1
|
Pauss SN, Bates EA, Martinez GJ, Bates ZT, Kipp ZA, Gipson CD, Hinds TD. Steroid receptors and coregulators: Dissemination of sex differences and emerging technologies. J Biol Chem 2025; 301:108363. [PMID: 40023399 PMCID: PMC11986243 DOI: 10.1016/j.jbc.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Steroid receptors are ligand-induced transcription factors that have broad functions among all living animal species, ranging from control of sex differences, body weight, stress responses, and many others. Their binding to coregulator proteins is regulated by corepressors and coactivators that interchange upon stimulation with a ligand. Coregulator proteins are an imperative and understudied aspect of steroid receptor signaling. Here, we discuss steroid receptor basics from protein domain structures that allow them to interact with coregulators and other proteins, their essential functions as transcription factors, and other elemental protein-protein interactions. We deliberate about the mechanisms that coregulators control in steroid receptor signaling, sex hormone signaling differences, sex hormone treatment in the opposite sex, and how these affect the coregulator and sex steroid receptor complexes. The steroid receptor-coregulator signaling mechanisms are essential built-in components of the mammalian DNA that mediate physiological and everyday functions. Targeting their crosstalk might be useful when imbalances lead to disease. We introduce novel technologies, such as the PamGene PamStation, which make investigating the heterogeneity of the steroid receptor-coregulator complexes and targeting their binding more feasible. This review provides an extensive understanding of steroid receptor-coregulator signaling and how these interactions are intrinsic to many physiological functions that may offer therapeutic advantages.
Collapse
Affiliation(s)
- Sally N Pauss
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Evelyn A Bates
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Genesee J Martinez
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zane T Bates
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, Ohio, USA
| | - Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Cassandra D Gipson
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
2
|
Dusek J, Mejdrová I, Dohnalová K, Smutny T, Chalupsky K, Krutakova M, Skoda J, Rashidian A, Pavkova I, Škach K, Hricová J, Chocholouskova M, Smutna L, Kamaraj R, Hroch M, Leníček M, Mičuda S, Pijnenburg D, van Beuningen R, Holčapek M, Vítek L, Ingelman-Sundberg M, Burk O, Kronenberger T, Nencka R, Pavek P. The hypolipidemic effect of MI-883, the combined CAR agonist/ PXR antagonist, in diet-induced hypercholesterolemia model. Nat Commun 2025; 16:1418. [PMID: 39915454 PMCID: PMC11802874 DOI: 10.1038/s41467-025-56642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related nuclear receptors with overlapping regulatory functions in xenobiotic clearance but distinct roles in endobiotic metabolism. Car activation has been demonstrated to ameliorate hypercholesterolemia by regulating cholesterol metabolism and bile acid elimination, whereas PXR activation is associated with hypercholesterolemia and liver steatosis. Here we show a human CAR agonist/PXR antagonist, MI-883, which effectively regulates genes related to xenobiotic metabolism and cholesterol/bile acid homeostasis by leveraging CAR and PXR interactions in gene regulation. Through comprehensive analyses utilizing lipidomics, bile acid metabolomics, and transcriptomics in humanized PXR-CAR-CYP3A4/3A7 mice fed high-fat and high-cholesterol diets, we demonstrate that MI-883 significantly reduces plasma cholesterol levels and enhances fecal bile acid excretion. This work paves the way for the development of ligands targeting multiple xenobiotic nuclear receptors. Such ligands hold the potential for precise modulation of liver metabolism, offering new therapeutic strategies for metabolic disorders.
