1
|
Park S, Cho NJ. Lipid Membrane Interface Viewpoint: From Viral Entry to Antiviral and Vaccine Development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1-11. [PMID: 36576966 DOI: 10.1021/acs.langmuir.2c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane-enveloped viruses are responsible for most viral pandemics in history, and more effort is needed to advance broadly applicable countermeasures to mitigate the impact of future outbreaks. In this Perspective, we discuss how biosensing techniques associated with lipid model membrane platforms are contributing to improving our mechanistic knowledge of membrane fusion and destabilization that is closely linked to viral entry as well as vaccine and antiviral drug development. A key benefit of these platforms is the simplicity of interpreting the results which can be complemented by other techniques to decipher more complicated biological observations and evaluate the biophysical functionalities that can be correlated to biological activities. Then, we introduce exciting application examples of membrane-targeting antivirals that have been refined over time and will continue to improve based on biophysical insights. Two ways to abrogate the function of viral membranes are introduced here: (1) selective disruption of the viral membrane structure and (2) alteration of the membrane component. While both methods are suitable for broadly useful antivirals, the latter also has the potential to produce an inactivated vaccine. Collectively, we emphasize how biosensing tools based on membrane interfacial science can provide valuable information that could be translated into biomedicines and improve their selectivity and performance.
Collapse
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
2
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
3
|
Shin N, Lee SH, Cho Y, Park TH, Hong S. Bioelectronic Skin Based on Nociceptive Ion Channel for Human-Like Perception of Cold Pains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001469. [PMID: 32578398 DOI: 10.1002/smll.202001469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
A bioelectronic skin device based on nociceptive ion channels in nanovesicles is developed for the detection of chemical cold-pain stimuli and cold environments just like human somesthetic sensory systems. The human transient receptor potential ankyrin 1 (hTRPA1) is involved in transmission and modulation of cold-pain sensations. In the bioelectronic skin, the nanovesicles containing the hTRPA1 nociceptive ion channel protein reacts to cold-pain stimuli, and it is electrically monitored through carbon nanotube transistor devices based on floating electrodes. The bioelectronic skin devices sensitively detect chemical cold-pain stimuli like cinnamaldehyde at 10 fm, and selectively discriminate cinnamaldehyde among other chemical stimuli. Further, the bioelectronic skin is used to evaluate the effect of cold environments on the response of the hTRPA1, finding that the nociceptive ion channel responds more sensitively to cinnamaldehyde at lower temperatures than at higher temperatures. The bioelectronic skin device could be useful for a basic study on somesthetic systems such as cold-pain sensation, and should be used for versatile applications such as screening of foods and drugs.
Collapse
Affiliation(s)
- Narae Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seung Hwan Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
4
|
Yokota S, Kuramochi H, Okubo K, Iwaya A, Tsuchiya S, Ichiki T. Extracellular vesicles nanoarray technology: Immobilization of individual extracellular vesicles on nanopatterned polyethylene glycol-lipid conjugate brushes. PLoS One 2019; 14:e0224091. [PMID: 31648253 PMCID: PMC6812765 DOI: 10.1371/journal.pone.0224091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Arraying individual extracellular vesicles (EVs) on a chip is expected one of the promising approaches for investigating their inherent properties. In this study, we immobilized individual EVs on a surface using a nanopatterned tethering chip-based versatile platform. A microfluidic device was used to ensure soft, reproducible exposure of the EVs over the whole chip surface. The device is incorporated with a high-density nanoarray chip patterned with 200-nm diameter nanospots composed of polyethylene glycol (PEG)-lipid conjugate brushes. We present a procedure adopted for fabricating high-density PEG-lipid modified nanospots (200 nmϕ, 5.0 × 105 spots/mm2 in 2 × 2 mm2 area). This procedure involves nanopatterning using electron beam lithography, followed by multistep selective chemical modification. Aqueous treatment of a silane coupling agent, used as a linker between PEG-lipid molecules and the silicon surface, was the key step that enabled surface modification using a nanopatterned resist film as a mask. The nanoarray chip was removed from the device for subsequent measurements such as atomic force microscopy (AFM). We developed a prototype device and individually immobilized EVs derived from different cell lines (Sk-Br-3 and HEK293) on tethering nanospots. We characterized EV's morphology using AFM and showed the possibility of evaluating the deformability of EVs using the aspect ratio as an indicator.
Collapse
Affiliation(s)
- Shusuke Yokota
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiromi Kuramochi
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kyohei Okubo
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Akiko Iwaya
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | | | - Takanori Ichiki
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
5
|
Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis. Colloids Surf B Biointerfaces 2019; 182:110338. [DOI: 10.1016/j.colsurfb.2019.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 02/05/2023]
|
6
|
Park S, Jackman JA, Xu X, Weiss PS, Cho NJ. Micropatterned Viral Membrane Clusters for Antiviral Drug Evaluation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13984-13990. [PMID: 30855935 DOI: 10.1021/acsami.9b01724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The function of biological nanoparticles, such as membrane-enveloped viral particles, is often enhanced when the particles form higher-order supramolecular assemblies. While there is intense interest in developing biomimetic platforms that recapitulate these collective properties, existing platforms are limited to mimicking individual virus particles. Here, we present a micropatterning strategy to print linker molecules selectively onto bioinert surfaces, thereby enabling controlled tethering of biomimetic viral particle clusters across defined geometric patterns. By controlling the linker concentration, it is possible to tune the density of tethered particles within clusters while enhancing the signal intensity of encapsulated fluorescent markers. Time-resolved tracking of pore formation and membrane lysis revealed that an antiviral peptide can disturb clusters of the membrane-enclosed particles akin to the targeting of individual viral particles. This platform is broadly useful for evaluating the performance of membrane-active antiviral drug candidates, whereas the micropatterning strategy can be applied to a wide range of biological nanoparticles and other macromolecular entities.
