1
|
Iftiquar SM. Observing Variation in Whispering Gallery Mode Resonance of a Trapped and Levitated Dye Doped Microdrop. J Fluoresc 2025; 35:2895-2902. [PMID: 38656645 DOI: 10.1007/s10895-024-03718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Whispering gallery mode (WGM) resonance was created in a spherical micro drop. A gradual shift in the resonance were observed. For a 600 nm droplet radius, the blue shift were 1.5, 0.7, 3.7 nm. It was estimated that such a shift corresponds to a reduction in optical radius of the droplet by 1.3, 0.6, 3.3 nm respectively. The droplet was created from a solution of glycerol, methanol and rhodamine 6G dye, and was trapped and levitated in a modified Paul trap. The WGMs were created by optically exciting the dye material from an external 532 nm cw laser beam. A shift in the WGM was observed during a gradual increase in power of the excitation laser, and a reason for such a shift was thought to be thermal evaporation of the liquid. For a larger droplet an initial 0.1 nm thermal expansion was also estimated, preceding the volume contraction. Such an expansion was negligible for a smaller droplet. The rate of change of the blue shift depends upon initial radius of the droplet. For the smaller droplet the estimated rate of change of WGM with a change in optical radius, was 0.771. For larger droplet, this rate is lower.
Collapse
Affiliation(s)
- S M Iftiquar
- SPMS-PAP, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore.
- College of information and Communications Engineering, Sunkyunkwan University, Suwon, South Korea.
| |
Collapse
|
2
|
Aoyagi S, Omori Y, Kawamura T, Sakurai T, Shimizu M, Yamashita K, Nagai Y, Kobayashi Y, Yamamoto Y, Yamagishi H. A high gain, low loss, and low-threshold spherical organic laser based on highly miscible excited-state intramolecular proton transfer dyes. Chem Commun (Camb) 2025; 61:5589-5592. [PMID: 40104927 DOI: 10.1039/d4cc06784c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Here, we report two types of excited-state intramolecular proton transfer dyes featuring exceptionally high miscibility with a polymer matrix (>50 wt%). Using these dyes, we assemble spherical laser oscillators and observe a significant reduction in the laser emission threshold at higher dye concentrations due to the enhanced optical gain as well as suppressed self-absorption and light scattering.
Collapse
Affiliation(s)
- Shunya Aoyagi
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Yoshiya Omori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tsukasa Kawamura
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tsuneaki Sakurai
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masaki Shimizu
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kenichi Yamashita
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuki Nagai
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yohei Yamamoto
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Hiroshi Yamagishi
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
3
|
Nowaczyński R, Paszke P, Csaki A, Mazuryk J, Rożniatowski K, Piotrowski P, Pawlak DA. Functionalization of Phosphate and Tellurite Glasses and Spherical Whispering Gallery Mode Microresonators. ACS OMEGA 2023; 8:48159-48165. [PMID: 38144065 PMCID: PMC10734010 DOI: 10.1021/acsomega.3c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Active whispering gallery mode resonators made as spherical microspheres doped with quantum dots or rare earth ions achieve high quality factors and are excellent candidates for biosensors capable of detecting biomolecules at low concentrations. However, to produce quantum dot-doped microspheres, new low melting temperature glasses are sought, which require surface functionalization and antibody immobilization for biosensor development. Here, we demonstrate the successful functionalization of three low melting point glasses and microspheres made of them. The glasses were made from sodium borophosphate, sodium aluminophosphate, and tellurite, and then, they were functionalized using (3-glycidyloxypropyl)trimethoxysilane in ethanol- and toluene-based protocols. Proper silanization was confirmed by energy-dispersive X-ray spectroscopy and fluorescence microscopy of an amino-modified luminescent oligonucleotide probe. Fluorescence imaging showed successful silanization for all tested samples and no degradation for aluminophosphate and tellurite glasses. The strongest signal was registered for tellurite glass samples functionalized using the toluene-based silanization protocol. This conclusion implies that this functionalization method is the most efficient and is highly recommended for future antibody immobilization and biosensing application.
Collapse
Affiliation(s)
- Rafał Nowaczyński
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, 02-507 Warsaw, Poland
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Paszke
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
Centre of Excellence, Wolczynska 133, 01-919 Warsaw, Poland
| | - Andrea Csaki
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Jarosław Mazuryk
- Department
of Electrode Processes, Institute of Physical
Chemistry Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
- Bio
&
Soft Matter Group, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Krzysztof Rożniatowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Piotr Piotrowski
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
Centre of Excellence, Wolczynska 133, 01-919 Warsaw, Poland
| | - Dorota Anna Pawlak
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
Centre of Excellence, Wolczynska 133, 01-919 Warsaw, Poland
- Łukasiewicz
Research Network - Institute of Microelectronics and Photonics, Wolczynska 133, 01-919 Warsaw, Poland
| |
Collapse
|
4
|
Suharman, Heah WY, Yamagishi H, Yamamoto Y. Poly(lactic acid) stereocomplex microspheres as thermally tolerant optical resonators. NANOSCALE 2023; 15:19062-19068. [PMID: 37987533 DOI: 10.1039/d3nr05318k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Thermally tolerant polymer optical resonators are fabricated from a stereocomplex of poly(L-lactic acid) and poly(D-lactic acid) through the oil-in-water miniemulsion method. The thermal stability of the microspheres of the stereocomplex poly(lactic acid) (SC-PLA) is superior to that of the homochiral poly(lactic acid) (HC-PLA). As a result of the high thermal stability, the optical resonator properties of the SC-PLA microspheres are preserved at an elevated temperature of up to 230 °C, which is 70 °C higher than that of microspheres formed from HC-PLA.