Collapse
Affiliation(s)
- Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Dohnalová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Krutakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Azam Rashidian
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ivona Pavkova
- Military Faculty of Medicine, University of Defence, Hradec Králové, Czech Republic
| | - Kryštof Škach
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Hricová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Chocholouskova
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
| | - Lucie Smutna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Miloš Hroch
- Department of Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Mičuda
- Institute of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Michal Holčapek
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
- 4th Department of Internal Medicine, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Lin W, Chen T. Development of BODIPY FL SNS 032 as a Versatile Probe for Constitutive Androstane Receptor and Multiple Kinases. ACS Med Chem Lett 2024; 15:1987-1996. [PMID: 39563813 PMCID: PMC11571093 DOI: 10.1021/acsmedchemlett.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Human constitutive androstane receptor (hCAR) regulates xenobiotic metabolism. Its large and flexible ligand binding pocket can accommodate structurally diverse compounds. An assay for characterizing the binding of ligands to hCAR is needed but has not been reported. Here, we first discovered the promiscuous kinase inhibitor SNS-032 and its derivative THAL-SNS-032 as binders of hCAR, then developed BODIPY FL SNS 032 (14) as a high-affinity hCAR fluorescent probe (K d: 300 ± 30 nM) in a TR-FRET binding assay and used it to characterize hCAR ligands for their competitive binding activities. BODIPY FL SNS 032 also displayed high binding affinities to multiple kinases, such as hGSK3A (K d: 4.5 ± 0.2 nM), hCDK9/CycT1 (K d: 5.1 ± 0.6 nM), hMAPK15 (K d: 340 ± 20 nM), hCASK (K d: 550 ± 30 nM), and hCAMKK2 (K d: 530 ± 40 nM). BODIPY FL SNS 032 is therefore a versatile probe for hCAR and multiple kinases.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
4
|
Monrose M, Holota H, Martinez G, Damon-Soubeyrand C, Thirouard L, Martinot E, Battistelli E, de Haze A, Bravard S, Tamisier C, Caira F, Coutton C, Barbotin AL, Boursier A, Lakhal L, Beaudoin C, Volle DH. Constitutive Androstane Receptor Regulates Germ Cell Homeostasis, Sperm Quality, and Male Fertility via Akt-Foxo1 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402082. [PMID: 39318179 DOI: 10.1002/advs.202402082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Indexed: 09/26/2024]
Abstract
Male sexual function can be disrupted by exposure to exogenous compounds that cause testicular physiological alterations. The constitutive androstane receptor (Car) is a receptor for both endobiotics and xenobiotics involved in detoxification. However, its role in male fertility, particularly in regard to the reprotoxic effects of environmental pollutants, remains unclear. This study aims to investigate the role of the Car signaling pathway in male fertility. In vivo, in vitro, and pharmacological approaches are utilized in wild-type and Car-deficient mouse models. The results indicate that Car inhibition impaired male fertility due to altered sperm quality, specifically histone retention, which is correlated with an increased percentage of dying offspring in utero. The data highlighted interactions among Car, Akt, Foxo1, and histone acetylation. This study demonstrates that Car is crucial in germ cell homeostasis and male fertility. Further research on the Car signaling pathway is necessary to reveal unidentified causes of altered fertility and understand the harmful impact of environmental molecules on male fertility and offspring health.
Collapse
Affiliation(s)
- Mélusine Monrose
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Guillaume Martinez
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Christelle Damon-Soubeyrand
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Laura Thirouard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Emmanuelle Martinot
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Edwige Battistelli
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Angélique de Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Stéphanie Bravard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Christelle Tamisier
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Françoise Caira
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Charles Coutton
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Laila Lakhal
- INRAe UMR1331, ToxAlim, University of Toulouse, Toulouse, F-31027, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| |
Collapse
|
5
|
Rashidian A, Dušek J, Drastik M, Smutná L, Fritsche K, Braeuning A, Pijnenburg D, van Beuningen R, Honkakoski P, Poso A, Kronenberger T, Pavek P. Filling the Blank Space: Branched 4-Nonylphenol Isomers Are Responsible for Robust Constitutive Androstane Receptor (CAR) Activation by Nonylphenol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6913-6923. [PMID: 38593436 DOI: 10.1021/acs.est.3c10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.
