PMID: 36385243 DOI: 10.1002/bit.28289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Chinese hamster ovary (CHO) cells are major host cells for biopharmaceuticals. During culture, the chromosome number of CHO cells alters spontaneously. Here, we investigated the effects of artificial changes in the chromosome number on productivity. When cell fusion between antibody-producing CHO-K1-derived cells was induced, we observed a wide range of aneuploidy that was not detected in controls. In particular, antibody productivities were high in clone-derived cell populations that retained a diverse chromosome number distribution. We also induced aneuploid cells using 3-aminobenzamide that causes chromosome non-disjunction. After induction of aneuploidy by 3-aminobenzamide, cells with an increased chromosome number were isolated, but cells with a decreased chromosome number could not be isolated. When antibody expression vectors were introduced into these isolated clones, productivity tended to increase in cells with an increased chromosome number. Further analysis was carried out by focusing on clone 5E8 with an average chromosome number of 37. When 5E8 cells were used as host, the productivity of multiple antibodies, including difficult-to-express antibodies, was improved compared with CHO-K1 cells. The copies of exogenous genes integrated into the genome were significantly increased in 5E8 cells. These findings expand the possibilities for host cell selection and contribute to the efficient construction of cell lines for recombinant protein production.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yuto Nakanishi
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Wataru Tanaka
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - YuanShan Lai
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | | | - Laura Zenner
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Hirofumi Hata
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
A comprehensive evaluation of stable expression "hot spot" in the ScltI gene of Chinese hamster ovary cells. Appl Microbiol Biotechnol 2023; 107:1299-1309. [PMID: 36707420 DOI: 10.1007/s00253-023-12383-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/29/2023]
Abstract
The Chinese hamster ovary (CHO) cell is the most widely used biopharmaceutical expression system, but its long-term expression is unstable. This issue can be effectively addressed by site-specific integration of exogenous genes into the genome. Therefore, exogenous protein sites with stable expression in the CHO cell genome must be identified. CRISPR/Cas9 technology was used in this study to integrate various exogenous genes into the ScltI site as a "hot spot" at the CHO-K1 cell genome NW_003614095.1, and the stability and adaptability of exogenous genes expressed at the site were investigated. Flow cytometry sorting technology was used to obtain positive monoclonal cell lines that expressed either intracellular protein green fluorescent protein (EGFP) or secretory protein human serum albumin (HSA). For 60 passages, the positive monoclonal cell lines' cell growth cycles and exogenous protein expression were both observed. The results demonstrated that integrating the gene encoding exogenous proteins into the ScltI site had no effect on cell growth. The fluorescence intensity of EGFP was similar after 60 passages, and the expression of HSA increased slightly. Additionally, the super-monomeric protein VWF hydrolase (ADAMTS13) (190 kDa), human coagulation factor VII (FVII) (55 kDa), and interferon α2b (12 kDa) were integrated into the ScltI site for expression. In conclusion, the site located in the first exon of the ScltI gene within the CHO-K1 cell genome NW_003614095.1 is an ideal "hot spot" for the stable expression of various exogenous proteins. KEY POINTS: • The site-specific integration strategy of an exogenous gene in CHO cells was established for the ScltI site. • The genes for EGFP and HSA were site-directed integrated and stably expressed at the ScltI site. • The ScltI site fulfills the expression of exogenous proteins of different molecular weight sizes (15-190 kDa).
Collapse
|
20
|
Wang Q, Wang T, Wu WW, Lin CY, Yang S, Yang G, Jankowska E, Hu Y, Shen RF, Betenbaugh MJ, Cipollo JF. Comprehensive N- and O-Glycoproteomic Analysis of Multiple Chinese Hamster Ovary Host Cell Lines. J Proteome Res 2022; 21:2341-2355. [PMID: 36129246 DOI: 10.1021/acs.jproteome.2c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycoproteomic analysis of three Chinese hamster ovary (CHO) suspension host cell lines (CHO-K1, CHO-S, and CHO-Pro5) commonly utilized in biopharmaceutical settings for recombinant protein production is reported. Intracellular and secreted glycoproteins were examined. We utilized an immobilization and chemoenzymatic strategy in our analysis. Glycoproteins or glycopeptides were first immobilized through reductive amination, and the sialyl moieties were amidated for protection. The desired N- or O-glycans and glycopeptides were released from the immobilization resin by enzymatic or chemical digestion. Glycopeptides were studied by Orbitrap Liquid chromatography-mass spectrometry (LC/MS), and the released glycans were analyzed by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Differences were detected in the relative abundances of N- and O-glycopeptide types, their resident and released glycans, and their glycoprotein complexity. Ontogeny analysis revealed key differences in features, such as general metabolic and biosynthetic pathways, including glycosylation systems, as well as distributions in cellular compartments. Host cell lines and subfraction differences were observed in both N- and O-glycan and glycoprotein pools. Differences were observed in sialyl and fucosyl glycan distributions. Key differences were also observed among glycoproteins that are problematic contaminants in recombinant antibody production. The differences revealed in this study should inform the choice of cell lines best suited for a particular bioproduction application.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Chang-Yi Lin
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ewa Jankowska
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
21
|
Min H, Kim SM, Kim D, Lee S, Lee S, Lee JS. Hybrid cell line development system utilizing site-specific integration and methotrexate-mediated gene amplification in Chinese hamster ovary cells. Front Bioeng Biotechnol 2022; 10:977193. [PMID: 36185448 PMCID: PMC9521551 DOI: 10.3389/fbioe.2022.977193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Site-specific integration has emerged as a promising strategy for streamlined and predictable Chinese hamster ovary (CHO) cell line development (CLD). However, the low specific productivity of the targeted integrants limits their practical application. In this study, we developed a hybrid CLD platform combining site-specific integration of a transgene and dihydrofolate reductase/methotrexate (DHFR/MTX)-mediated gene amplification to generate high-producing recombinant CHO cell lines. We used the CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform to integrate the DHFR expression cassette and transgene landing pad into a CHO genomic hot spot, C12orf35 locus, of DHFR-knockout CHO-K1 host cell lines. When subjected to various MTX concentrations up to 1 μM, EGFP-expressing targeted integrants showed a 3.6-fold increase in EGFP expression in the presence of 200 nM MTX, accompanied by an increase in the DHFR and EGFP copy number. A single-step 200 nM MTX amplification increased the specific monoclonal antibody (mAb) productivity (qmAb) of recombinant mAb-producing targeted integrants by 2.8-folds, reaching a qmAb of 9.1–11.0 pg/cell/day. Fluorescence in situ hybridization analysis showed colocalization of DHFR and mAb sequences at the intended chromosomal locations without clear amplified arrays of signals. Most MTX-amplified targeted integrants sustained recombinant mAb production during long-term culture in the absence of MTX, supporting stable gene expression in the amplified cell lines. Our study provides a new CLD platform that increases the productivity of targeted integrants by amplifying the transgene copies.