Collapse
Affiliation(s)
- Suharman
- Department of Material Innovation, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Jl. Dr. T. Mansur No. 9, Padang Bulan, Medan Baru, Medan, Sumatera Utara 20222, Indonesia
| | - Wey Yih Heah
- Department of Material Science, Institute of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Hiroshi Yamagishi
- Department of Material Innovation, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Material Science, Institute of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Yohei Yamamoto
- Department of Material Innovation, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Material Science, Institute of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
5
|
Li H, Wang Z, Wang L, Tan Y, Chen F. 27% slope efficiency in a WGM microcavity enabled by an Yb:YAG crystalline film. OPTICS LETTERS 2023; 48:5359-5362. [PMID: 37831867 DOI: 10.1364/ol.502795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The choice of a laser gain medium is crucial in achieving efficient and high-power outputs of optically stimulated WGM microcavity lasers. This work employs an Yb:YAG crystalline film as the gain medium for the microdisk laser. The Yb:YAG crystalline film is exfoliated from a bulk of a Yb:YAG crystal by the ion-implantation-enhanced etching method. The crystalline film is shaped into a microdisk through focused ion beam milling. This Yb:YAG microdisk laser achieves a single-mode laser output (with a side-mode-suppression ratio of 27.8 dB) under a 946 nm laser pumping. The maximum slope efficiency reaches 27% with a maximum output power of 1.1 mW.
Collapse
|
6
|
Charlton BK, Downie DH, Noman I, Alves PU, Eling CJ, Laurand N. Surface Functionalisation of Self-Assembled Quantum Dot Microlasers with a DNA Aptamer. Int J Mol Sci 2023; 24:14416. [PMID: 37833863 PMCID: PMC10572750 DOI: 10.3390/ijms241914416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The surface functionalisation of self-assembled colloidal quantum dot supraparticle lasers with a thrombin binding aptamer (TBA-15) has been demonstrated. The self-assembly of CdSSe/ZnS alloyed core/shell microsphere-shape CQD supraparticles emitting at 630 nm was carried out using an oil-in-water emulsion technique, yielding microspheres with an oleic acid surface and an average diameter of 7.3 ± 5.3 µm. Surface modification of the microspheres was achieved through a ligand exchange with mercaptopropionic acid and the subsequent attachment of TBA-15 using EDC/NHS coupling, confirmed by zeta potential and Fourier transform IR spectroscopy. Lasing functionality between 627 nm and 635 nm was retained post-functionalisation, with oleic acid- and TBA-coated microspheres exhibiting laser oscillation with thresholds as low as 4.10 ± 0.37 mJ·cm-2 and 7.23 ± 0.78 mJ·cm-2, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Laurand
- Technology & Innovation Centre, Institute of Photonics, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK; (B.K.C.); (D.H.D.); (I.N.); (P.U.A.); (C.J.E.)
| |
Collapse
|
7
|
Brice I, Kim VV, Ostrovskis A, Sedulis A, Salgals T, Spolitis S, Bobrovs V, Alnis J, Ganeev RA. Quantum-Dot-Induced Modification of Surface Functionalization for Active Applications of Whispering Gallery Mode Resonators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1997. [PMID: 37446513 DOI: 10.3390/nano13131997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Quantum dots can modify the properties of the whispering gallery mode resonators (WGMRs) used in various potential applications. A deposition of a suitable nanomaterial for the surface functionalization of WGMRs allows for the achievement of high quality (Q) factors. Here, we show that the WGMR surface can be functionalized using quantum dots. We demonstrate that WGMRs covered with thin layers of HgS and PbS quantum dots are suitable for third-harmonic generation due to the high Q factor of the developed microresonators, thus significantly lowering the pumping power required for nonlinear optical interactions.
Collapse
Affiliation(s)
- Inga Brice
- Laboratory of Quantum Optics, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
| | - Vyacheslav V Kim
- Laboratory of Nonlinear Optics, Institute of Astronomy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
- Department of Physics and Chemistry, Chirchik State Pedagogical University, 104 Amir Temur, Chirchik 111700, Uzbekistan
- Institute of Fundamental and Applied Research, TIIAME National Research University, 39 Kori Niyoziy, Tashkent 100000, Uzbekistan
| | - Armands Ostrovskis
- Institute of Telecommunications, Riga Technical University, Azenes 12, LV-1048 Riga, Latvia
| | - Arvids Sedulis
- Laboratory of Quantum Optics, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
- Institute of Telecommunications, Riga Technical University, Azenes 12, LV-1048 Riga, Latvia
| | - Toms Salgals
- Institute of Telecommunications, Riga Technical University, Azenes 12, LV-1048 Riga, Latvia
| | - Sandis Spolitis
- Institute of Telecommunications, Riga Technical University, Azenes 12, LV-1048 Riga, Latvia
| | - Vjaceslavs Bobrovs
- Institute of Telecommunications, Riga Technical University, Azenes 12, LV-1048 Riga, Latvia
| | - Janis Alnis
- Laboratory of Quantum Optics, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
| | - Rashid A Ganeev
- Laboratory of Nonlinear Optics, Institute of Astronomy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
- Department of Physics and Chemistry, Chirchik State Pedagogical University, 104 Amir Temur, Chirchik 111700, Uzbekistan
- Institute of Fundamental and Applied Research, TIIAME National Research University, 39 Kori Niyoziy, Tashkent 100000, Uzbekistan
| |
Collapse
|
8
|
Wu Y, Duan B, Song J, Tian H, Chen JH, Yang D, Huang S. Simultaneous temperature and pressure sensing based on a single optical resonator. OPTICS EXPRESS 2023; 31:18851-18861. [PMID: 37381315 DOI: 10.1364/oe.489625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
We propose a dual-parameter sensor for the simultaneous detection of temperature and pressure based on a single packaged microbubble resonator (PMBR). The ultrahigh-quality (∼107) PMBR sensor exhibits long-term stability with the maximum wavelength shift about 0.2056 pm. Here, two resonant modes with different sensing performance are selected to implement the parallel detection of temperature and pressure. The temperature and pressure sensitivities of resonant Mode-1 are -10.59 pm/°C and 0.1059 pm/kPa, while the sensitivities of Mode-2 are -7.69 pm/°C and 0.1250 pm/kPa, respectively. By adopting a sensing matrix, the two parameters are precisely decoupled and the root mean square error of measurement are ∼ 0.12 °C and ∼ 6.48 kPa, respectively. This work promises the potential for the multi-parameters sensing in a single optical device.