Collapse
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553 , Singapore
| | | | - Xiaobin Xu
- California NanoSystems Institute, Department of Chemistry and Biochemistry, and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
- School of Materials Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
7
|
Biochemical studies of membrane fusion at the single-particle level. Prog Lipid Res 2019; 73:92-100. [PMID: 30611882 DOI: 10.1016/j.plipres.2019.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/21/2023]
Abstract
To study membrane fusion mediated by synaptic proteins, proteoliposomes have been widely used for in vitro ensemble measurements with limited insights into the fusion mechanism. Single-particle techniques have proven to be powerful in overcoming the limitations of traditional ensemble methods. Here, we summarize current single-particle methods in biophysical and biochemical studies of fusion mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and other synaptic proteins, together with their advantages and limitations.
Collapse
|
8
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
9
|
Diederichs T, Nguyen QH, Urban M, Tampé R, Tornow M. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip. NANO LETTERS 2018; 18:3901-3910. [PMID: 29741381 DOI: 10.1021/acs.nanolett.8b01252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10-3 s-1. Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.
Collapse
Affiliation(s)
- Tim Diederichs
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany
| | - Quoc Hung Nguyen
- Molecular Electronics , Technical University of Munich , Theresienstrasse 90 , 80333 Munich , Germany
| | - Michael Urban
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany
- Cluster of Excellence Frankfurt (CEF) Macromolecular Complexes ; Goethe University Frankfurt , Max-von-Laue-Strasse 9 , 60438 Frankfurt/M. , Germany
| | - Marc Tornow
- Molecular Electronics , Technical University of Munich , Theresienstrasse 90 , 80333 Munich , Germany
- Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT) , Hansastrasse 27d , 80686 Munich , Germany
- Center for NanoScience (CeNS) , Ludwig-Maximilians-University , Geschwister-Scholl Platz 1 , 80539 Munich , Germany
| |
Collapse
|
10
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
11
|
Vafaei S, Tabaei SR, Guneta V, Choong C, Cho NJ. Hybrid Biomimetic Interfaces Integrating Supported Lipid Bilayers with Decellularized Extracellular Matrix Components. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3507-3516. [PMID: 29489371 DOI: 10.1021/acs.langmuir.7b03265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper describes the functionalization of solid supported phospholipid bilayer with decellularized extracellular matrix (dECM) components, toward the development of biomimetic platforms that more closely mimic the cell surface environment. The dECM was obtained through a combination of chemical and enzymatic treatments of mouse adipose tissue that contains collagen, fibronectin, and glycosaminoglycans (GAGs). Using amine coupling chemistry, the dECM components were attached covalently to the surface of a supported lipid bilayer containing phospholipids with reactive carboxylic acid headgroups. The bilayer formation and the kinetics of subsequent dECM conjugation were monitored by quartz crystal microbalance with dissipation (QCM-D). Fluorescence recovery after photobleaching (FRAP) confirmed the fluidity of the membrane after functionalization with dECM. The resulting hybrid biomimetic interface supports the attachment and survival of the human hepatocyte Huh 7.5 and maintains the representative hepatocellular function. Importantly, the platform is suitable for monitoring the lateral organization and clustering of cell-binding ligands and growth factor receptors in the presence of the rich biochemical profile of tissue-derived ECM components.
Collapse
Affiliation(s)
- Setareh Vafaei
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Seyed R Tabaei
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Vipra Guneta
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Cleo Choong
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- KK Research Centre , KK Women's and Children's Hospital , 100 Bukit Timah Road , 229899 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| |
Collapse
|
12
|
Sugawara M. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing. CHEM REC 2017; 18:433-444. [PMID: 29135061 DOI: 10.1002/tcr.201700046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022]
Abstract
Artificial and natural lipid membranes that elicit transmembrane signaling is are useful as a platform for channel-based biosensing. In this account we summarize our research on the design of transmembrane signaling associated with lipid bilayer membranes containing nanopore-forming compounds. Channel-forming compounds, such as receptor ion-channels, channel-forming peptides and synthetic channels, are embedded in planar and spherical bilayer lipid membranes to develop highly sensitive and selective biosensing methods for a variety of analytes. The membrane-bound receptor approach is useful for introducing receptor sites on both planar and spherical bilayer lipid membranes. Natural receptors in biomembranes are also used for designing of biosensing methods.