Collapse
Affiliation(s)
- Honggi Min
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seul Mi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Dongwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Solhwi Lee
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Sumin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
- *Correspondence: Jae Seong Lee,
| |
Collapse
|
22
|
Xu J, Santos J, Anderson NS, Borys MC, Pendse G, Li ZJ. Antibody charge variant modulation by in vitro enzymatic treatment in different CHO cell cultures. Biotechnol Prog 2022; 38:e3268. [PMID: 35536540 DOI: 10.1002/btpr.3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/10/2022]
Abstract
Charge variants represent a critical quality attribute that must be controlled during the development and manufacturing of monoclonal antibodies (mAb). Previously, we reported the development of a cost-effective enzymatic treatment capable of removing the C-terminal lysine from a mAb produced by a Chinese hamster ovary (CHO) GS cell line. This treatment resulted in a significant decrease in basic charge variants and a corresponding improvement in the main peak, enabling a longer cell culture production duration for titer improvement. Here, we describe this enzymatic treatment protocol in detail and demonstrate its applicability to two additional mAbs produced by distinct industrial cell lines. The simple addition of carboxypeptidase B (CpB) at a ratio of 1:10,000 (w/w) to whole cell cultures significantly improved the main peaks for both mAbs without affecting other critical quality attributes, including size exclusion chromatography impurities and N-glycans. Our results demonstrate that this in vitro CpB treatment protocol can be used as a platform strategy to improve main peak for mAbs that exhibit high levels of basic variants attributable to C-terminal lysines. An in vitro enzymatic treatment in general may be another good addition to existing in vivo CHO cell culture strategies for titer improvement and control of critical quality attributes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Johanna Santos
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Nadine S Anderson
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Girish Pendse
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| |
Collapse
|
23
|
The potential of emerging sub-omics technologies for CHO cell engineering. Biotechnol Adv 2022; 59:107978. [DOI: 10.1016/j.biotechadv.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
|
24
|
Ivanova NG, Kartavtseva IV, Stefanova VN, Ostromyshenskii DI, Podgornaya OI. Tandem Repeat Diversity in Two Closely Related Hamster Species—The Chinese Hamster (Cricetulus griseus) and Striped Hamster (Cricetulus barabensis). Biomedicines 2022; 10:biomedicines10040925. [PMID: 35453675 PMCID: PMC9025346 DOI: 10.3390/biomedicines10040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Chinese hamster (Cricetulus griseus) and striped hamster (Cricetulus barabensis) are very closely related species with similar karyotypes. The karyotypes differ from each other by one Robertsonian rearrangement and X-chromosome morphology. The level of the tandem repeat (TR) sequences’ evolutional variability is high. The aim of the current work was to trace the TR distribution on the chromosomes of two very closely related species. The striped hamster genome has not yet been sequenced. We classified the Chinese hamster TR in the assemblies available and then compared the mode of the TR distribution in closely related species. Chinese and striped hamsters are separate species due to the relative species specificity of Chinese hamster TR and prominent differences in the TR distribution in both species. The TR variation observed within homologous striped hamster chromosomes is caused by a lack of inbreeding in natural populations. The set of TR tested could be used to examine the CHO lines’ instability that has been observed in heterochromatic regions.
Collapse
Affiliation(s)
- Nadezhda G. Ivanova
- Laboratory of Noncoding DNA, Institute of Cytology RAS, Saint Petersburg 194064, Russia; (V.N.S.); (D.I.O.); (O.I.P.)
- Correspondence:
| | - Irina V. Kartavtseva
- Laboratory of Evolutionary Zoology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Vladivostok 690022, Russia;
| | - Vera N. Stefanova
- Laboratory of Noncoding DNA, Institute of Cytology RAS, Saint Petersburg 194064, Russia; (V.N.S.); (D.I.O.); (O.I.P.)
| | - Dmitrii I. Ostromyshenskii
- Laboratory of Noncoding DNA, Institute of Cytology RAS, Saint Petersburg 194064, Russia; (V.N.S.); (D.I.O.); (O.I.P.)
| | - Olga I. Podgornaya
- Laboratory of Noncoding DNA, Institute of Cytology RAS, Saint Petersburg 194064, Russia; (V.N.S.); (D.I.O.); (O.I.P.)
- Department of Cytology and Histology, Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
25
|
Improved Titer in Late-Stage Mammalian Cell Culture Manufacturing by Re-Cloning. Bioengineering (Basel) 2022; 9:bioengineering9040173. [PMID: 35447733 PMCID: PMC9030702 DOI: 10.3390/bioengineering9040173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 01/19/2023] Open
Abstract
Improving productivity to reduce the cost of biologics manufacturing and ensure that therapeutics can reach more patients remains a major challenge faced by the biopharmaceutical industry. Chinese hamster ovary (CHO) cell lines are commonly prepared for biomanufacturing by single cell cloning post-transfection and recovery, followed by lead clone screening, generation of a research cell bank (RCB), cell culture process development, and manufacturing of a master cell bank (MCB) to be used in early phase clinical manufacturing. In this study, it was found that an additional round of cloning and clone selection from an established monoclonal RCB or MCB (i.e., re-cloning) significantly improved titer for multiple late phase monoclonal antibody upstream processes. Quality attributes remained comparable between the processes using the parental clones and the re-clones. For two CHO cells expressing different antibodies, the re-clone performance was successfully scaled up at 500-L or at 2000-L bioreactor scales, demonstrating for the first time that the re-clone is suitable for late phase and commercial manufacturing processes for improvement of titer while maintaining comparable product quality to the early phase process.