Collapse
|
9
|
Fan X, Wang R, Li M, Tang X, Xu C, Hao Q, Qiu T. High-specificity molecular sensing on an individual whispering-gallery-mode cavity: coupling-enhanced Raman scattering by photoinduced charge transfer and cavity effects. NANOSCALE HORIZONS 2023; 8:195-201. [PMID: 36468209 DOI: 10.1039/d2nh00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Optical whispering-gallery-mode (WGM) cavities have gained considerable interest because of their unique properties of enhanced light-matter interactions. Conventional WGM sensing is based on the mechanisms of mode shift, mode broadening, or mode splitting, which requires a small mode volume and an ultrahigh Q-factor. Besides, WGM sensing suffers from a lack of specificity in identifying substances, and additional chemical functionalization or incorporation of plasmonic materials is required for achieving good specificity. Herein, we propose a new sensing method based on an individual WGM cavity to achieve ultrasensitive and high-specificity molecular sensing, which combines the features of enhanced light-matter interactions on the WGM cavity and the "fingerprint spectrum" of surface-enhanced Raman scattering (SERS). This method identifies the substance by monitoring the Raman signal enhanced by the WGM cavity rather than monitoring the variation of the WGM itself. Therefore, ultrasensitive and high-specificity molecular sensing can be accomplished even on a low-Q cavity. The working principles of the proposed sensing method were also systematically investigated in terms of photoinduced charge transfer, Purcell effect, and optical resonance coupling. This work provides a new WGM sensing approach as well as a strategy for the design of a high-performance SERS substrate by creating an optical resonance mode.
Collapse
Affiliation(s)
- Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Ru Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Mingze Li
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Xiao Tang
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qi Hao
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
10
|
Bannur Nanjunda S, Seshadri VN, Krishnan C, Rath S, Arunagiri S, Bao Q, Helmerson K, Zhang H, Jain R, Sundarrajan A, Srinivasan B. Emerging nanophotonic biosensor technologies for virus detection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5041-5059. [PMID: 39634299 PMCID: PMC11501160 DOI: 10.1515/nanoph-2022-0571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/07/2024]
Abstract
Highly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics. This review paper critically and comprehensively reviews various emerging nanophotonic biosensor mechanisms and biosensor technologies for virus detection, with a particular focus on detection of the SARS-CoV-2 (COVID-19) virus. The photonic biosensing mechanisms and technologies that we have focused on include: (a) plasmonic field enhancement via localized surface plasmon resonances, (b) surface enhanced Raman scattering, (c) nano-Fourier transform infrared (nano-FTIR) near-field spectroscopy, (d) fiber Bragg gratings, and (e) microresonators (whispering gallery modes), with a particular emphasis on the emerging impact of nanomaterials and two-dimensional materials in these photonic sensing technologies. This review also discusses several quantitative issues related to optical sensing with these biosensing and transduction techniques, notably quantitative factors that affect the limit of detection (LoD), sensitivity, specificity, and response times of the above optical biosensing diagnostic technologies for virus detection. We also review and analyze future prospects of cost-effective, lab-on-a-chip virus sensing solutions that promise ultrahigh sensitivities, rapid detection speeds, and mass manufacturability.
Collapse
Affiliation(s)
- Shivananju Bannur Nanjunda
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | - Venkatesh N. Seshadri
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
- Department of Life Science, Indian Academy, Bangalore, India
| | - Chitra Krishnan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - Sweta Rath
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | | | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC, Australia
| | - Kristian Helmerson
- School of Physics and Astronomy, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC3800, Australia
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Ravi Jain
- Optical Science and Engineering Program, Center for High Technology Materials, Departments of ECE, Physics Astronomy, and Nanoscience Microsystems, University of New Mexico, Albuquerque, NM87106, USA
| | - Asokan Sundarrajan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Balaji Srinivasan
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
11
|
Sarbadhikary P, George BP, Abrahamse H. Paradigm shift in future biophotonics for imaging and therapy: Miniature living lasers to cellular scale optoelectronics. Theranostics 2022; 12:7335-7350. [PMID: 36438477 PMCID: PMC9691355 DOI: 10.7150/thno.75905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Advancements in light technology, devices and its applications have tremendously changed the facets of biomedical science and engineering to provide powerful diagnostic and therapeutic capabilities ranging from basic research to clinics. Recent novel innovations and concepts in the field of material science, biomedical optics, processing technology and nanotechnology have enabled increasingly sophisticated technologies such as cellular scale, wireless, remotely controlled micro device for in vivo integrations. This review deals with such futuristic applications of biophotonics like miniature living lasers, wireless remotely controlled implantable and cellular optoelectronics for novel imaging, diagnostic and therapeutic applications. We begin with an overview of the competency and progress in biophotonics as one of the most active frontiers in advanced analytical, diagnostic and therapeutic modalities. This is further followed by comprehensive discussion on recent advances, importance and applications, towards miniaturization size of laser to integrate into live cells as biological lasers, and wearable and implantable optoelectronic devices. Such applications form a novel biocompatible platform for intracellular sensing, cytometry and imaging devices. Further, the opportunities and possible challenges for future research directions to transform this basic research to clinical applications are also discussed.