Collapse
Affiliation(s)
- Azam Rashidian
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
| | - Jan Dušek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, Hradec Králové 500 03, Czech Republic
| | - Martin Drastik
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lucie Smutná
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Kristin Fritsche
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Dirk Pijnenburg
- PamGene International B.V., Wolvenhoek 10, 's-Hertogenbosch 5211HH, Netherlands
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, 's-Hertogenbosch 5211HH, Netherlands
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 72011, Finland
| | - Antti Poso
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Tübingen 72076, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen 72076, Germany
| | - Thales Kronenberger
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Tübingen 72076, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen 72076, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
6
|
Brožová ZR, Dušek J, Palša N, Maixnerová J, Kamaraj R, Smutná L, Matouš P, Braeuning A, Pávek P, Kuneš J, Gathergood N, Špulák M, Pour M, Carazo A. 2-Substituted quinazolines: Partial agonistic and antagonistic ligands of the constitutive androstane receptor (CAR). Eur J Med Chem 2023; 259:115631. [PMID: 37473690 DOI: 10.1016/j.ejmech.2023.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Following the discovery of 2-(3-methoxyphenyl)-3,4-dihydroquinazoline-4-one and 2-(3-methoxyphenyl)quinazoline-4-thione as potent, but non-specific activators of the human Constitutive Androstane Receptor (CAR, NR1I3), a series of quinazolinones substituted at the C2 phenyl ring was prepared to examine their ability to selectively modulate human CAR activity. Employing cellular and in vitro TR-FRET assays with wild-type CAR or its variant 3 (CAR3) ligand binding domains (LBD), several novel partial human CAR agonists and antagonists were identified. 2-(3-Methylphenyl) quinazolinone derivatives 7d and 8d acted as partial agonists with the recombinant CAR LBD, the former in nanomolar units (EC50 = 0.055 μM and 10.6 μM, respectively). Moreover, 7d did not activate PXR, and did not show any signs of cytotoxicity. On the other hand, 2-(4-bromophenyl)quinazoline-4-thione 7l possessed significant CAR antagonistic activity, although the compound displayed no agonistic or inverse agonistic activities. A compound possessing purely antagonistic effect was thus identified for the first time. These and related compounds may serve as a remedy in xenobiotic intoxication or, conversely, in suppression of undesirable hepatic CAR activation.
Collapse
Affiliation(s)
- Zuzana Rania Brožová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Dušek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Norbert Palša
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jana Maixnerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Smutná
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Matouš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Nicholas Gathergood
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, LN6 7DL, United Kingdom
| | - Marcel Špulák
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Mejdrová I, Dušek J, Škach K, Stefela A, Skoda J, Chalupský K, Dohnalová K, Pavkova I, Kronenberger T, Rashidian A, Smutná L, Duchoslav V, Smutny T, Pávek P, Nencka R. Discovery of Novel Human Constitutive Androstane Receptor Agonists with the Imidazo[1,2- a]pyridine Structure. J Med Chem 2023; 66:2422-2456. [PMID: 36756805 PMCID: PMC10017030 DOI: 10.1021/acs.jmedchem.2c01140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nuclear constitutive androstane receptor (CAR, NR1I3) plays significant roles in many hepatic functions, such as fatty acid oxidation, biotransformation, liver regeneration, as well as clearance of steroid hormones, cholesterol, and bilirubin. CAR has been proposed as a hypothetical target receptor for metabolic or liver disease therapy. Currently known prototype high-affinity human CAR agonists such as CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) have limited selectivity, activating the pregnane X receptor (PXR) receptor, a related receptor of the NR1I subfamily. We have discovered several derivatives of 3-(1H-1,2,3-triazol-4-yl)imidazo[1,2-a]pyridine that directly activate human CAR in nanomolar concentrations. While compound 39 regulates CAR target genes in humanized CAR mice as well as human hepatocytes, it does not activate other nuclear receptors and is nontoxic in cellular and genotoxic assays as well as in rodent toxicity studies. Our findings concerning potent human CAR agonists with in vivo activity reinforce the role of CAR as a possible therapeutic target.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Dušek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Kryštof Škach