Collapse
|
26
|
Schmieder V, Fieder J, Drerup R, Gutierrez EA, Guelch C, Stolzenberger J, Stumbaum M, Mueller VS, Higel F, Bergbauer M, Bornhoefft K, Wittner M, Gronemeyer P, Braig C, Huber M, Reisenauer-Schaupp A, Mueller MM, Schuette M, Puengel S, Lindner B, Schmidt M, Schulz P, Fischer S. Towards maximum acceleration of monoclonal antibody development: Leveraging transposase-mediated cell line generation to enable GMP manufacturing within 3 months using a stable pool. J Biotechnol 2022; 349:53-64. [PMID: 35341894 DOI: 10.1016/j.jbiotec.2022.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/20/2022] [Indexed: 01/24/2023]
Abstract
In recent years, acceleration of development timelines has become a major focus within the biopharmaceutical industry to bring innovative therapies faster to patients. However, in order to address a high unmet medical need even faster further acceleration potential has to be identified to transform "speed-to-clinic" concepts into "warp-speed" development programs. Recombinant Chinese hamster ovary (CHO) cell lines are the predominant expression system for monoclonal antibodies (mAbs) and are routinely generated by random transgene integration (RTI) of the genetic information into the host cell genome. This process, however, exhibits considerable challenges such as the requirement for a time-consuming clone screening process to identify a suitable clonally derived manufacturing cell line. Hence, RTI represents an error prone and tedious method leading to long development timelines until availability of Good Manufacturing Practice (GMP)-grade drug substance (DS). Transposase-mediated semi-targeted transgene integration (STI) has been recently identified as a promising alternative to RTI as it allows for a more rapid generation of high-performing and stable production cell lines. In this report, we demonstrate how a STI technology was leveraged to develop a very robust DS manufacturing process based on a stable pool cell line at unprecedented pace. Application of the novel strategy resulted in the manufacturing of GMP-grade DS at 2,000 L scale in less than three months paving the way for a start of Phase I clinical trials only six months after transfection. Finally, using a clonally derived production cell line, which was established from the parental stable pool, we were able to successfully implement a process with an increased mAb titer of up to 5 g per liter at the envisioned commercial scale (12,000 L) within eight months.
Collapse
Affiliation(s)
- Valerie Schmieder
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Juergen Fieder
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Raphael Drerup
- Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Erik Arango Gutierrez
- Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Carina Guelch
- Late Stage Upstream Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jessica Stolzenberger
- Late Stage Downstream Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Mihaela Stumbaum
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Volker Steffen Mueller
- Early Stage Analytics, Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Fabian Higel
- Early Stage Analytics, Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martin Bergbauer
- Late Stage Analytics, Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kim Bornhoefft
- Characterization Technologies, Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Manuel Wittner
- Global CMC Experts NBE, Global Quality Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Petra Gronemeyer
- Cell Banking & Inoculum, Focused Factory CS&T, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christian Braig
- CST Transfer, Focused Factory CS&T, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Michaela Huber
- Process Transfer Cell Culture, Focused Factory Drug Substance, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Anita Reisenauer-Schaupp
- R&D PM NBE, Global R&D Project Management and Development Strategies, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Markus Michael Mueller
- CMC PM Process Industrialization Germany, Global Biopharma CMC Project Mgmt&TechRA, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Mark Schuette
- Global Technology Management, Global Innovation & Alliance Management, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sebastian Puengel
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin Lindner
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
| |
Collapse
|
27
|
Sacco SA, Tuckowski AM, Trenary I, Kraft L, Betenbaugh MJ, Young JD, Smith KD. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Biotechnol Bioeng 2022; 119:1712-1727. [PMID: 35312045 DOI: 10.1002/bit.28084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022]
Abstract
The glutamine synthetase (GS) expression system is commonly used to ensure stable transgene integration and amplification in CHO host lines. Transfected cell populations are typically grown in the presence of the GS inhibitor, methionine sulfoximine (MSX), to further select for increased transgene copy number. However, high levels of GS activity produce excess glutamine. We hypothesized that attenuating the GS promoter while keeping the strong IgG promoter on the GS-IgG expression vector would result in a more efficient cellular metabolic phenotype. Herein, we characterized CHO cell lines expressing GS from either an attenuated promoter or an SV40 promoter and selected with/without MSX. CHO cells with the attenuated GS promoter had higher IgG specific productivity and lower glutamine production compared to cells with SV40-driven GS expression. Selection with MSX increased both specific productivity and glutamine production, regardless of GS promoter strength. 13 C metabolic flux analysis (MFA) was performed to further assess metabolic differences between these cell lines. Interestingly, central carbon metabolism was unaltered by the attenuated GS promoter while the fate of glutamate and glutamine varied depending on promoter strength and selection conditions. This study highlights the ability to optimize the GS expression system to improve IgG production and reduce wasteful glutamine overflow, without significantly altering central metabolism. Additionally, a detailed supplementary analysis of two "lactate runaway" reactors provides insight into the poorly understood phenomenon of excess lactate production by some CHO cell cultures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Angela M Tuckowski
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA.,Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lauren Kraft
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kevin D Smith
- Biotherapeutics Development, Janssen Research and Development, Spring House, PA, USA.,Asimov, 1325 Boylston St, Boston, MA, 02215
| |
Collapse
|
28
|
Malm M, Kuo CC, Barzadd MM, Mebrahtu A, Wistbacka N, Razavi R, Volk AL, Lundqvist M, Kotol D, Tegel H, Hober S, Edfors F, Gräslund T, Chotteau V, Field R, Varley PG, Roth RG, Lewis NE, Hatton D, Rockberg J. Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins. Metab Eng 2022; 72:171-187. [PMID: 35301123 PMCID: PMC9189052 DOI: 10.1016/j.ymben.2022.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 10/31/2022]
Abstract
Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.