Collapse
Affiliation(s)
- Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | | | | |
Collapse
|
12
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
13
|
Optical Whispering-Gallery-Mode Microbubble Sensors. MICROMACHINES 2022; 13:mi13040592. [PMID: 35457896 PMCID: PMC9026417 DOI: 10.3390/mi13040592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023]
Abstract
Whispering-gallery-mode (WGM) microbubble resonators are ideal optical sensors due to their high quality factor, small mode volume, high optical energy density, and geometry/design/structure (i.e., hollow microfluidic channels). When used in combination with microfluidic technologies, WGM microbubble resonators can be applied in chemical and biological sensing due to strong light–matter interactions. The detection of ultra-low concentrations over a large dynamic range is possible due to their high sensitivity, which has significance for environmental monitoring and applications in life-science. Furthermore, WGM microbubble resonators have also been widely used for physical sensing, such as to detect changes in temperature, stress, pressure, flow rate, magnetic field and ultrasound. In this article, we systematically review and summarize the sensing mechanisms, fabrication and packing methods, and various applications of optofluidic WGM microbubble resonators. The challenges of rapid production and practical applications of WGM microbubble resonators are also discussed.
Collapse
|
14
|
Yang X, Zhang Z, Su M, Song Y. Research Progress on Nano Photonics Technology-based SARS-CoV-2 Detection※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Brice I, Grundsteins K, Draguns K, Atvars A, Alnis J. Whispering Gallery Mode Resonator Temperature Compensation and Refractive Index Sensing in Glucose Droplets. SENSORS 2021; 21:s21217184. [PMID: 34770491 PMCID: PMC8588403 DOI: 10.3390/s21217184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
Among the different types of photonic sensor devices, optical whispering gallery mode resonators (WGMRs) have attracted interest due to their high level of sensitivity, small size, and ability to perform real-time temperature measurements. Here we demonstrate the applicability of temperature measurements using WGMR in both air and liquid environments. We also show that WGMR allowed measurements of the refractive index variations in an evaporating glucose–water solution droplet. The thermal tuning of WGMR can be reduced by coating WGMRs with a thin layer of polymethyl methacrylate (PMMA). Dip-coating the silica microsphere multiple times significantly reduced the resonance shift, partially compensating for the positive thermo-optical coefficient of silica. The shift direction changed the sign eventually.
Collapse
|
16
|
Manzo M. Au nanoparticle concentration study in hybrid plasmonic microlasers. APPLIED OPTICS 2021; 60:7080-7085. [PMID: 34612991 DOI: 10.1364/ao.434648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the concentration effects of Au nanoparticles placed in dye-doped polymeric spherical microlasers are investigated. The microlasers (average diameter of ∼293µm) are made with a mixture of UV curable polymer named Norland Blocking Adhesive (NBA) and Rhodamine 6 G. Four different ratios (between the Au nanoparticles and the NBA solutions) are investigated here, namely, 1000, 2000, 3000, and 4000 ratios. The Au nanoparticles (size of ∼5nm) are randomly scattered within the microlaser. The light is collected via a multimode optical fiber, ending to a spectrometer/CCD camera. It is found that the 3000 ratio case exhibited the lowest energy threshold value and the highest photonic emission slope. The 4000 ratio (lowest concentration) exhibited a behavior that was very similar to a microlasers with no Au particles. In terms of longevity of the laser modes, the 3000 ratio case exhibited the most stable emission, although the laser mode disappeared at an earlier time. The emission of the 2000 ratio case dropped drastically after a few seconds but increased after that before dropping again; in this case, the TE and TM laser modes were found to be in competition with each other due to the partial overlapping of the plasmonic emission with some of the resonant cavity modes and due to the thermal expansion effect. The quality factor was found to be of the same order of magnitude for all cases (∼104). Ultimately, this work allows us to select the optimum microlaser's configuration in terms of Au nanoparticle concentration as well as laser mode emission and longevity for different mechanical and biomedical sensing applications.
Collapse
|
17
|
Hassan MM, Baten MZ. Label-free detection of virus-like particles employing rotationally symmetric nanowire array based whispering gallery and quasi-whispering gallery resonant modes onto a silicon platform. OPTICS EXPRESS 2021; 29:25745-25761. [PMID: 34614897 DOI: 10.1364/oe.432064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In spite of tremendous advancements in modern diagnostics, there is a dire need for reliable, label-free detection of highly contagious pathogens like viruses. In view of the limitations of existing diagnostic techniques, the present theoretical study proposes a novel scheme of detecting virus-like particles employing whispering gallery and quasi-whispering gallery resonant modes of a composite optical system. Whereas whispering gallery mode (WGM) resonators are conventionally realized using micro-disk, -ring, -toroid or spherical structures, the present study utilizes a rotationally symmetric array of silicon nanowires which offers higher sensitivity compared to the conventional WGM resonator while detecting virus-like particles. Notwithstanding the relatively low quality factor of the system, the underlying multiple-scattering mediated photon entrapment, coupled with peripheral total-internal reflection, results in high fidelity of the system against low signal-to-noise ratio. Finite difference time domain based numerical analysis has been performed to correlate resonant modes of the array with spatial location of the virus. The correlation has been subsequently utilized for statistical analysis of simulated test cases. Assuming detection to be limited by resolution of the measurement system, results of the analysis suggest that for only about 5% of the simulate test cases the resonant wavelength shift lies within the minimum detection range of 0.001-0.01 nm. For a single virus of 160 nm diameter, more than 8 nm shift of the resonant mode and nearly 100% change of quality factor are attained with the proposed nanowire array based photonic structure.
Collapse
|
18
|
Ge K, Shi X, Xu Z, Libin C, Guo D, Li S, Zhai T. Full-color WGM lasing in nested microcavities. NANOSCALE 2021; 13:10792-10797. [PMID: 34105569 DOI: 10.1039/d1nr01052b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A full-color whispering-gallery mode (WGM) laser has been fabricated by partitioning different light-emitting polymers in a nested microcavity. Red-green-blue WGM lasing with a high quality factor above 104 and a narrow linewidth of 0.025 nm emits from nested capillaries when excited with a nanosecond laser. The full-color WGM lasing shows a low excitation threshold for the nested microcavities, which can avoid fluorescence resonant energy transfer. We also achieve wavelength tunable lasing upon altering the different polymers in the nested microcavities. The work demonstrates a simple method to fabricate a full-color WGM laser and its potential applications in compact lighting devices and white laser sources.