Collapse
Affiliation(s)
- Masao Sugawara
- Department of chemistry, College of humanities and sciences, Nihon University, Tokyo, Japan
| |
Collapse
|
13
|
Shaw SK, Liu W, Brennan SP, de Lourdes Betancourt-Mendiola M, Smith BD. Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep-Red Fluorescence Reporter Groups. Chemistry 2017; 23:12646-12654. [PMID: 28736857 DOI: 10.1002/chem.201702649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/28/2022]
Abstract
A new self-assembly method is used to rapidly functionalize the surface of liposomes without perturbing the membrane integrity or causing leakage of the aqueous contents. The key molecule is a cholesterol-squaraine-PEG conjugate with three important structural elements: a cholesterol membrane anchor, a fluorescent squaraine docking station that allows rapid and high-affinity macrocycle threading, and a long PEG-2000 chain to provide steric shielding of the decorated liposome. The two-step method involves spontaneous insertion of the conjugate into the outer leaflet of pre-formed liposomes followed by squaraine threading with a tetralactam macrocycle that has appended targeting ligands. A macrocycle with six carboxylates permitted immobilization of intact fluorescent liposomes on the surface of cationic polymer beads, whereas a macrocycle with six zinc(II)-dipicolylamine units enabled selective targeting of anionic membranes, including agglutination of bacteria in the presence of human cells.
Collapse
Affiliation(s)
- Scott K Shaw
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | - Wenqi Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | - Seamus P Brennan
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| | | | - Bradley D Smith
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN., 46545, USA
| |
Collapse
|
14
|
Ferhan AR, Ma GJ, Jackman JA, Sut TN, Park JH, Cho NJ. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1484. [PMID: 28644423 PMCID: PMC5539686 DOI: 10.3390/s17071484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022]
Abstract
The integration of supported lipid membranes with surface-based nanoplasmonic arrays provides a powerful sensing approach to investigate biointerfacial phenomena at membrane interfaces. While a growing number of lipid vesicles, protein, and nucleic acid systems have been explored with nanoplasmonic sensors, there has been only very limited investigation of the interactions between solution-phase nanomaterials and supported lipid membranes. Herein, we established a surface-based localized surface plasmon resonance (LSPR) sensing platform for probing the interaction of dielectric nanoparticles with supported lipid bilayer (SLB)-coated, plasmonic nanodisk arrays. A key emphasis was placed on controlling membrane functionality by tuning the membrane surface charge vis-à-vis lipid composition. The optical sensing properties of the bare and SLB-coated sensor surfaces were quantitatively compared, and provided an experimental approach to evaluate nanoparticle-membrane interactions across different SLB platforms. While the interaction of negatively-charged silica nanoparticles (SiNPs) with a zwitterionic SLB resulted in monotonic adsorption, a stronger interaction with a positively-charged SLB resulted in adsorption and lipid transfer from the SLB to the SiNP surface, in turn influencing the LSPR measurement responses based on the changing spatial proximity of transferred lipids relative to the sensor surface. Precoating SiNPs with bovine serum albumin (BSA) suppressed lipid transfer, resulting in monotonic adsorption onto both zwitterionic and positively-charged SLBs. Collectively, our findings contribute a quantitative understanding of how supported lipid membrane coatings influence the sensing performance of nanoplasmonic arrays, and demonstrate how the high surface sensitivity of nanoplasmonic sensors is well-suited for detecting the complex interactions between nanoparticles and lipid membranes.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Tun Naw Sut
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Jae Hyeon Park
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
15
|
Zhang Y, Schmid YRF, Luginbühl S, Wang Q, Dittrich PS, Walde P. Spectrophotometric Quantification of Peroxidase with p-Phenylene-diamine for Analyzing Peroxidase-Encapsulating Lipid Vesicles. Anal Chem 2017; 89:5484-5493. [PMID: 28415842 PMCID: PMC5681863 DOI: 10.1021/acs.analchem.7b00423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A spectrophotometric assay for the determination of horseradish peroxidase (HRP) in aqueous solution with p-phenylenediamine (PPD, benzene-1,4-diamine) as electron donor substrate and hydrogen peroxide (H2O2) as oxidant was developed. The oxidation of PPD by HRP/H2O2 leads to the formation of Bandrowski's base ((3E,6E)-3,6-bis[(4-aminophenyl)imino]cyclohexa-1,4-diene-1,4-diamine), which can be quantified by following the increase in absorbance at 500 nm. The assay was applied for monitoring the activity of HRP inside ≈180 nm-sized lipid vesicles (liposomes), prepared from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and purified by size exclusion chromatography. Because of the high POPC bilayer permeability of PPD and H2O2, the HRP-catalyzed oxidation of PPD occurs inside the vesicles once PPD and H2O2 are added to the vesicle suspension. In contrast, if instead of PPD the bilayer-impermeable substrate ABTS2- (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)) is used, the oxidation of ABTS2- inside the vesicles does not occur. Therefore, using PPD and ABTS2- in separate assays allows distinguishing between vesicle-trapped HRP and HRP in the external bulk solution. In this way, the storage stability of HRP-containing POPC vesicles was investigated in terms of HRP leakage and activity of entrapped HRP. It was found that pH 7.0 suspensions of POPC vesicles (2.2 mM POPC) containing on average about 12 HRP molecules per vesicle are stable for at least 1 month without any significant HRP leakage, if stored at 4 °C. Such high stability is beneficial not only for bioanalytical applications but also for exploring the kinetic properties of vesicle-entrapped HRP through simple spectrophotometric absorption measurements with PPD as a sensitive and cheap substrate.