Collapse
Affiliation(s)
- Magdalena Malm
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Chih-Chung Kuo
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, 92093, USA
| | - Mona Moradi Barzadd
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Aman Mebrahtu
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Num Wistbacka
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Ronia Razavi
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Anna-Luisa Volk
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Magnus Lundqvist
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - David Kotol
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, 171 65, Sweden
| | - Hanna Tegel
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Sophia Hober
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, 171 65, Sweden
| | - Torbjörn Gräslund
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Veronique Chotteau
- Dept. of Industrial Biotechnology, KTH - Royal Institute of Technology, Stockholm, SE-10691, Sweden
| | - Ray Field
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Paul G Varley
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Robert G Roth
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, 92093, USA.
| | - Diane Hatton
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Johan Rockberg
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden.
| |
Collapse
|
29
|
McFarland KS, Zhu J, Sinharoy P, Betenbaugh MJ, Handlogten MW. Engineering redox sensors into CHO cells enables near real-time quantification of intracellular redox in bioprocesses. Biotechnol Bioeng 2022; 119:1439-1449. [PMID: 35182429 DOI: 10.1002/bit.28067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/11/2022]
Abstract
The production of biologics that treat complex diseases, such as cancer, autoimmune, and infectious disease, requires careful monitoring and control of cell cultures. While bioprocess optimizations have dramatically improved production yields, a lack of analytical tools has made it challenging to identify accompanying intracellular improvements. Intracellular redox can diminish the growth and productivity of biologics-producing cells and adversely impact product quality profiles yet characterizing redox is challenging due to its complex and highly transient nature. In this study, we integrated a fluorescent thiol-based redox biosensor to monitor intracellular redox in one bisAb- and two mAb-producing clonal cell lines in a 14-day fed-batch bioreactor. We characterized biosensor functionality using three fluorescence measurement techniques and determined sensor oxidation correlates with the intracellular ratio of reduced and oxidized glutathione (GSH:GSSG), an important cellular antioxidant. Our fed-batch bioreactor studies showed that sensor expression minimally affected bioprocess outcomes, including growth, productivity, product quality attributes, or intracellular redox attributes, including mitochondrial reactive oxygen species and total cellular glutathione levels in all cell lines tested. Biosensor measurements taken throughout the culture revealed that the intracellular environment in these cell lines became more reduced throughout the culture, with the exception of a high pH condition which became more oxidized. Our results demonstrate the potential of using biosensors to monitor intracellular changes in near-real-time with minimal process effects, thus potentially improving future bioprocess optimizations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kevin S McFarland
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Jie Zhu
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Pritam Sinharoy
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Michael W Handlogten
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| |
Collapse
|
30
|
Szkodny AC, Lee KH. Biopharmaceutical Manufacturing: Historical Perspectives and Future Directions. Annu Rev Chem Biomol Eng 2022; 13:141-165. [PMID: 35300518 DOI: 10.1146/annurev-chembioeng-092220-125832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes key milestones related to the production of biopharmaceuticals-therapies manufactured using recombinant DNA technology. The market for biopharmaceuticals has grown significantly since the first biopharmaceutical approval in 1982, and the scientific maturity of the technologies used in their manufacturing processes has grown concomitantly. Early processes relied on established unit operations, with research focused on process scale-up and improved culture productivity. In the early 2000s, changes in regulatory frameworks and the introduction of Quality by Design emphasized the importance of developing manufacturing processes to deliver a desired product quality profile. As a result, companies adopted platform processes and focused on understanding the dynamic interplay between product quality and processing conditions. The consistent and reproducible manufacturing processes of today's biopharmaceutical industry have set high standards for product efficacy, quality, and safety, and as the industry continues to evolve in the coming decade, intensified processing capabilities for an expanded range of therapeutic modalities will likely become routine. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alana C Szkodny
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; ;
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; ;
| |
Collapse
|
31
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
32
|
Munoz A, Morachis JM. High efficiency sorting and outgrowth for single-cell cloning of mammalian cell lines. Biotechnol Lett 2022; 44:1337-1346. [PMID: 36074283 PMCID: PMC9659504 DOI: 10.1007/s10529-022-03300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023]
Abstract
Single-cell selection and cloning is required for multiple bioprocessing and cell engineering workflows. Dispensing efficiency and outgrowth were optimized for multiple common suspension (CHO ES, Expi293F, and Jurkat) and adherent (MCF-7, A549, CHO-K1, and HEK293) cell lines. Single-cell sorting using a low pressure microfluidic cell sorter, the WOLF Cell Sorter, was compared with limiting dilution at 0.5 cells/well to demonstrate the increased efficiency of using flow cytometry selection of cells. In this work, there was an average single cell deposition on Day 0 of 89.1% across all the cell lines tested compared to 41.2% when using limiting dilution. After growth for 14 days, 66.7% of single-cell clones sorted with the WOLF Cell Sorter survived and only 23.8% when using limiting dilution. Using the WOLF Cell Sorter for cell line development results in higher viable single-cell colonies and the ability to select subpopulations of single-cells using multiple parameters.
Collapse
|
33
|
Microbial protein cell factories fight back? Trends Biotechnol 2021; 40:576-590. [PMID: 34924209 DOI: 10.1016/j.tibtech.2021.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 01/26/2023]
Abstract
The biopharmaceutical market is growing faster than ever, with two production systems competing for market dominance: mammalian cells and microorganisms. In recent years, based on the rise of antibody-based therapies, new biotherapeutic approvals have favored mammalian hosts. However, not only has extensive research elevated our understanding of microbes to new levels, but emerging therapeutic molecules also facilitate their use; thus, is it time for microbes to fight back? In this review, we answer this timely question by cross-comparing four microbial production hosts and examining the innovations made to both their secretion and post-translational modification (PTM) capabilities. Furthermore, we discuss the impact of tools, such as omics and systems biology, as well as alternative production systems and emerging biotherapeutics.