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Alžbeta Stefela
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Josef Skoda
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Klára Dohnalová
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- 1st
Medical Faculty, Charles University, Katerinska 32, 112 08 Prague, Czech Republic
| | - Ivona Pavkova
- Faculty
of Military Health Sciences, University
of Defense, Trebeska
1575, 500 01 Hradec
Kralove, Czech Republic
| | - Thales Kronenberger
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität, 72076 Tübingen, Germany
| | - Azam Rashidian
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
| | - Lucie Smutná
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Vojtěch Duchoslav
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Tomas Smutny
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
8
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
9
|
Kobashigawa Y, Namikawa M, Sekiguchi M, Inada Y, Yamauchi S, Kimoto Y, Okazaki K, Toyota Y, Sato T, Morioka H. Expression, Purification and Characterization of CAR/NCOA-1 Tethered Protein in E. coli Using Maltose-Binding Protein Fusion Tag and Gelatinized Corn Starch. Biol Pharm Bull 2021; 44:125-130. [PMID: 33390539 DOI: 10.1248/bpb.b20-00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The constitutive active/androstane receptor (CAR) is a nuclear receptor that functions as a xenobiotic sensor, which regulates the expression of enzymes involved in drug metabolism and of efflux transporters. Evaluation of the binding properties between CAR and a drug was assumed to facilitate the prediction of drug-drug interaction, thereby contributing to drug discovery. The purpose of this study is to construct a system for the rapid evaluation of interactions between CAR and drugs. We prepared recombinant CAR protein using the Escherichia coli expression system. Since isolated CAR protein is known to be unstable, we designed a fusion protein with the CAR binding sequence of the nuclear receptor coactivator 1 (NCOA1), which was expressed as a fusion protein with maltose binding protein (MBP), and purified it by several chromatography steps. The thus-obtained CAR/NCOA1 tethered protein (CAR-NCOA1) was used to evaluate the interactions of CAR with agonists and inverse agonists by a thermal denaturation experiment using differential scanning fluorometry (DSF) in the presence and absence of drugs. An increase in the melting temperature was observed with the addition of the drugs, confirming the direct interaction between them and CAR. DSF is easy to set up and compatible with multiwell plate devices (such as 96-well plates). The use of DSF and the CAR-NCOA1 fusion protein together allows for the rapid evaluation of the interaction between a drug and CAR, and is thereby considered to be useful in drug discovery.
Collapse
Affiliation(s)
- Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Mana Namikawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Mitsuhiro Sekiguchi
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University
| | - Yuki Inada
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Soichiro Yamauchi
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yuu Kimoto
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University
| | - Kyo Okazaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yuya Toyota
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
10
|
Diethelm-Varela B, Kumar A, Lynch C, Imler GH, Deschamps JR, Li Y, Xia M, MacKerell AD, Xue F. Stereoisomerization of human constitutive androstane receptor agonist CITCO. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Wang X, Ha D, Mori H, Chen S. White button mushroom (Agaricus bisporus) disrupts androgen receptor signaling in human prostate cancer cells and patient-derived xenograft. J Nutr Biochem 2020; 89:108580. [PMID: 33388344 DOI: 10.1016/j.jnutbio.2020.108580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