Collapse
Affiliation(s)
- Kun Ge
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoyu Shi
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Zhiyang Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Cui Libin
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Dan Guo
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| | - Songtao Li
- Department of Mathematics & Physics, North China Electric Power University, Hebei 071000, China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
19
|
Chen J, Dong Y, Wang H, Sun P, Zeng X. Simulation and Optimization of SNAP-Taper Coupling System in Displacement Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:2947. [PMID: 33922319 PMCID: PMC8122849 DOI: 10.3390/s21092947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/16/2023]
Abstract
Sensing applications based on whispering gallery mode (WGM) microcavities have attracted extensive attention recently, especially in displacement sensing applications. However, the traditional displacement sensing scheme based on shift in a single resonance wavelength, has a lot of drawbacks. Herein, a novel displacement sensing scheme based on the surface nanoscale axial photonics (SNAP) is proposed to achieve a wide range and high-resolution displacement sensor through analyzing the transmittance of multiple axial modes. By analyzing the surface plot of the resonance spectrum with different coupling positions, the ideal coupling parameters and ERV for displacement sensing are obtained. In the following, displacement sensing with high sensitivity and a wide range is theoretically realized through adjusting the sensitivity threshold and the number of modes. Finally, we present our views on the current challenges and the future development of the displacement sensing based on an SNAP resonator. We believe that a comprehensive understanding on this sensing scheme would significantly contribute to the advancement of the SNAP resonator for a broad range of applications.
Collapse
Affiliation(s)
| | - Yongchao Dong
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (J.C.); (H.W.); (P.S.); (X.Z.)
| | | | | | | |
Collapse
|
20
|
Gugliandolo G, Tabandeh S, Rosso L, Smorgon D, Fernicola V. Whispering Gallery Mode Resonators for Precision Temperature Metrology Applications. SENSORS 2021; 21:s21082844. [PMID: 33920723 PMCID: PMC8073797 DOI: 10.3390/s21082844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
In this work, the authors exploited the whispering gallery mode (WGM) resonator properties as a thermometer. The sensor is made of a cylindrical sapphire microwave resonator in the center of a gold-plated copper cavity. Two coaxial cables act as antennas and excite the WGM standing waves in the cylindrical sapphire at selected resonance frequencies in the microwave range. The system affords a high quality factor that enables temperature measurements with a resolution better than 15 µK and a measurement standard uncertainty of 1.2 mK, a value approximately three times better than that achieved in previous works. The developed sensor could be a promising alternative to platinum resistance thermometers, both as a transfer standard in industrial applications and as an interpolating instrument for the dissemination of the kelvin.
Collapse
Affiliation(s)
| | - Shahin Tabandeh
- VTT Technical Research Centre of Finland Ltd., National Metrology Institute VTT MIKES, P.O. Box 1000, FI-02044 VTT, 02150 Espoo, Finland;
| | - Lucia Rosso
- Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy; (L.R.); (D.S.); (V.F.)
| | - Denis Smorgon
- Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy; (L.R.); (D.S.); (V.F.)
| | - Vito Fernicola
- Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy; (L.R.); (D.S.); (V.F.)
| |
Collapse
|
21
|
Liao J, Yang L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. LIGHT, SCIENCE & APPLICATIONS 2021; 10:32. [PMID: 33547272 PMCID: PMC7862871 DOI: 10.1038/s41377-021-00472-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/11/2023]
Abstract
Temperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.
Collapse
Affiliation(s)
- Jie Liao
- Department of Electrical & Systems Engineering, Washington University in St. Louis, MO 63130, St. Louis, USA
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University in St. Louis, MO 63130, St. Louis, USA.
- Department of Physics, Washington University in St. Louis, MO 63130, St. Louis, USA.
| |
Collapse
|
22
|
Abstract
Optical biosensors have exhibited worthwhile performance in detecting biological systems and promoting significant advances in clinical diagnostics, drug discovery, food process control, and environmental monitoring. Without complexity in their pretreatment and probable influence on the nature of target molecules, these biosensors have additional advantages such as high sensitivity, robustness, reliability, and potential to be integrated on a single chip. In this review, the state of the art optical biosensor technologies, including those based on surface plasmon resonance (SPR), optical waveguides, optical resonators, photonic crystals, and optical fibers, are presented. The principles for each type of biosensor are concisely introduced and particular emphasis has been placed on recent achievements. The strengths and weaknesses of each type of biosensor have been outlined as well. Concluding remarks regarding the perspectives of future developments are discussed.
Collapse
Affiliation(s)
- Chen Chen
- College of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China.
| | - Junsheng Wang
- College of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
23
|
Yu J, Zhang J, Wang R, Li A, Zhang M, Wang S, Wang P, Ward JM, Nic Chormaic S. A tellurite glass optical microbubble resonator. OPTICS EXPRESS 2020; 28:32858-32868. [PMID: 33114961 DOI: 10.1364/oe.406256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
We present a method for making microbubble whispering gallery resonators (WGRs) from tellurite, which is a soft glass, using a CO2 laser. The customized fabrication process permits us to process glasses with low melting points into microbubbles with loaded quality factors as high as 2.3 × 106. The advantage of soft glasses is that they provide a wide range of refractive index, thermo-optical, and optomechanical properties. The temperature and air pressure dependent optical characteristics of both passive and active tellurite microbubbles are investigated. For passive tellurite microbubbles, the measured temperature and air pressure sensitivities are 4.9 GHz/K and 7.1 GHz/bar, respectively. The large thermal tuning rate is due to the large thermal expansion coefficient of 1.9 × 10-5 K-1 of the tellurite microbubble. In the active Yb3+-Er3+ co-doped tellurite microbubbles, C-band single-mode lasing with a threshold of 1.66 mW is observed with a 980 nm pump and a maximum wavelength tuning range of 1.53 nm is obtained. The sensitivity of the laser output frequency to pressure changes is 6.5 GHz/bar. The microbubbles fabricated using this method have a low eccentricity and uniform wall thickness, as determined from electron microscope images and the optical spectra. The compound glass microbubbles described herein have the potential for a wide range of applications, including sensing, nonlinear optics, tunable microcavity lasers, and integrated photonics.