Collapse
|
34
|
Kim SH, Baek M, Park S, Shin S, Lee JS, Lee GM. Improving the secretory capacity of CHO producer cells: The effect of controlled Blimp1 expression, a master transcription factor for plasma cells. Metab Eng 2021; 69:73-86. [PMID: 34775077 DOI: 10.1016/j.ymben.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 01/23/2023]
Abstract
With the advent of novel therapeutic proteins with complex structures, cellular bottlenecks in secretory pathways have hampered the high-yield production of difficult-to-express (DTE) proteins in CHO cells. To mitigate their limited secretory capacity, recombinant CHO (rCHO) cells were engineered to express Blimp1, a master regulator orchestrating B cell differentiation into professional secretory plasma cells, using the streamlined CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform. The expression of Blimp1α or Blimp1β in rCHO cells producing DTE recombinant human bone morphogenetic protein-4 (rhBMP-4) increased specific rhBMP-4 productivity (qrhBMP-4). However, since Blimp1α expression suppressed cell growth more significantly than Blimp1β expression, only Blimp1β expression enhanced rhBMP-4 yield. In serum-free suspension culture, Blimp1β expression significantly increased the rhBMP-4 concentration (>3-fold) and qrhBMP-4 (>4-fold) without significant increase in hBMP-4 transcript levels. In addition, Blimp1β expression facilitated mature rhBMP-4 secretion by active proteolytic cleavage in the secretory pathway. Transcriptomic profiling (RNA-seq) revealed global changes in gene expression patterns that promote protein processing in secretory organelles. In-depth integrative analysis of the current RNA-seq data, public epigenome/RNA-seq data, and in silico analysis identified 45 potential key regulators of Blimp1 that are consistently up- or down-regulated in Blimp1β expressing rCHO cells and plasma cells. Blimp1β expression also enhanced the production of easy-to-express monoclonal antibodies (mAbs) and modulated the expression of key regulators in rCHO cells producing mAb. Taken together, the results show that controlled expression of Blimp1β improves the production capacity of rCHO cells by regulating secretory machinery and suggest new opportunities for engineering promising targets that are resting in CHO cells.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Minhye Baek
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Sungje Park
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
35
|
Exploring the limits of conventional small-scale CHO fed-batch for accelerated on demand monoclonal antibody production. Bioprocess Biosyst Eng 2021; 45:297-307. [PMID: 34750672 PMCID: PMC8807460 DOI: 10.1007/s00449-021-02657-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/14/2021] [Indexed: 11/04/2022]
Abstract
In the field of therapeutic antibody production, diversification of fed-batch strategies is flourishing in response to the market demand. All manufacturing approaches tend to follow the generally accepted dogma of increasing titer since it directly increases manufacturing output. While titer is influenced by the biomass (expressed as IVCD), the culture time and the cell-specific productivity (qP), we changed independently each of these parameters to tune our process strategy towards adapted solutions to individual manufacturing needs. To do so, we worked separately on the increase of the IVCD as high seeding fed-batch capacity. Yet, as intensified fed-batch may not always be possible due to limited facility operational mode, we also separately increased the qP with the addition of specific media additives. Both strategies improved titer by 100% in 14 days relative to the standard fed-batch process with moderate and acceptable changes in product quality attributes. Since intensified fed-batch could rival the cell-specific productivity of a conventional fed-batch, we developed novel hybrid strategies to either allow for acceptable seeding densities without compromising productivity, or alternatively, to push the productivity the furthest in order to reduce timelines.
Collapse
|
36
|
Li GB, Pollard J, Liu R, Stevens RC, Quiroz J, Nelson MC, Manahan M, Murgolo N, Ehrick RS, Wallenstein EJ, Hughes J, Tsao YS, Zhao J, Du Z, Tugcu N, Pollard D. Retrospective assessment of clonality of a legacy cell line by analytical subcloning of the master cell bank. Biotechnol Prog 2021; 38:e3215. [PMID: 34586757 DOI: 10.1002/btpr.3215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022]
Abstract
In recent years, assurance of clonality of the production cell line has been emphasized by health authorities during review of regulatory submissions. When insufficient assurance of clonality is provided, augmented control strategies may be required for a commercial production process. In this study, we conducted a retrospective assessment of clonality of a legacy cell line through analysis of subclones from the master cell bank (MCB). Twenty-four subclones were randomly selected based on a predetermined acceptance sampling plan. All these subclones share a conserved integration junction, thus providing a high level of assurance that the cell population in the MCB was derived from a single progenitor cell. However, Southern blot analysis indicates that at least four subpopulations possibly exist in the MCB. Additional characterization of these four subpopulations demonstrated that the resulting changes in product quality attributes of some subclones are not related to the genetic heterogeneity observed in Southern blot hybridization. Furthermore, process consistency, process comparability, and analytical comparability have been demonstrated in batches produced across varying manufacturing processes, scales, facilities, cell banks, and cell ages. Finally, process and product consistency together with a high level of assurance of clonal origin of the MCB helped clear the hurdle for regulatory approval without requirement of additional control strategies.
Collapse
Affiliation(s)
- Guanghua Benson Li
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jennifer Pollard
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ren Liu
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Richard C Stevens
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jorge Quiroz
- Research CMC Statistics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Michael C Nelson
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Matthew Manahan
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Nicholas Murgolo
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Robin S Ehrick
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Eric J Wallenstein
- Biologics Process Development & Commercialization, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jason Hughes
- Global Research IT, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Yung-Shyeng Tsao
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jia Zhao
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zhimei Du
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Nihal Tugcu
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David Pollard
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
37
|
Shamie I, Duttke SH, Karottki KJLC, Han CZ, Hansen AH, Hefzi H, Xiong K, Li S, Roth SJ, Tao J, Lee GM, Glass CK, Kildegaard HF, Benner C, Lewis NE. A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells. NAR Genom Bioinform 2021; 3:lqab061. [PMID: 34268494 PMCID: PMC8276764 DOI: 10.1093/nargab/lqab061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.
Collapse
Affiliation(s)
- Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Sascha H Duttke
- Department of Medicine, University of California, San Diego 92093, USA
| | - Karen J la Cour Karottki
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Anders H Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Hooman Hefzi
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Shangzhong Li
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Samuel J Roth
- Department of Medicine, University of California, San Diego 92093, USA
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | | | | | - Nathan E Lewis
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| |
Collapse
|
38
|
A Stable CHO K1 Cell Line for Producing Recombinant Monoclonal Antibody Against TNF-α. Mol Biotechnol 2021; 63:828-839. [PMID: 34089481 DOI: 10.1007/s12033-021-00329-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Monoclonal antibodies (mAbs) are one of the most significant molecules in protein therapeutics. They are employed in the field of immunology, oncology and organ transplant. They have been also been employed for alleviating several bacterial and viral infections. Moreover, they have revolutionized the area of targeted therapy and improved the quality of treatments, as compared to other cytotoxic drugs and therapies. mAbs bind to specific molecules on the antigen and exhibit specificity towards that molecule, i.e. epitope. Thus, mAbs have immense opportunity to be explored for personalized therapy. The introduction of targeted mAb-based therapeutics has promoted many important scientific achievements in rheumatology. This has warranted additional investigations for developing newer mAb producing clones, to supplement the limited industrial production of certain mAb therapeutics. In this investigation, an integrative approach comprising optimized expression, selection and expansion was adopted to develop a mammalian cell line expressing mAb against TNF-α.The resulting stable clone is anticipated to serve as an economic alternative to the industrial clones, especially for research purposes. The clone was constructed for development of biosimilar of the highly valued therapeutic antibody, Humira.