Collapse
Affiliation(s)
- Ya Zhang
- Polymer Chemistry Group, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
- Key Laboratory of Science and Technology of Eco-Textile, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Yannick R. F. Schmid
- Bioanalytics Group, Department of Biosystems Science and Engineering, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Sandra Luginbühl
- Polymer Chemistry Group, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Petra S. Dittrich
- Bioanalytics Group, Department of Biosystems Science and Engineering, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Peter Walde
- Polymer Chemistry Group, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
16
|
Friedrich R, Block S, Alizadehheidari M, Heider S, Fritzsche J, Esbjörner EK, Westerlund F, Bally M. A nano flow cytometer for single lipid vesicle analysis. LAB ON A CHIP 2017; 17:830-841. [PMID: 28128381 DOI: 10.1039/c6lc01302c] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a nanofluidic device for fluorescence-based detection and characterization of small lipid vesicles on a single particle basis. The device works like a nano flow cytometer where individual vesicles are visualized by fluorescence microscopy while passing through parallel nanochannels in a pressure-driven flow. An experiment requires less than 20 μl sample volume to quantify both the vesicle content and the fluorescence signals emitted by individual vesicles. We show that the device can be used to accurately count the number of fluorescent synthetic lipid vesicles down to a vesicle concentration of 170 fM. We also show that the size-distribution of the vesicles can be resolved from their fluorescence intensity distribution after calibration. We demonstrate the applicability of the assay in two different examples. In the first, we use the nanofluidic device to determine the particle concentration in a sample containing cell-derived extracellular vesicles labelled with a lipophilic dye. In the second, we demonstrate that dual-color detection can be used to probe peptide binding to synthetic lipid vesicles; we identify a positive membrane-curvature sensing behavior of an arginine enriched version of the Antennapedia homeodomain peptide penetratin. Altogether, these results illustrate the potential of this nanofluidic-based methodology for characterization and quantification of small biological vesicles and their interactors without ensemble averaging. The device is therefore likely to find use as a quantitative analytical tool in a variety of fields ranging from diagnostics to fundamental biology research. Moreover, our results have potential to facilitate further development of automated lab-on-a-chip devices for vesicle analysis.
Collapse
Affiliation(s)
- Remo Friedrich
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Stephan Block
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | | | - Susanne Heider
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden. and Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden. and Institut Curie, Centre de Recherche, CNRS, UMR168, Physico-Chimie Curie, Paris, France
| |
Collapse
|
17
|
Hu Y, Lai Y, Wang Y, Zhao M, Zhang Y, Crowe M, Tian Z, Long J, Diao J. SNARE-Reconstituted Liposomes as Controllable Zeptoliter Nanoreactors for Macromolecules. ACTA ACUST UNITED AC 2017; 1:e1600018. [DOI: 10.1002/adbi.201600018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Yachong Hu
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Ying Lai
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Minglei Zhao
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Yunxiang Zhang
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Michael Crowe
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Zhiqi Tian
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Jiajie Diao
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| |
Collapse
|
18
|
Aptamer-based self-assembled supramolecular vesicles for pH-responsive targeted drug delivery. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0351-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Sakamoto M, Shoji A, Sugawara M. Giant unilamellar vesicles containing Rhodamine 6G as a marker for immunoassay of bovine serum albumin and lipocalin-2. Anal Biochem 2016; 505:66-72. [DOI: 10.1016/j.ab.2016.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
20
|
Lowry TW, Hariri H, Prommapan P, Kusi-Appiah A, Vafai N, Bienkiewicz EA, Van Winkle DH, Stagg SM, Lenhert S. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:506-15. [PMID: 26649649 PMCID: PMC4843995 DOI: 10.1002/smll.201502398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/28/2015] [Indexed: 05/08/2023]
Abstract
The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid-protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (K D ) and kinetics (kon and koff ). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached.
Collapse
Affiliation(s)
- Troy W. Lowry
- Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA
| | - Hanaa Hariri
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Plengchart Prommapan
- Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA
| | - Aubrey Kusi-Appiah
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | - Nicholas Vafai
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | - Ewa A. Bienkiewicz
- Department of Biomedical Science, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | - David H. Van Winkle
- Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Steven Lenhert
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4370, USA
| |
Collapse
|
21
|
Lee M, Jung JW, Kim D, Ahn YJ, Hong S, Kwon HW. Discrimination of Umami Tastants Using Floating Electrode-Based Bioelectronic Tongue Mimicking Insect Taste Systems. ACS NANO 2015; 9:11728-11736. [PMID: 26563753 DOI: 10.1021/acsnano.5b03031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a floating electrode-based bioelectronic tongue mimicking insect taste systems for the detection and discrimination of umami substances. Here, carbon nanotube field-effect transistors with floating electrodes were hybridized with nanovesicles containing honeybee umami taste receptor, gustatory receptor 10 of Apis mellifera (AmGr10). This strategy enables us to discriminate between l-monosodium glutamate (MSG), best-known umami tastant, and non-umami substances with a high sensitivity and selectivity. It could also be utilized for the detection of MSG in liquid food such as chicken stock. Moreover, we demonstrated the synergism between MSG and disodium 5'-inosinate (IMP) for the umami taste using this platform. This floating electrode-based bioelectronic tongue mimicking insect taste systems can be a powerful platform for various applications such as food screening, and it also can provide valuable insights on insect taste systems.