Collapse
|
24
|
Ivanov A, Min`kov K, Samoilenko A, Levin G. The Measurement of Nanoparticle Concentrations by the Method of Microcavity Mode Broadening Rate. SENSORS 2020; 20:s20205950. [PMID: 33096870 PMCID: PMC7588910 DOI: 10.3390/s20205950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022]
Abstract
A measurement system for the detection of a low concentration of nanoparticles based on optical microcavities with whispering-gallery modes (WGMs) is developed and investigated. A novel method based on the WGM broadening allows us to increase the precision of concentration measurements up to 0.005 ppm for nanoparticles of a known size. We describe WGM microcavity manufacturing and quality control methods. The collective interaction process of suspended Ag nanoparticles in a liquid and TiO2 in the air with a microcavity surface is studied.
Collapse
Affiliation(s)
- Alexey Ivanov
- The All-Russian Research Institute for Optical and Physical Measurements, 119361 Moscow, Russia; (A.S.); (G.L.)
- Correspondence: ; Tel.: +8-495-781-4576
| | | | - Alexey Samoilenko
- The All-Russian Research Institute for Optical and Physical Measurements, 119361 Moscow, Russia; (A.S.); (G.L.)
| | - Gennady Levin
- The All-Russian Research Institute for Optical and Physical Measurements, 119361 Moscow, Russia; (A.S.); (G.L.)
| |
Collapse
|
25
|
Rho D, Breaux C, Kim S. Label-Free Optical Resonator-Based Biosensors. SENSORS 2020; 20:s20205901. [PMID: 33086566 PMCID: PMC7589515 DOI: 10.3390/s20205901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022]
Abstract
The demand for biosensor technology has grown drastically over the last few decades, mainly in disease diagnosis, drug development, and environmental health and safety. Optical resonator-based biosensors have been widely exploited to achieve highly sensitive, rapid, and label-free detection of biological analytes. The advancements in microfluidic and micro/nanofabrication technologies allow them to be miniaturized and simultaneously detect various analytes in a small sample volume. By virtue of these advantages and advancements, the optical resonator-based biosensor is considered a promising platform not only for general medical diagnostics but also for point-of-care applications. This review aims to provide an overview of recent progresses in label-free optical resonator-based biosensors published mostly over the last 5 years. We categorized them into Fabry-Perot interferometer-based and whispering gallery mode-based biosensors. The principles behind each biosensor are concisely introduced, and recent progresses in configurations, materials, test setup, and light confinement methods are described. Finally, the current challenges and future research topics of the optical resonator-based biosensor are discussed.
Collapse
|
26
|
Lee EY, Kim Y, Koo B, Noh GS, Lee H, Shin Y. A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. SENSORS AND ACTUATORS. B, CHEMICAL 2020. [PMID: 32501366 DOI: 10.1016/j.snb.2020.128358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.
Collapse
Affiliation(s)
- Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeseul Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hansuek Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
27
|
Lee EY, Kim Y, Koo B, Noh GS, Lee H, Shin Y. A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. SENSORS AND ACTUATORS. B, CHEMICAL 2020. [PMID: 32501366 DOI: 10.1016/j.snb.2020.128357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.
Collapse
Affiliation(s)
- Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeseul Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hansuek Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
28
|
Lee EY, Kim Y, Koo B, Noh GS, Lee H, Shin Y. A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 320:128351. [PMID: 32501366 PMCID: PMC7250085 DOI: 10.1016/j.snb.2020.128351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.
Collapse
Affiliation(s)
- Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeseul Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hansuek Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
29
|
Lee EY, Kim Y, Koo B, Noh GS, Lee H, Shin Y. A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 320:128351. [PMID: 32501366 DOI: 10.1016/j.snb.2020.128391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 05/28/2023]
Abstract
Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.
Collapse
Affiliation(s)
- Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeseul Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hansuek Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
30
|
Chiappini A, Pasquardini L, Bossi AM. Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5069. [PMID: 32906637 PMCID: PMC7570731 DOI: 10.3390/s20185069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Optical sensing, taking advantage of the variety of available optical structures, is a rapidly expanding area. Over recent years, whispering gallery mode resonators, photonic crystals, optical waveguides, optical fibers and surface plasmon resonance have been exploited to devise different optical sensing configurations. In the present review, we report on the state of the art of optical sensing devices based on the aforementioned optical structures and on synthetic receptors prepared by means of the molecular imprinting technology. Molecularly imprinted polymers (MIPs) are polymeric receptors, cheap and robust, with high affinity and selectivity, prepared by a template assisted synthesis. The state of the art of the MIP functionalized optical structures is critically discussed, highlighting the key progresses that enabled the achievement of improved sensing performances, the merits and the limits both in MIP synthetic strategies and in MIP coupling.
Collapse
Affiliation(s)
- Andrea Chiappini
- Institute of Photonics and Nanotechnologies (IFN-CNR) CSMFO Laboratory and Fondazione Bruno Kessler (FBK) Photonics Unit, via alla Cascata 56/C, 38123 Povo Trento, Italy;
| | | | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
31
|
Frigenti G, Cavigli L, Fernández-Bienes A, Ratto F, Centi S, García-Fernández T, Nunzi Conti G, Soria S. Microbubble Resonators for All-Optical Photoacoustics of Flowing Contrast Agents. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1696. [PMID: 32197416 PMCID: PMC7175143 DOI: 10.3390/s20061696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/20/2023]
Abstract
In this paper, we implement a Whispering Gallery mode microbubble resonator (MBR) as an optical transducer to detect the photoacoustic (PA) signal generated by plasmonic nanoparticles. We simulate a flow cytometry experiment by letting the nanoparticles run through the MBR during measurements and we estimate PA intensity by a Fourier analysis of the read-out signal. This method exploits the peaks associated with the MBR mechanical eigenmodes, allowing the PA response of the nanoparticles to be decoupled from the noise associated with the particle flow whilst also increasing the signal-to-noise ratio. The photostability curve of a known contrast agent is correctly reconstructed, validating the proposed analysis and proving quantitative PA detection. The experiment was run to demonstrate the feasible implementation of the MBR system in a flow cytometry application (e.g., the detection of venous thrombi or circulating tumor cells), particularly regarding wearable appliances. Indeed, these devices could also benefit from other MBR features, such as the extreme compactness, the direct implementation in a microfluidic circuit, and the absence of impedance-matching material.