Collapse
|
39
|
Pulix M, Lukashchuk V, Smith DC, Dickson AJ. Molecular characterization of HEK293 cells as emerging versatile cell factories. Curr Opin Biotechnol 2021; 71:18-24. [PMID: 34058525 DOI: 10.1016/j.copbio.2021.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
HEK293 cell lines are used for the production of recombinant proteins, virus-like particles and viral vectors. Recent work has generated molecular (systems level) characterisation of HEK293 variants that has enabled re-engineering of the cells towards enhanced use for manufacture-scale production of recombinant biopharmaceuticals (assessment of 'safe harbours' for gene insertion, engineering of new variants for stable, amplifiable expression). In parallel, there have been notable advances in the bioprocessing conditions (suspension adaptation, development of defined serum-free media) that offer the potential for large-scale manufacture, a feature especially important in the drive to produce viral vectors at large-scale and at commercially viable costs for gene therapy. The combination of cell-based and bioprocess-based modification of existing HEK293 cell processes, frequently informed by understandings transferred from developments with Chinese hamster ovary cell lines, seems destined to place the HEK293 cell systems firmly as a critical platform for production of future biologically based therapeutics.
Collapse
Affiliation(s)
- Michela Pulix
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, Department of Chemical Engineering & Analytical Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Vera Lukashchuk
- Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Daniel C Smith
- Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, Department of Chemical Engineering & Analytical Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
40
|
Considerations of the Impacts of Cell-Specific Growth and Production Rate on Clone Selection—A Simulation Study. Processes (Basel) 2021. [DOI: 10.3390/pr9060964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
For the manufacturing of complex biopharmaceuticals using bioreactors with cultivated mammalian cells, high product concentration is an important objective. The phenotype of the cells in a reactor plays an important role. Are clonal cell populations showing high cell-specific growth rates more favorable than cell lines with higher cell-specific productivities or vice versa? Five clonal Chinese hamster ovary cell populations were analyzed based on the data of a 3-month-stability study. We adapted a mechanistic cell culture model to the experimental data of one such clonally derived cell population. Uncertainties and prior knowledge concerning model parameters were considered using Bayesian parameter estimations. This model was used then to define an inoculum train protocol. Based on this, we subsequently simulated the impacts of differences in growth rates (±10%) and production rates (±10% and ±50%) on the overall cultivation time, including making the inoculum train cultures; the final production phase, the volumetric titer in that bioreactor and the ratio of both, defined as overall process productivity. We showed thus unequivocally that growth rates have a higher impact (up to three times) on overall process productivity and for product output per year, whereas cells with higher productivity can potentially generate higher product concentrations in the production vessel.
Collapse
|
41
|
Turilova VI, Goryachaya TS, Yakovleva TK. Chinese hamster ovary cell line DXB-11: chromosomal instability and karyotype heterogeneity. Mol Cytogenet 2021; 14:11. [PMID: 33596973 PMCID: PMC7888135 DOI: 10.1186/s13039-021-00528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chinese hamster ovary cell lines, also known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductase-deficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. It is generally assumed that DXB-11 is identical to DUKX or CHO-DUK cell lines, but, to our knowledge, DXB-11 karyotype has not been described yet. RESULTS Using differential staining approaches (G-, C-banding and Ag-staining), we presented DXB-11 karyotype and revealed that karyotypes of DXB-11 and CHO-DUK cells have a number of differences. Although the number of chromosomes is equal-20 in each cell line-DXB-11 has normal chromosomes of the 1st and 5th pairs as well as an intact chromosome 8. Besides, in DXB-11 line, chromosome der(Z9) includes the material of chromosomes X and 6, whereas in CHO-DUK it results from the translocation of chromosomes 1 and 6. Ag-positive nucleolar organizer regions were revealed in the long arms of chromosome del(4)(q11q12) and both chromosome 5 homologues, as well as in the short arms of chromosomes 8 and add(8)(q11). Only 19 from 112 (16.96%) DXB-11 cells display identical chromosome complement accepted as the main structural variant of karyotype. The karyotype heterogeneity of all the rest of cells (93, 83.04%) occurs due to clonal and nonclonal additional structural rearrangements of chromosomes. Estimation of the frequency of chromosome involvement in these rearrangements allowed us to reveal that chromosomes 9, der(X)t(X;3;4), del(2)(p21p23), del(2)(q11q22) /Z2, der(4) /Z7, add(6)(p11) /Z8 are the most stable, whereas mar2, probably der(10), is the most unstable chromosome. A comparative analysis of our own and literary data on CHO karyotypes allowed to designate conservative chromosomes, both normal and rearranged, that remain unchanged in different CHO cell lines, as well as variable chromosomes that determine the individuality of karyotypes of CHO derivatives. CONCLUSION DXB-11and CHO-DUK cell lines differ in karyotypes. The revealed differential instability of DXB-11 chromosomes is likely not incidental and results in karyotype heterogeneity of cell population.
Collapse
Affiliation(s)
- Victoria I Turilova
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave., 4, St Petersburg, Russia, 194064.
| | - Tatyana S Goryachaya
- Centre of Cell Technologies, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave., 4, St Petersburg, Russia, 194064
| | - Tatiana K Yakovleva
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave., 4, St Petersburg, Russia, 194064
| |
Collapse
|
42
|
Ishii H, Zahra MH, Takayanagi A, Seno M. A Novel Artificially Humanized Anti-Cripto-1 Antibody Suppressing Cancer Cell Growth. Int J Mol Sci 2021; 22:ijms22041709. [PMID: 33567764 PMCID: PMC7915030 DOI: 10.3390/ijms22041709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cripto-1 is a member of the EGF-CFC/FRL1/Cryptic family and is involved in embryonic development and carcinogenesis. We designed a novel anti-Cripto-1 artificial antibody and assessed the recognition to the antigen and the potential to suppress the growth of cancer stem cells. First, single chain antibody clones were isolated by bio-panning with the affinity to recombinant Cripto-1 protein from our original phage-display library. Then, the variable regions of heavy chain VH and light chain VL in each clone were fused to constant regions of heavy chain CH and light chain CL regions respectively. These fused genes were expressed in ExpiCHO-S cells to produce artificial humanized antibodies against Cripto-1. After evaluation of the expression levels, one clone was selected and the anti-Cripto-1 antibody was produced and purified. The purified antibody showed affinity to recombinant Cripto-1 at 1.1 pmol and immunoreactivity to cancer tissues and cell lines. The antibody was available to detect the immunoreactivity in tissue microarrays of malignant tumors as well as in Cripto-1 overexpressing cells. Simultaneously, the antibody exhibited the potential to suppress the growth of human colon cancer derived GEO cells overexpressing Cripto-1 with IC50 at approximately 110 nM. The artificially humanized antibody is proposed to be a good candidate to target cancer cells overexpressing Cripto-1.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwaku, Osaka 556-0017, Japan; (H.I.); (A.T.)