Collapse
Affiliation(s)
- Minju Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University , Seoul 151-747, Korea
| | - Je Won Jung
- Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University , Seoul 151-921, Korea
| | - Daesan Kim
- Department of Biophysics and Chemical Biology, Seoul National University , Seoul 151-747, Korea
| | - Young-Joon Ahn
- Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University , Seoul 151-921, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University , Seoul 151-747, Korea
| | - Hyung Wook Kwon
- Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University , Seoul 151-921, Korea
| |
Collapse
|
22
|
|
23
|
Grasso L, Wyss R, Weidenauer L, Thampi A, Demurtas D, Prudent M, Lion N, Vogel H. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem 2015; 407:5425-32. [PMID: 25925862 PMCID: PMC4477949 DOI: 10.1007/s00216-015-8711-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 01/29/2023]
Abstract
We report on a generic method to detect and identify the molecular profile of exosomes either derived from cultured cell lines or isolated from biofluids. Exosomes are nanovesicles shed by cells into their microenvironment and carry the molecular identity of their mother cells. These vesicles are actively involved in intercellular communication under physiological conditions and ultimately in the spread of various diseases such as cancer. As they are accessible in most biofluids (e.g., blood, urine, or saliva), these biological entities are promising tools for cancer diagnostics, offering a non-invasive and remote access to the molecular state of the disease. The composition of exosomes derived from cancer cells depends on the sort and state of the tumor, requiring a screening of multiple antigens to fully characterize the disease. Here, we exploited the capacity of surface plasmon resonance biosensing to detect simultaneously multiple exosomal and cancer biomarkers on exosomes derived from breast cancer cells. We developed an immunosensor surface which provides efficient and specific capture of exosomes, together with their identification through their distinct molecular profiles. The successful analysis of blood samples demonstrated the suitability of our bioanalytical procedure for clinical use.
Collapse
Affiliation(s)
- Luigino Grasso
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Romain Wyss
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Lorenz Weidenauer
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Ashwin Thampi
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Davide Demurtas
- />Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Michel Prudent
- />Transfusion Interrégionale CRS, Laboratoire de Recherche sur les Produits Sanguins, Rte de la Corniche 2, 1066 Epalinges, Switzerland
| | - Niels Lion
- />Transfusion Interrégionale CRS, Laboratoire de Recherche sur les Produits Sanguins, Rte de la Corniche 2, 1066 Epalinges, Switzerland
| | - Horst Vogel
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Kristensen K, Ehrlich N, Henriksen JR, Andresen TL. Single-vesicle detection and analysis of peptide-induced membrane permeabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2472-2483. [PMID: 25664684 DOI: 10.1021/la504752u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The capability of membrane-active peptides to disrupt phospholipid membranes is often studied by investigating peptide-induced leakage of quenched fluorescent molecules from large unilamellar lipid vesicles. In this article, we explore two fluorescence microscopy-based single-vesicle detection methods as alternatives to the quenching-based assays for studying peptide-induced leakage from large unilamellar lipid vesicles. Specifically, we use fluorescence correlation spectroscopy (FCS) to study the leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles dispersed in aqueous solution, and we use confocal imaging of surface-immobilized large unilamellar lipid vesicles to investigate whether there are heterogeneities in leakage between individual vesicles. Of importance, we design an experimental protocol that allows us to quantitatively correlate the results of the two methods; accordingly, it can be assumed that the two methods provide complementary information about the same leakage process. We use the two methods to investigate the membrane-permeabilizing activities of three well-studied cationic membrane-active peptides: mastoparan X, melittin, and magainin 2. The FCS results show that leakage induced by magainin 2 is less dependent on the size of the encapsulated fluorescent molecules than leakage induced by mastoparan X and melittin. The confocal imaging results show that all three peptides induce leakage by a heterogeneous process in which one portion of the vesicles are completely emptied of their contents but another portion of the vesicles are only partially emptied. These pieces of information regarding leakage induced by mastoparan X, melittin, and magainin 2 could not readily have been obtained by the established assays for studying peptide-induced leakage from lipid vesicles.
Collapse
Affiliation(s)
- Kasper Kristensen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark , 2800 Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
25
|
Soft pinning of liquid domains on topographical hemispherical caps. Chem Phys Lipids 2015; 185:78-87. [DOI: 10.1016/j.chemphyslip.2014.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/01/2014] [Accepted: 07/06/2014] [Indexed: 11/18/2022]
|
26
|
Song HS, Jin HJ, Ahn SR, Kim D, Lee SH, Kim UK, Simons CT, Hong S, Park TH. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance. ACS NANO 2014; 8:9781-9789. [PMID: 25126667 DOI: 10.1021/nn502926x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The sense of taste helps humans to obtain information and form a picture of the world by recognizing chemicals in their environments. Over the past decade, large advances have been made in understanding the mechanisms of taste detection and mimicking its capability using artificial sensor devices. However, the detection capability of previous artificial taste sensors has been far inferior to that of animal tongues, in terms of its sensitivity and selectivity. Herein, we developed a bioelectronic tongue using heterodimeric human sweet taste receptors for the detection and discrimination of sweeteners with human-like performance, where single-walled carbon nanotube field-effect transistors were functionalized with nanovesicles containing human sweet taste receptors and used to detect the binding of sweeteners to the taste receptors. The receptors are heterodimeric G-protein-coupled receptors (GPCRs) composed of human taste receptor type 1 member 2 (hTAS1R2) and human taste receptor type 1 member 3 (hTAS1R3), which have multiple binding sites and allow a human tongue-like broad selectivity for the detection of sweeteners. This nanovesicle-based bioelectronic tongue can be a powerful tool for the detection of sweeteners as an alternative to labor-intensive and time-consuming cell-based assays and the sensory evaluation panels used in the food and beverage industry. Furthermore, this study also allows the artificial sensor to exam the functional activity of dimeric GPCRs.