Collapse
Affiliation(s)
- Gabriele Frigenti
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Compendio del Viminale, Piazza del Viminale 1, 00184 Rome, Italy; (G.F.); (G.N.C.)
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy; (L.C.); (F.R.); (S.C.)
- Laboratorio Europeo di Spettroscopia Nonlineare (LENS)—Università degli Studi di Firenze, via Nello Carrara 1, I50019 Sesto Fiorentino (FI), Italy
| | - Lucia Cavigli
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy; (L.C.); (F.R.); (S.C.)
| | - Alberto Fernández-Bienes
- Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Ciudad de México C.P. 04510, Mexico;
| | - Fulvio Ratto
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy; (L.C.); (F.R.); (S.C.)
| | - Sonia Centi
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy; (L.C.); (F.R.); (S.C.)
| | - Tupak García-Fernández
- Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F. C.P. 09790, Mexico;
| | - Gualtiero Nunzi Conti
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Compendio del Viminale, Piazza del Viminale 1, 00184 Rome, Italy; (G.F.); (G.N.C.)
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy; (L.C.); (F.R.); (S.C.)
| | - Silvia Soria
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy; (L.C.); (F.R.); (S.C.)
| |
Collapse
|
32
|
Frigenti G, Farnesi D, Nunzi Conti G, Soria S. Nonlinear Optics in Microspherical Resonators. MICROMACHINES 2020; 11:E303. [PMID: 32183230 PMCID: PMC7142417 DOI: 10.3390/mi11030303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/01/2023]
Abstract
Nonlinear frequency generation requires high intensity density which is usually achieved with pulsed laser sources, anomalous dispersion, high nonlinear coefficients or long interaction lengths. Whispering gallery mode microresonators (WGMRs) are photonic devices that enhance nonlinear interactions and can be exploited for continuous wave (CW) nonlinear frequency conversion, due to their capability of confine light for long time periods in a very small volume, even though in the normal dispersion regime. All signals must be resonant with the cavity. Here, we present a review of nonlinear optical processes in glass microspherical cavities, hollow and solid.
Collapse
Affiliation(s)
- Gabriele Frigenti
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Compendio del Viminale, Piazza del Viminale 1, 00184 Roma, Italy; (G.F.); (G.N.C.)
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy;
- Laboratorio Europeo di Spettroscopia Nonlineare (LENS) - Università degli Studi di Firenze, via Nello Carrara 1, I50019 Sesto Fiorentino (FI), Italy
| | - Daniele Farnesi
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy;
| | - Gualtiero Nunzi Conti
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Compendio del Viminale, Piazza del Viminale 1, 00184 Roma, Italy; (G.F.); (G.N.C.)
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy;
| | - Silvia Soria
- CNR-IFAC, Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I50019 Sesto Fiorentino (FI), Italy;
| |
Collapse
|
33
|
Nguyen TV, Pham NV, Mai HH, Duong DC, Le HH, Sapienza R, Ta VD. Protein-based microsphere biolasers fabricated by dehydration. SOFT MATTER 2019; 15:9721-9726. [PMID: 31742302 DOI: 10.1039/c9sm01610d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biolasers made of biological materials have attracted considerable research attention due to their biocompatibility and biodegradability, and have the potential for biosensing and biointegration. However, the current fabrication methods of biolasers suffer from several limitations, such as complicated processing, time-consuming and environmentally unfriendly nature. In this study, a novel approach with green processes for fabricating solid-state microsphere biolasers has been demonstrated. By dehydration via a modified Microglassification™ technology, dye-doped bovine serum albumin (BSA) droplets could be quickly (less than 10 minutes) and easily changed into solid microspheres with diameters ranging from 10 μm to 150 μm. The size of the microspheres could be effectively controlled by changing either the concentration of the BSA solution or the diameter of the initial droplets. The fabricated microspheres could act as efficient microlasers under an optical pulse excitation. A lasing threshold of 7.8 μJ mm-2 and a quality (Q) factor of about 1700 to 3100 were obtained. The size dependence of lasing characteristics was investigated, and the results showed a good agreement with whispering gallery mode (WGM) theory. Our findings contribute an effective technique for the fabrication of high-Q factor microlasers that may be potential for applications in biological and chemical sensors.
Collapse
Affiliation(s)
- Toan Van Nguyen
- Department of Physics, Le Quy Don Technical University, Hanoi 100000, Vietnam
| | | | | | | | | | | | | |
Collapse
|
34
|
Stepanidenko EA, Gromova YA, Kormilina TK, Cherevkov SA, Kurshanov DA, Dubavik A, Baranov MA, Medvedev OS, Fedorov AV, Gun'ko YK, Ushakova EV, Baranov AV. Porous flower-like superstructures based on self-assembled colloidal quantum dots for sensing. Sci Rep 2019; 9:617. [PMID: 30679451 PMCID: PMC6346065 DOI: 10.1038/s41598-018-36250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
Quantum dots (QDs) have been envisaged as very promising materials for the development of advanced optical sensors. Here we report a new highly porous luminescent material based on colloidal QDs for potential applications in optical sensing devices. Bulk flower-like porous structures with sizes of hundreds of microns have been produced by slow destabilization of QD solution in the presence of a non-solvent vapor. The porous highly luminescent material was formed from CdSe QDs using the approach of non-solvent destabilization. This material demonstrated a 4-fold decrease in PL signal in the presence of the ammonia vapor. The relationship between the destabilization rate of QDs in solution and the resulting morphology of structural elements has been established. The proposed model of bulk porous flower-like nanostructured material fabrication can be applied to nanoparticles of different nature combining their unique properties. This research opens up a new approach to design novel multi-component composite materials enabling potential performance improvements of various photonic devices.