White button mushroom (WBM) (Agaricus bisporus) is a potential prostate cancer (PCa) chemo-preventative and therapeutic agent. Our clinical phase І trial of WBM powder in patients with biochemically recurrent PCa indicated that WBM intake reduced the circulating levels of prostate-specific antigen (PSA). We hypothesized that WBM exerts its effects on PCa through the androgen receptor (AR) signaling axis. Therefore, we conducted a reverse translational study with androgen-dependent PCa cell lines (LNCaP and VCaP) and patient-derived-xenografts (PDX) from a prostate tumor (TM00298). In both LNCaP and VCaP cells, western blots and qRT-PCR assays indicated that WBM extract (6-30 mg/mL) suppressed DHT-induced PSA expression and cell proliferation in a dose-dependent manner. Immunofluorescence analysis of AR revealed that WBM extract interrupted the AR nuclear-cytoplasmic distribution. PSA promotor-luciferase assay suggested that WBM extract inhibited DHT-induced luciferase activity. RNA-Seq on WBM-treated LNCaP cells confirmed that WBM treatment suppressed the androgen response pathways and cell-cycle control pathways. Our PDX showed that oral intake of WBM extract (200 mg/kg/d) suppressed tumor growth and decreased PSA levels in both tumors and serum. In the present study, we also identified a conjugated linoleic acid isomer (CLA-9Z11E) as a strong AR antagonist by performing LanthaScreen TR-FRET AR Coactivator Interaction Assays. The inhibitory effect of CLA-9Z11E (IC50: 350 nM) was nearly two times stronger than the known AR antagonist, cyproterone acetate (IC50: 672 nM). The information gained from this study improves the overall understanding of how WBM may contribute to the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hitomi Mori
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
12
|
Skoda J, Dusek J, Drastik M, Stefela A, Dohnalova K, Chalupsky K, Smutny T, Micuda S, Gerbal-Chaloin S, Pavek P. Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain. Cells 2020; 9:cells9122532. [PMID: 33255185 PMCID: PMC7761063 DOI: 10.3390/cells9122532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this study, we sought to determine if diazepam is a ligand directly interacting with the CAR ligand binding domain (LBD) and if it regulates its target genes in a therapeutically relevant concentration. We used different CAR constructs in translocation and luciferase reporter assays, recombinant CAR-LBD in a TR-FRET assay, and target genes induction studied in primary human hepatocytes (PHHs), HepaRG cells, and in CAR humanized mice. We also used in silico docking and CAR-LBD mutants to characterize the interaction of diazepam and its metabolites with the CAR cavity. Diazepam and its metabolites such as nordazepam, temazepam, and oxazepam are activators of CAR+Ala in translocation and two-hybrid assays and fit the CAR cavity in docking experiments. In gene reporter assays with CAR3 and in the TR-FRET assay, only diazepam significantly interacts with CAR-LBD. Diazepam also promotes up-regulation of CYP2B6 in PHHs and in HepaRG cells. However, in humanized CAR mice, diazepam significantly induces neither CYP2B6 nor Cyp2b10 genes nor does it regulate critical genes involved in glucose and lipids metabolism and liver proliferation. Thus, we demonstrate that diazepam interacts with human CAR-LBD as a weak ligand, but it does not significantly affect expression of tested CAR target genes in CAR humanized mice.
Collapse
Affiliation(s)
- Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Klara Dohnalova
- 1 Medical Faculty, Charles University, Katerinská 32, 121 08 Prague, Czech Republic;
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Stanislav Micuda
- Department of Pharmacology, Medical Faculty in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic;
| | | | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
- Correspondence: ; Tel.: +420-495-067-334
| |
Collapse
|
13
|
Chai SC, Lin W, Li Y, Chen T. Drug discovery technologies to identify and characterize modulators of the pregnane X receptor and the constitutive androstane receptor. Drug Discov Today 2019; 24:906-915. [PMID: 30731240 PMCID: PMC6421094 DOI: 10.1016/j.drudis.2019.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are ligand-activated nuclear receptors (NRs) that are notorious for their role in drug metabolism, causing unintended drug-drug interactions and decreasing drug efficacy. They control the xenobiotic detoxification system by regulating the expression of an array of drug-metabolizing enzymes and transporters that excrete exogenous chemicals and maintain homeostasis of endogenous metabolites. Much effort has been invested in recognizing potential drugs for clinical use that can activate PXR and CAR to enhance the expression of their target genes, and in identifying PXR and CAR inhibitors that can be used as co-therapeutics to prevent adverse effects. Here, we present current technologies and assays used in the quest to characterize PXR and CAR modulators, which range from biochemical to cell-based and animal models.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yongtao Li