Collapse
Affiliation(s)
- Hyun Seok Song
- School of Chemical and Biological Engineering, Bio-MAX Institute, ‡Department of Physics and Astronomy, and Institute of Applied Physics, and §Department of Biophysics and Chemical Biology, Seoul National University , Seoul, 151-747, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gleisner M, Mey I, Barbot M, Dreker C, Meinecke M, Steinem C. Driving a planar model system into the 3(rd) dimension: generation and control of curved pore-spanning membrane arrays. SOFT MATTER 2014; 10:6228-6236. [PMID: 25012509 DOI: 10.1039/c4sm00702f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The generation of a regular array of micrometre-sized pore-spanning membranes that protrude from the underlying surface as a function of osmotic pressure is reported. Giant unilamellar vesicles are spread onto non-functionalized Si/SiO(2) substrates containing a highly ordered array of cavities with pore diameters of 850 nm, an interpore distance of 4 μm and a pore depth of 10 μm. The shape of the resulting pore-spanning membranes is controlled by applying an osmotic pressure difference between the bulk solution and the femtoliter-sized cavity underneath each membrane. By applying Young-Laplace's law assuming moderate lateral membrane tensions, the response of the membranes to the osmotic pressure difference can be theoretically well described. Protruded pore-spanning membranes containing the receptor lipid PIP(2) specifically bind the ENTH domain of epsin resulting in an enlargement of the protrusions and disappearance as a result of ENTH-domain induced defects in the membranes. These results are discussed in the context of an ENTH-domain induced reduction of lateral membrane tension and formation of defects as a result of helix insertion of the protein in the bilayer.
Collapse
Affiliation(s)
- Martin Gleisner
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Dabkowska AP, Niman CS, Piret G, Persson H, Wacklin HP, Linke H, Prinz CN, Nylander T. Fluid and highly curved model membranes on vertical nanowire arrays. NANO LETTERS 2014; 14:4286-92. [PMID: 24971634 DOI: 10.1021/nl500926y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sensing and manipulating living cells using vertical nanowire devices requires a complete understanding of cell behavior on these substrates. Changes in cell function and phenotype are often triggered by events taking place at the plasma membrane, the properties of which are influenced by local curvature. The nanowire topography can therefore be expected to greatly affect the cell membrane, emphasizing the importance of studying membranes on vertical nanowire arrays. Here, we used supported phospholipid bilayers as a model for biomembranes. We demonstrate the formation of fluid supported bilayers on vertical nanowire forests using self-assembly from vesicles in solution. The bilayers were found to follow the contours of the nanowires to form continuous and locally highly curved model membranes. Distinct from standard flat supported lipid bilayers, the high aspect ratio of the nanowires results in a large bilayer surface available for the immobilization and study of biomolecules. We used these bilayers to bind a membrane-anchored protein as well as tethered vesicles on the nanowire substrate. The nanowire-bilayer platform shown here can be expanded from fundamental studies of lipid membranes on controlled curvature substrates to the development of innovative membrane-based nanosensors.
Collapse
Affiliation(s)
- Aleksandra P Dabkowska
- Division of Physical Chemistry, Department of Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nanovesicle-based platform for the electrophysiological monitoring of aquaporin-4 and the real-time detection of its antibody. Biosens Bioelectron 2014; 61:140-6. [PMID: 24874657 DOI: 10.1016/j.bios.2014.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/19/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022]
Abstract
Aquaporin-4 (AQP4) water channel protein transports water molecules across cell membranes bidirectionally and involves in a neurological disorder, neuromyelitis optica (NMO) caused by anti-AQP4 antibodies. Here, we developed a platform based on nanovesicle-carbon nanotube hybrid nanostructures for the real-time detection of anti-AQP4 antibodies and the electrophysiological monitoring of AQP4 activities. Using the hybrid device, we could detect anti-AQP4 antibodies with a high sensitivity and estimate the binding constants under different osmotic conditions. The results show AQP4 had a better affinity to anti-AQP4 antibodies under hyper-osmotic conditions than normal conditions. Furthermore, our device can be utilized to study the real-time cellular responses related with AQP4 such as those to different osmotic stresses. This nanovesicle-based platform can be a simple but versatile tool for basic research about AQP4 and related biomedical applications such as disease diagnostics.