| | - Maram H. Zahra
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
| | - Atushi Takayanagi
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwaku, Osaka 556-0017, Japan; (H.I.); (A.T.)
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
- Correspondence: ; Tel./Fax: +81-86-251-8216
| |
Collapse
|
43
|
Schmitt MG, White RN, Barnard GC. Development of a high cell density transient CHO platform yielding mAb titers greater than 2 g/L in only 7 days. Biotechnol Prog 2021; 36:e3047. [PMID: 33411420 DOI: 10.1002/btpr.3047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
We developed a simple transient Chinese Hamster Ovary expression platform. Titers for a random panel of 20 clinical monoclonal antibodies (mAbs) ranged from 0.6 to 2.7 g/L after 7 days. Two factors were the key in obtaining these high titers. First, we utilized an extremely high starting cell density (20 million cells/ml), and then arrested further cell growth by employing mild hypothermic conditions (32°C). Second, we performed a 6-variable Design of Experiments to find optimal concentrations of plasmid DNA (coding DNA), boost DNA (DNA encoding the XBP1S transcription factor), transfection reagent (polyethylenimine [PEI]), and nutrient feed amounts. High coding DNA concentrations (12.5 mg/L) were found to be optimal. We therefore diluted expensive coding DNA with inexpensive inert filler DNA (herring sperm DNA). Reducing the coding DNA concentration by 70% from 12.5 to 3.75 mg/L did not meaningfully reduce mAb titers. Titers for the same panel of 20 clinical mAbs ranged from 0.7 to 2.2 g/L after reducing the coding DNA concentration to 3.75 mg/L. Finally, we found that titer and product quality attributes were similar for a clinical mAb (rituximab) expressed at very different scales (volumes ranging from 3 ml to 2 L).
Collapse
Affiliation(s)
- Matthew G Schmitt
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Technology Center, Indianapolis, Indiana, USA
| | - Regina N White
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Technology Center, Indianapolis, Indiana, USA
| | - Gavin C Barnard
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Technology Center, Indianapolis, Indiana, USA
| |
Collapse
|
44
|
Schmitz J, Täuber S, Westerwalbesloh C, von Lieres E, Noll T, Grünberger A. Development and application of a cultivation platform for mammalian suspension cell lines with single-cell resolution. Biotechnol Bioeng 2020; 118:992-1005. [PMID: 33200818 DOI: 10.1002/bit.27627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
In bioproduction processes, cellular heterogeneity can cause unpredictable process outcomes or even provoke process failure. Still, cellular heterogeneity is not examined systematically in bioprocess research and development. One reason for this shortcoming is the applied average bulk analyses, which are not able to detect cell-to-cell differences. In this study, we present a microfluidic tool for mammalian single-cell cultivation (MaSC) of suspension cells. The design of our platform allows cultivation in highly controllable environments. As a model system, Chinese hamster ovary cells (CHO-K1) were cultivated over 150 h. Growth behavior was analyzed on a single-cell level and resulted in growth rates between 0.85 and 1.16 day-1 . At the same time, heterogeneous growth and division behavior, for example, unequal division time, as well as rare cellular events like polynucleation or reversed mitosis were observed, which would have remained undetected in a standard population analysis based on average measurements. Therefore, MaSC will open the door for systematic single-cell analysis of mammalian suspension cells. Possible fields of application represent basic research topics like cell-to-cell heterogeneity, clonal stability, pharmaceutical drug screening, and stem cell research, as well as bioprocess related topics such as media development and novel scale-down approaches.
Collapse
Affiliation(s)
- Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Sarah Täuber
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Christoph Westerwalbesloh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
45
|
Ogata N, Nishimura A, Matsuda T, Kubota M, Omasa T. Single-cell transcriptome analyses reveal heterogeneity in suspension cultures and clonal markers of CHO-K1 cells. Biotechnol Bioeng 2020; 118:944-951. [PMID: 33179258 DOI: 10.1002/bit.27624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/11/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022]
Abstract
Cell-to-cell variability in cell populations arises from a combination of intrinsic factors and extrinsic factors related to the milieu. However, the heterogeneity of high cell density suspension cultures for therapeutic protein production remains unknown. Here, we illustrate the increasing heterogeneity in the cellular transcriptome of serum-free adapted CHO K1 cells during high cell density suspension culture over time without concomitant changes in the genomic sequence. Cell cycle-dependent subpopulations and cell clusters, which typically appear in other single-cell transcriptome analyses, were not found in these suspension cultures. Our results indicate that cell division changes the intracellular microenvironment and leads to cell cycle-dependent heterogeneity. Whole mitochondrial single-cell genome sequencing showed cell-to-cell mitochondrial genome variation and heteroplasmy within cells. The mitochondrial genome sequencing method developed here is potentially useful for the validation of cell clonality. The culture time-dependent increase in cellular heterogeneity observed in this study did not show any attenuation in this increasing heterogeneity. Future advances in bioengineering such as culture upscaling, prolonged culturing, and complex culture systems will be confronted with the need to assess and control cellular heterogeneity, and the method described here may prove useful for this purpose.