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
14
|
Díaz Galicia ME, Aldehaiman A, Hong S, Arold ST, Grünberg R. Methods for the recombinant expression of active tyrosine kinase domains: Guidelines and pitfalls. Methods Enzymol 2019; 621:131-152. [DOI: 10.1016/bs.mie.2019.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Hyrsova L, Vanduchova A, Dusek J, Smutny T, Carazo A, Maresova V, Trejtnar F, Barta P, Anzenbacher P, Dvorak Z, Pavek P. Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicol Lett 2018; 300:81-91. [PMID: 30394306 DOI: 10.1016/j.toxlet.2018.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
Resveratrol (RSV) is a stilbene phytochemical common in food and red wine. RSV inhibits cytochrome P450 CYP3A4 activity and interacts with the pregnane X receptor (PXR), the central regulator of drug/xenobiotic metabolizing enzyme expression. In this work, we comprehensively examined the effects of 13 stilbenes (trans- and cis-resveratrol, trans- and cis-piceatannol, oxyresveratrol, pterostilbene, pinostilbene, a,b-dihydroresveratrol, trans- and cis-trismethoxyresveratrol, trans-3,4,5,4'-tetramethoxystilbene, trans-2,4,3',5'-tetramethoxystilbene, trans-4-methoxystilbene), on CYP3A4 and CYP2B6 mRNA induction, and on CYP3A4/5, CYP2C8/9/19, CYP2D6, CYP2A6, CYP2E1, CYP1A2 and CYP2B6 cytochrome P450 enzyme activities. Expression experiments in five different primary human hepatocyte preparations, reporter gene assays, and ligand binding assays with pregnane X (PXR) and constitutive androstane (CAR) receptors were performed. Inhibition of cytochrome P450 enzymes was examined in human microsomes. We found that only polymethoxylated stilbenes are prone to significantly induce CYP2B6 or CYP3A4 in primary human hepatocytes via pregnane X receptor (PXR) interaction. Natural resveratrol derivatives such as trans- and cis-RSV, oxyresveratrol, pinostilbene and pterostilbene significantly inhibit CYP3A4/5 enzymatic activities; however, only trans-RSV significantly inhibits CYP3A4/5 activity (both testosterone 6β-hydroxylation and midazolam 1´-hydroxylation) in micromolar concentrations by a non-competitive mechanism, suggesting a potential risk of food-drug interactions with CYP3A4/5 substrates.
Collapse
Affiliation(s)
- Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Alena Vanduchova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, CZ775 15, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, CZ775 15, Olomouc, Czech Republic
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic; Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, CZ775 15, Olomouc, Czech Republic
| | - Veronika Maresova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Pavel Barta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, CZ775 15, Olomouc, Czech Republic
| | - Zdenek Dvorak
- Department of Cellular Biology and Genetics, Faculty of Sciences, Palacky University in Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic.
| |
Collapse
|
16
|
Carazo A, Dusek J, Holas O, Skoda J, Hyrsova L, Smutny T, Soukup T, Dosedel M, Pávek P. Teriflunomide Is an Indirect Human Constitutive Androstane Receptor (CAR) Activator Interacting With Epidermal Growth Factor (EGF) Signaling. Front Pharmacol 2018; 9:993. [PMID: 30364229 PMCID: PMC6193428 DOI: 10.3389/fphar.2018.00993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023] Open
Abstract
The constitutive androstane receptor (CAR) is a nuclear receptor involved mainly in xenobiotic and endobiotic metabolism regulation. CAR is activated directly by its ligands via the ligand binding domain (LBD) or indirectly by inhibition of the epidermal growth factor (EGF) signaling. We found that leflunomide (LEF) and its main metabolite teriflunomide (TER), both used for autoimmune diseases treatment, induce the prototype CAR target gene CYP2B6 in primary human hepatocytes. As TER was discovered to be an EGF receptor antagonist, we sought to determine if TER is an indirect activator of CAR. In primary human hepatocytes and in differentiated HepaRG cells, we found that LEF and TER up-regulate CAR target genes CYP2B6 and CYP3A4 mRNAs and enzymatic activities. TER stimulated CAR+A mutant translocation into the nucleus but neither LEF nor TER activated the CAR LBD, CAR3 variant or pregnane X receptor (PXR) in gene reporter assays. Interestingly, TER significantly up-regulated CAR mRNA expression, a result which could be a consequence of both EGF receptor and ELK-1 transcription factor inhibition by TER or by TER-mediated activation of glucocorticoid receptor (GR), an upstream hormonal regulator of CAR. We can conclude that TER is a novel indirect CAR activator which through EGF inhibition and GR activation controls both detoxification and some intermediary metabolism genes.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia.,Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Tomas Soukup