Collapse
|
30
|
Mihut AM, Dabkowska AP, Crassous JJ, Schurtenberger P, Nylander T. Tunable adsorption of soft colloids on model biomembranes. ACS NANO 2013; 7:10752-10763. [PMID: 24191704 DOI: 10.1021/nn403892f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A simple procedure is developed to probe in situ the association between lipid bilayers and colloidal particles. Here, a one-step method is applied to generate giant unilamellar 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles (GUVs) by application of an alternating electric field directly in the presence of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgels. We demonstrate that the soft PNIPAM microgel particles act as switchable stabilizers for lipid membranes. The change of the particle conformation from the swollen to the collapsed state enables the reversible control of the microgel adsorption as a function of temperature. At 20 °C, the swollen and hydrophilic soft microgel particles adsorb evenly and densely pack in 2D hexagonal arrays at the DOPC GUV surfaces. In contrast, at 40 °C, that is, above the volume phase transition temperature (TVPT = 32 °C) of the PNIPAM microgels, the collapsed and more hydrophobic particles partially desorb and self-organize into domains at the GUV/GUV interfaces. This study shows that thermoresponsive PNIPAM microgels can be used to increase and control the stability of lipid vesicles where the softness and deformability of these types of particles play a major role. The observed self-assembly, where the organization and position of the particles on the GUV surface can be controlled "on demand", opens new routes for the design of nanostructured materials.
Collapse
Affiliation(s)
- Adriana M Mihut
- Physical Chemistry, Department of Chemistry, Lund University , 22100 Lund, Sweden
| | | | | | | | | |
Collapse
|
31
|
Kang YJ, Wostein HS, Majd S. A simple and versatile method for the formation of arrays of giant vesicles with controlled size and composition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6834-8. [PMID: 24133042 DOI: 10.1002/adma.201303290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/14/2013] [Indexed: 05/15/2023]
Abstract
A simple and versatile method for the Formation of Arrays of Giant Vesicles with Controlled Size and Composition. The ability of this technique to generate arrays of giant liposomes from a wide range of membrane lipids and protein compositions is demonstrated. The resulting vesicles are utilized for studying protein activity, lipid-protein interactions, and protein-protein interactions.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Bioengineering, The Pennsylvania State University Hallowell Building, University Park, PA, 16802, USA
| | | | | |
Collapse
|
32
|
Christensen AL, Lohr C, Christensen SM, Stamou D. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience. LAB ON A CHIP 2013; 13:3613-3625. [PMID: 23856986 DOI: 10.1039/c3lc50492a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the major bottlenecks in the development of biochips is maintaining the structure and function of biomolecules when interfacing them with hard matter (glass, plastics, metals, etc.), a challenge that is exacerbated during miniaturization that inevitably increases the interface to volume ratio of these devices. Biochips based on immobilized vesicles circumvent this problem by encapsulating biomolecules in the protective environment of a lipid bilayer, thus minimizing interactions with hard surfaces. Here we review the development of biochips based on arrays of single nanoscale vesicles, their fabrication via controlled self-assembly, and their characterization using fluorescence microscopy. We also highlight their applications in selected fields such as nanofluidics and single molecule bioscience. Despite their great potential for improved biocompatibility, extreme miniaturization and high throughput, single vesicle biochips are still a niche technology that has yet to establish its commercial relevance.
Collapse
Affiliation(s)
- Andreas L Christensen
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
33
|
Grasso L, Wyss R, Piguet J, Werner M, Hassaïne G, Hovius R, Vogel H. Downscaling the analysis of complex transmembrane signaling cascades to closed attoliter volumes. PLoS One 2013; 8:e70929. [PMID: 23940670 PMCID: PMC3733713 DOI: 10.1371/journal.pone.0070929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Cellular signaling is classically investigated by measuring optical or electrical properties of single or populations of living cells. Here we show that ligand binding to cell surface receptors and subsequent activation of signaling cascades can be monitored in single, (sub-)micrometer sized native vesicles with single-molecule sensitivity. The vesicles are derived from live mammalian cells using chemicals or optical tweezers. They comprise parts of a cell's plasma membrane and cytosol and represent the smallest autonomous containers performing cellular signaling reactions thus functioning like minimized cells. Using fluorescence microscopies, we measured in individual vesicles the different steps of G-protein-coupled receptor mediated signaling like ligand binding to receptors, subsequent G-protein activation and finally arrestin translocation indicating receptor deactivation. Observing cellular signaling reactions in individual vesicles opens the door for downscaling bioanalysis of cellular functions to the attoliter range, multiplexing single cell analysis, and investigating receptor mediated signaling in multiarray format.
Collapse
Affiliation(s)
- Luigino Grasso
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Romain Wyss
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Piguet
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michael Werner
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ghérici Hassaïne
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ruud Hovius
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Horst Vogel
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
34
|
Bally M, Graule M, Parra F, Larson G, Höök F. A virus biosensor with single virus-particle sensitivity based on fluorescent vesicle labels and equilibrium fluctuation analysis. Biointerphases 2013; 8:4. [PMID: 24706118 DOI: 10.1186/1559-4106-8-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/19/2012] [Indexed: 11/10/2022] Open
Abstract
Biosensors allowing for the rapid and sensitive detection of viral pathogens in environmental or clinical samples are urgently needed to prevent disease outbreaks and spreading. We present a bioanalytical assay for the detection of whole viral particles with single virus sensitivity. Specifically, we focus on the detection of human norovirus, a highly infectious virus causing gastroenteritis. In our assay configuration, virus-like particles are captured onto a supported lipid bilayer containing a virus-specific glycolipid and detected after recognition by a glycolipid-containing fluorescent vesicle. Read-out is performed after illumination of the vesicle labels by total internal reflection fluorescence microscopy. This allows for visualization of individual vesicles and for recording of their binding kinetics under equilibrium conditions (equilibrium fluctuation analysis), as demonstrated previously. In this work we extend the concept and demonstrate that this simple assay setup can be used as a bioanalytical assay for the detection of virus particles at a limit of detection of 16 fM. Furthermore, we demonstrate how the analysis of the single vesicle-virus-like particle interaction dynamics can contribute to increase the accuracy and sensitivity of the assay by discriminating specific from non-specific binding events. This method is suggested to be generally applicable, provided that these events display different interaction kinetics.