Collapse
Affiliation(s)
- Norichika Ogata
- Nihon BioData Corporation, Takatsu-ku, Kawasaki, Kanagawa, Japan.,Medicale Meccanica, Inc., Takatsu-ku, Kawasaki, Kanagawa, Japan.,Manufacturing Technology Association of Biologics, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Akio Nishimura
- Nihon BioData Corporation, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Tomoko Matsuda
- Nihon BioData Corporation, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Michi Kubota
- Chitose Laboratory Corporation, Nogawa, Miyamae, Kawasaki, Kanagawa, Japan
| | - Takeshi Omasa
- Manufacturing Technology Association of Biologics, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan.,Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
46
|
Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci Rep 2020; 10:18996. [PMID: 33149219 PMCID: PMC7642379 DOI: 10.1038/s41598-020-76137-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/22/2020] [Indexed: 01/28/2023] Open
Abstract
The need for new safe and efficacious therapies has led to an increased focus on biologics produced in mammalian cells. The human cell line HEK293 has bio-synthetic potential for human-like production attributes and is currently used for manufacturing of several therapeutic proteins and viral vectors. Despite the increased popularity of this strain we still have limited knowledge on the genetic composition of its derivatives. Here we present a genomic, transcriptomic and metabolic gene analysis of six of the most widely used HEK293 cell lines. Changes in gene copy and expression between industrial progeny cell lines and the original HEK293 were associated with cellular component organization, cell motility and cell adhesion. Changes in gene expression between adherent and suspension derivatives highlighted switching in cholesterol biosynthesis and expression of five key genes (RARG, ID1, ZIC1, LOX and DHRS3), a pattern validated in 63 human adherent or suspension cell lines of other origin.
Collapse
|
47
|
Hoang Anh N, Min JE, Kim SJ, Phuoc Long N. Biotherapeutic Products, Cellular Factories, and Multiomics Integration in Metabolic Engineering. ACTA ACUST UNITED AC 2020; 24:621-633. [DOI: 10.1089/omi.2020.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
48
|
Hilliard W, Lee KH. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Biotechnol Bioeng 2020; 118:659-675. [PMID: 33049068 DOI: 10.1002/bit.27599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
The Chinese hamster ovary (CHO) cell lines that are used to produce commercial quantities of therapeutic proteins commonly exhibit a decrease in productivity over time in culture, a phenomenon termed production instability. Random integration of the transgenes encoding the protein of interest into locations in the CHO genome that are vulnerable to genetic and epigenetic instability often causes production instability through copy number loss and silencing of expression. Several recent publications have shown that these cell line development challenges can be overcome by using site-specific integration (SSI) technology to insert the transgenes at genomic loci, often called "hotspots," that are transcriptionally permissive and have enhanced stability relative to the rest of the genome. However, extensive characterization of the CHO epigenome is needed to identify hotspots that maintain their desirable epigenetic properties in an industrial bioprocess environment and maximize transcription from a single integrated transgene copy. To this end, the epigenomes and transcriptomes of two distantly related cell lines, an industrially relevant monoclonal antibody-producing cell line and its parental CHO-K1 host, were characterized using high throughput chromosome conformation capture and RNAseq to analyze changes in the epigenome that occur during cell line development and associated changes in system-wide gene expression. In total, 10.9% of the CHO genome contained transcriptionally permissive three-dimensional chromatin structures with enhanced genetic and epigenetic stability relative to the rest of the genome. These safe harbor regions also showed good agreement with published CHO epigenome data, demonstrating that this method was suitable for finding genomic regions with epigenetic markers of active and stable gene expression. These regions significantly reduce the genomic search space when looking for CHO hotspots with widespread applicability and can guide future studies with the goal of maximizing the potential of SSI technology in industrial production CHO cell lines.
Collapse
Affiliation(s)
- William Hilliard
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
49
|
Dickens JE, Chen R, Bareford L, Talreja G, Kolwyck D. Colorimetric and Physico-Chemical Property Relationships of Chemically Defined Media Powders Used in the Production of Biotherapeutics. J Pharm Sci 2020; 110:1635-1642. [PMID: 33096139 DOI: 10.1016/j.xphs.2020.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Growth of mammalian cells in the production of biotherapeutics often require the benefits of chemically defined media (CDM). Storage, handling and stability advantages of CDM powders govern the preponderance of their use across the industry. Physico-chemical property lot-to-lot variation of these multicomponent powders, however, continues to be a challenge. Process imposed degradation of amino acids and vitamins, for example, can influence cell density, specific titer, and the quality profile of the molecule expressed due to the lack of process understanding and suitable mitigation controls. Such degradation can materialize in either their manufacture or in downstream media dissolution steps. Colorimetry, in lieu of visual appearance, can be an effective surveillance method for the direct assessment of CDM quality as color change is indicative of chemical-physical variations. This work describes a series of studies aimed to establish relationships between quantitative color change and physico-chemical attribute variation of glucose-free and glucose-based powders. The results illustrate color change is indicative of amino acid glycation, vitamin degradation and particle size shifts. These relationships enable a colorimetric control strategy for the sensitive and rapid detection of relevant CDM variation to drive additional targeted assessments to improve the productivity and robustness of cell culture processes.
Collapse
Affiliation(s)
| | - Rachel Chen
- Biogen 5000 Davis Dr. Morrisville, NC 27709, USA
| | | | | | - Dave Kolwyck
- Biogen 5000 Davis Dr. Morrisville, NC 27709, USA
| |
Collapse
|
50
|
Establishment of fast-growing serum-free immortalised cells from Chinese hamster lung tissues for biopharmaceutical production. Sci Rep 2020; 10:17612. [PMID: 33077772 PMCID: PMC7572389 DOI: 10.1038/s41598-020-74735-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Chinese hamster (Cricetulus griseus) ovary-derived Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the industrial production of recombinant therapeutics because of their ability to fold, assemble, and perform post-translational modifications, such as glycosylation, on proteins. They are also valuable for their ability to grow in serum-free suspension cultures. In this study, we established a cell line derived from lung tissue of Chinese hamsters, named Chinese hamster lung (CHL)-YN cells. The biosafety of CHL-YN cells was confirmed by in vitro sterility testing, mycoplasma detection, and reverse transcriptase assays. One of the key characteristics of CHL-YN cells was their doubling time of 8.1 h in chemically defined culture medium; thus, they proliferate much faster than conventional CHO cells and general mammalian cells. Transgenes could be introduced into CHL-YN cells with high efficiency. Finally, between 50% to > 100% of the amount of glycosylated immunoglobulin G (IgG)1 produced by CHO-K1 cells was produced by CHL-YN cells over a shorter period of time. In summary, fast-growing CHL-YN cells are a unique cell line for producing recombinant proteins.
Collapse
|