- Division of Rheumatology, 2nd Department of Internal Medicine - Gastroenterology, Faculty of Medicine, University Hospital in Hradec Kralove, Charles University, Prague, Czechia
| | - Martin Dosedel
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| |
Collapse
|
17
|
Knebel C, Neeb J, Zahn E, Schmidt F, Carazo A, Holas O, Pavek P, Püschel GP, Zanger UM, Süssmuth R, Lampen A, Marx-Stoelting P, Braeuning A. Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells. Toxicol Sci 2018; 163:170-181. [DOI: 10.1093/toxsci/kfy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | - Elisabeth Zahn
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Flavia Schmidt
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | | | - Ondej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology
| | - Gerhard P Püschel
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, and Eberhard-Karls-University, Tuebingen, Germany
| | - Roderich Süssmuth
- Institute of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | | | - Philip Marx-Stoelting
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | | |
Collapse
|
18
|
Using TR-FRET to Investigate Protein-Protein Interactions: A Case Study of PXR-Coregulator Interaction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:31-63. [PMID: 29412999 DOI: 10.1016/bs.apcsb.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Time-resolved fluorescence resonance energy transfer (TR-FRET) protein-protein interaction assays, especially in the format of receptor coregulator (coactivator and corepressor) recruitment/repression assays, have been widely used in nuclear receptor research to characterize the modes of action, efficacies, and binding affinities of ligands (including their properties as agonists, antagonists, and inverse agonists). However, there has been only limited progress in using this assay format for pregnane X receptor (PXR). In this chapter, we discuss TR-FRET protein-protein interaction assays and focus on a novel PXR TR-FRET coactivator interaction assay that we have developed based on a PXR coactivator cocrystal study. This new PXR TR-FRET coactivator interaction assay can characterize the binding affinities of PXR ligands and also differentiate antagonists from agonists. This assay is very robust, with the signal remaining stable over a long incubation time (up to 300min has been tested). It can tolerate high concentrations of DMSO (up to 5%) and has a high signal-to-noise ratio (six under typical assay conditions). This newly developed PXR TR-FRET coactivator interaction assay has potential application in high-throughput screening to identify and characterize novel PXR agonists and antagonists.
Collapse
|
19
|
Amacher DE. The regulation of human hepatic drug transporter expression by activation of xenobiotic-sensing nuclear receptors. Expert Opin Drug Metab Toxicol 2016; 12:1463-1477. [PMID: 27548410 DOI: 10.1080/17425255.2016.1223626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION If a drug is found to be an inducer of hepatic drug metabolizing enzymes via activation of nuclear receptors such as pregnane X receptor (PXR) or constitutive androstane receptor (CAR), it is likely that drug transporters regulated through these same receptors will be induced as well. This review highlights what is currently known about the molecular mechanisms that regulate transporter expression and where the research is directed. Areas covered: This review is focused on publications that describe the role of activated hepatic nuclear receptors in the subsequent regulation of drug uptake and/or efflux transporters following exposure to xenobiotics. Expert opinion: Many of the published studies on the role of nuclear receptors in the regulation of drug transporters involve non-human test animals. But due to species response differences, these associations are not always applicable to humans. For this reason, some relevant human in vitro models have been developed, such as primary or cryopreserved human hepatocytes, human liver slices, or HepG2 or HuH7 cell lines transiently or stably transfected with PXR expression and reporter constructs as well as in vivo models such as PXR-humanized mice. These human-relevant test systems will continue to be developed and applied for the testing of investigational drugs.