Collapse
Grants
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
- 14.587.21.0047, project identifier RFMEFI58718X0047 Ministry of Education and Science of the Russian Federation
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oleg S Medvedev
- Saint-Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Yurii K Gun'ko
- ITMO University, Saint Petersburg, 197101, Russia
- School of Chemistry and CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | | | | |
Collapse
|
35
|
Zhang YN, Zhou T, Han B, Zhang A, Zhao Y. Optical bio-chemical sensors based on whispering gallery mode resonators. NANOSCALE 2018; 10:13832-13856. [PMID: 30020301 DOI: 10.1039/c8nr03709d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Whispering gallery mode (WGM) resonators have attracted extensive attention and their unique characteristics have led to some remarkable achievements. In particular, when combined with optical sensing technology, the WGM reonator-based sensor offers the advantages of small size, high sensitivity and a real-time dynamic response. At present, this type of sensor is widely applied in the bio-chemical sensing field. In this paper, we briefly review the sensing principle, the structures and the sensing applications of optical bio-chemical sensors based on the WGM resonator, with particular focuses on their sensing properties and their advantages and disadvantages. In addition, the existing problems and future development trends of WGM resonator-based optical bio-chemical sensors are discussed.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China. and State Key Laboratory of Synthetical Automation for Process Industries, Shenyang, 110819, China
| | - Tianmin Zhou
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Bo Han
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China. and Liaoning Provincial Institute of Measurement, Shenyang 110819, China
| | - Aozhuo Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yong Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China. and State Key Laboratory of Synthetical Automation for Process Industries, Shenyang, 110819, China
| |
Collapse
|
36
|
Murphy RMJ, Lei F, Ward JM, Yang Y, Chormaic SN. All-optical nanopositioning of high-Q silica microspheres. OPTICS EXPRESS 2017; 25:13101-13106. [PMID: 28788847 DOI: 10.1364/oe.25.013101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
A tunable, all-optical, coupling method is realised for a high-Q silica microsphere and an optical waveguide. By means of a novel optical nanopositioning method, induced thermal expansion of an asymmetric microsphere stem for laser powers up to 211 mW is observed and used to fine tune the microsphere-waveguide coupling. Microcavity displacements ranging from (0.61 ± 0.13) - (3.49 ± 0.13) μm and nanometer scale sensitivities varying from (2.81 ± 0.08) - (17.08 ± 0.76) nm/mW, with an apparent linear dependency of coupling distance on stem laser heating, are obtained. Using this method, the coupling is altered such that the different coupling regimes are achieved.
Collapse
|
37
|
McGloin D. Droplet lasers: a review of current progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:054402. [PMID: 28218616 DOI: 10.1088/1361-6633/aa6172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is perhaps surprising that something as fragile as a microscopic droplet could possibly form a laser. In this article we will review some of the underpinning physics as to how this might be possible, and then examine the state of the art in the field. The technology to create and manipulate droplets will be examined, as will the different classes of droplet lasers. We discuss the rapidly developing fields of droplet biolasers, liquid crystal laser droplets and explore how droplet lasers could give rise to new bio and chemical sensing and analysis. The challenges that droplet lasers face in becoming robust devices, either as sensors or as photonic components in the lab on chip devices, is assessed.
Collapse
Affiliation(s)
- D McGloin
- SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| |
Collapse
|
38
|
Zhi Y, Yu XC, Gong Q, Yang L, Xiao YF. Single Nanoparticle Detection Using Optical Microcavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604920. [PMID: 28060436 DOI: 10.1002/adma.201604920] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Indexed: 05/24/2023]
Abstract
Detection of nanoscale objects is highly desirable in various fields such as early-stage disease diagnosis, environmental monitoring and homeland security. Optical microcavity sensors are renowned for ultrahigh sensitivities due to strongly enhanced light-matter interaction. This review focuses on single nanoparticle detection using optical whispering gallery microcavities and photonic crystal microcavities, both of which have been developing rapidly over the past few years. The reactive and dissipative sensing methods, characterized by light-analyte interactions, are explained explicitly. The sensitivity and the detection limit are essentially determined by the cavity properties, and are limited by the various noise sources in the measurements. On the one hand, recent advances include significant sensitivity enhancement using techniques to construct novel microcavity structures with reduced mode volumes, to localize the mode field, or to introduce optical gain. On the other hand, researchers attempt to lower the detection limit by improving the spectral resolution, which can be implemented by suppressing the experimental noises. We also review the methods of achieving a better temporal resolution by employing mode locking techniques or cavity ring up spectroscopy. In conclusion, outlooks on the possible ways to implement microcavity-based sensing devices and potential applications are provided.
Collapse
Affiliation(s)
- Yanyan Zhi
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
| | - Xiao-Chong Yu
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Extreme Optics, Taiyuan, 030006, Shanxi, P. R. China
| | - Lan Yang
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, USA, 63130
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Extreme Optics, Taiyuan, 030006, Shanxi, P. R. China
| |
Collapse
|
39
|
Burlage RS, Tillmann J. Biosensors of bacterial cells. J Microbiol Methods 2016; 138:2-11. [PMID: 28040457 DOI: 10.1016/j.mimet.2016.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/24/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described.
Collapse
Affiliation(s)
- Robert S Burlage
- Department of Pharmaceutical and Administrative Science, Concordia University School of Pharmacy, 12800 N. Lake Shore Dr., Mequon, WI 53097, United States.
| | - Joshua Tillmann
- Department of Pharmaceutical and Administrative Science, Concordia University School of Pharmacy, 12800 N. Lake Shore Dr., Mequon, WI 53097, United States
| |
Collapse
|