Collapse
Affiliation(s)
- Marta Bally
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, Göteborg, SE-412 96, Sweden,
| | | | | | | | | |
Collapse
|
35
|
Joo C, Fareh M, Kim VN. Bringing single-molecule spectroscopy to macromolecular protein complexes. Trends Biochem Sci 2012. [PMID: 23200186 DOI: 10.1016/j.tibs.2012.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Single-molecule fluorescence spectroscopy offers real-time, nanometer-resolution information. Over the past two decades, this emerging single-molecule technique has been rapidly adopted to investigate the structural dynamics and biological functions of proteins. Despite this remarkable achievement, single-molecule fluorescence techniques must be extended to macromolecular protein complexes that are physiologically more relevant for functional studies. In this review, we present recent major breakthroughs for investigating protein complexes within cell extracts using single-molecule fluorescence. We outline the challenges, future prospects and potential applications of these new single-molecule fluorescence techniques in biological and clinical research.
Collapse
Affiliation(s)
- Chirlmin Joo
- Kavli Institute of NanoScience, Department of BioNanoScience, Delft University of Technology, 2628CJ, Delft, The Netherlands.
| | | | | |
Collapse
|
36
|
Tabaei SR, Rabe M, Zhdanov VP, Cho NJ, Höök F. Single vesicle analysis reveals nanoscale membrane curvature selective pore formation in lipid membranes by an antiviral α-helical peptide. NANO LETTERS 2012; 12:5719-5725. [PMID: 23092308 DOI: 10.1021/nl3029637] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using tethered sub-100 nm lipid vesicles that mimic enveloped viruses with nanoscale membrane curvature, we have in this work designed a total internal reflection fluorescence microscopy-based single vesicle assay to investigate how an antiviral amphipathic α-helical (AH) peptide interacts with lipid membranes to induce membrane curvature-dependent pore formation and membrane destabilization. Based on a combination of statistics from single vesicle imaging, binding kinetics data, and theoretical analysis, we propose a mechanistic model that is consistent with the experimentally observed peptide association and pore formation kinetics at medically relevant peptide concentrations (10 nM to 1 μM) and unusually low peptide-to-lipid (P/L) ratio (~1/1000). Importantly, the preference of the AH peptide to selectively rupture virions with sub-100 nm diameters appears to be related to membrane strain-dependent pore formation rather than to previously observed nanoscale membrane curvature facilitated binding of AH peptides. Compared to other known proteins and peptides, the combination of low effective P/L ratio and high specificity for nm-sized membrane curvature lends this particular AH peptide great potential to serve as a framework for developing a highly specific and potent antiviral agent for prophylactic and therapeutic applications while avoiding toxic side effects against host cell membranes.
Collapse
Affiliation(s)
- Seyed R Tabaei
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
37
|
Voskuhl J, Wendeln C, Versluis F, Fritz EC, Roling O, Zope H, Schulz C, Rinnen S, Arlinghaus HF, Ravoo BJ, Kros A. Immobilisierung von Liposomen und Vesikeln auf strukturierten Oberflächen mithilfe eines Coiled-Coil-Peptidbindungsmotivs. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Voskuhl J, Wendeln C, Versluis F, Fritz EC, Roling O, Zope H, Schulz C, Rinnen S, Arlinghaus HF, Ravoo BJ, Kros A. Immobilization of Liposomes and Vesicles on Patterned Surfaces by a Peptide Coiled-Coil Binding Motif. Angew Chem Int Ed Engl 2012; 51:12616-20. [DOI: 10.1002/anie.201204836] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 11/10/2022]
|
39
|
Castell OK, Berridge J, Wallace MI. Quantification of Membrane Protein Inhibition by Optical Ion Flux in a Droplet Interface Bilayer Array. Angew Chem Int Ed Engl 2012; 51:3134-8. [DOI: 10.1002/anie.201107343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/24/2012] [Indexed: 01/01/2023]
|
40
|
Castell OK, Berridge J, Wallace MI. Quantification of Membrane Protein Inhibition by Optical Ion Flux in a Droplet Interface Bilayer Array. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Ehrlich N, Christensen AL, Stamou D. Fluorescence Anisotropy Based Single Liposome Assay to Measure Molecule–Membrane Interactions. Anal Chem 2011; 83:8169-76. [DOI: 10.1021/ac2017234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nicky Ehrlich
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, ‡Nano-Science Center, and §Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andreas L. Christensen
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, ‡Nano-Science Center, and §Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios Stamou
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, ‡Nano-Science Center, and §Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|