Collapse
|
20
|
Smutny T, Nova A, Drechslerová M, Carazo A, Hyrsova L, Hrušková ZR, Kuneš J, Pour M, Špulák M, Pavek P. 2-(3-Methoxyphenyl)quinazoline Derivatives: A New Class of Direct Constitutive Androstane Receptor (CAR) Agonists. J Med Chem 2016; 59:4601-10. [PMID: 27145071 DOI: 10.1021/acs.jmedchem.5b01891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Constitutive androstane receptor (CAR) is a key regulator of xenobiotic and endobiotic metabolism. Together with pregnane X (PXR) and aryl hydrocarbon (AHR) receptors, it is referred to as "xenobiotic receptor". The unique properties of human CAR, such as its high constitutive activity, both direct (ligand-binding domain-dependent) and indirect activation have hindered the discovery of direct selective human CAR ligands. Herein, we report a novel class of direct human CAR agonists in a group of 2-(3-methoxyphenyl)quinazoline derivatives. The compounds are even more potent activators of human CAR than is prototype 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). The three most potent ligands are at the same time extremely potent activators of the other xenobiotic or hormonal receptors, namely PXR, AHR, and vitamin D receptor, which regulate major xenobiotic-metabolizing enzymes and efflux transporters. Thus, the novel CAR ligands can be also considered as constituting the first class of potent pan-xenobiotic receptor ligands that can serve as potential antidotes boosting overall metabolic elimination of xenobiotic or toxic compounds.
Collapse
Affiliation(s)
| | - Alice Nova
- Institute of Molecular and Translation Medicine, Faculty of Medicine, Palacky University in Olomouc , Hnevotinska 5, CZ-779 00 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rondini EA, Duniec-Dmuchowski Z, Kocarek TA. Nonsterol Isoprenoids Activate Human Constitutive Androstane Receptor in an Isoform-Selective Manner in Primary Cultured Mouse Hepatocytes. Drug Metab Dispos 2016; 44:595-604. [PMID: 26798158 PMCID: PMC4810768 DOI: 10.1124/dmd.115.068551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/20/2016] [Indexed: 12/26/2022] Open
Abstract
Our laboratory previously reported that accumulation of nonsterol isoprenoids following treatment with the squalene synthase inhibitor, squalestatin 1 (SQ1) markedly induced cytochrome P450 (CYP)2B1 mRNA and reporter activity in primary cultured rat hepatocytes, which was dependent on activation of the constitutive androstane receptor (CAR). The objective of the current study was to evaluate whether isoprenoids likewise activate murine CAR (mCAR) or one or more isoforms of human CAR (hCAR) produced by alternative splicing (SPTV, hCAR2; APYLT, hCAR3). We found that SQ1 significantly induced Cyp2b10 mRNA (∼3.5-fold) in primary hepatocytes isolated from both CAR-wild-type and humanized CAR transgenic mice, whereas the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin had no effect. In the absence of CAR, basal Cyp2b10 mRNA levels were reduced by 28-fold and the effect of SQ1 on Cyp2b10 induction was attenuated. Cotransfection with an expression plasmid for hCAR1, but not hCAR2 or hCAR3, mediated SQ1-induced CYP2B1 and CYP2B6 reporter activation in hepatocytes isolated from CAR-knockout mice. This effect was also observed following treatment with the isoprenoid trans,trans-farnesol. The direct agonist CITCO increased interaction of hCAR1, hCAR2, and hCAR3 with steroid receptor coactivator-1. However, no significant effect on coactivator recruitment was observed with SQ1, suggesting an indirect activation mechanism. Further results from an in vitro ligand binding assay demonstrated that neither farnesol nor other isoprenoids are direct ligands for hCAR1. Collectively, our findings demonstrate that SQ1 activates CYP2B transcriptional responses through farnesol metabolism in an hCAR1-dependent manner. Further, this effect probably occurs through an indirect mechanism.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | | | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
22
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
23
|
Mackowiak B, Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1130-1140. [PMID: 26877237 DOI: 10.1016/j.bbagrm.2016.02.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
Abstract
The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|