1
|
Chen P, Wang J, Xue Y, Wang C, Sun W, Yu J, Guo H. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. WATER RESEARCH 2024; 265:122297. [PMID: 39208686 DOI: 10.1016/j.watres.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Emerging contaminants in water represent long-term and unpredictable threats to both environmental and human health due to their persistence and bioaccumulation. Current research predominantly focuses on their removal rather than sustained monitoring. This review comprehensively investigates advanced sensor technologies for detecting these contaminants in water, critically evaluating biosensors, optical sensors, electrochemical sensors, and nanomaterial sensors. Elucidating the operational principles, performance metrics such as detection thresholds, and the pros and cons of their practical applications, the review addresses a significant research gap in environmental monitoring. Moreover, it enhances understanding of sensor effectiveness, which in turn guides researchers in selecting the right sensor types for various environmental scenarios. Furthermore, by emphasizing the integration of nanotechnology and the standardization of evaluation protocols, it promotes the development of robust, deployable sensing solutions. Ultimately, this leads to the proposal of a strategic framework aimed at significantly improving the detection capabilities of emerging contaminants and supporting the preservation of environmental health.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Luo L, Pan Y, Li Q, Zhang Y, Chen C, Shen J, Wang Z. Current progress in the detection of adrenergic receptor agonist residues in animal-derived foods. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Simple and rapid detection of ractopamine in pork with comparison of LSPR and LFIA sensors. J Food Drug Anal 2022; 30:590-602. [PMID: 36753367 PMCID: PMC9910298 DOI: 10.38212/2224-6614.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
This study developed a simple and rapid strategic technique to detect ractopamine (chemical growth-promoting agent) in pork. Two highly sensitive and specific gold nanoparticle-based portable sensors, i.e., localized surface plasmon resonance (LSPR) sensors, and lateral flow immunoassay (LFIA) strips were developed to detect veterinary drug residues in food products, that have detrimental effects on humans. Optimization studies were conducted on several sensor devices to improve sensitivity. Each sensor comprised functionalized gold nanoparticles conjugated with ractopamine antibodies. The LSPR sensor chip achieved excellent detection sensitivity = 1.19 fg/mL and was advantageous for quantitative analysis due to its wide dynamic range. On the other hand, LFIA strips provided visual test confirmation and achieved 2.27 ng/mL detection sensitivity, significantly less sensitive than LSPR. The complementary sensors help overcome each other's shortcomings with both the techniques offering ease of use, affordability and rapid diagnosis. Thus, these sensors can be applied on-site for routine screening of harmful drug residues in pork meat. They also provide useful direction for advanced technologies to enhance assay performance for detecting various other food drug contaminants.
Collapse
|
4
|
A Novel Label-Free Electrochemical Immunosensor Based on a Self-Assembled Monolayer-Modified Electrode for Polychlorinated Biphenyl (PCB) in Environmental Analysis. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PCBs (polychlorinated biphenyls) are a very large group of organic compounds that have between two and ten chlorine atoms attached to the biphenyl. These compounds have an acute impact as environmental pollutants, causing cancer and other adverse health effects in humans. It is therefore imperative to develop techniques for the cost-effective detection of PCBs at very low concentrations in ecosystems. In this paper, a novel label-free, indirect, competitive electrochemical immunosensor was first developed with a PCB-BSA conjugate. It is shown herein to compete with free PCBs for binding to the anti-PCB polyclonal primary antibody (IgY). Then, we used a secondary antibody to enhance the sensitivity of the sensor for the detection of PCB in a sample. It has been successfully immobilized on an 11-mercaptoundecanoic acid (11-MUA)-modified gold electrode via a carbodiimide-coupling reaction using cross-linking 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) on the electrode surface. The immunosensor was investigated by cyclic voltammetry and differential pulse voltammetry in a standard solution of [Fe(CN)6]3−/4−. A linear range of 0.011–220 ng/mL−1 and a limit of detection (LOD) of 0.11 ng/mL−1 for PCBs detection were achieved by the developed immunosensor, showing advantages over conventional assays. The novel label-free electrochemical immunosensor discussed in this paper is a solution for simple, rapid, cost-effective sample screening in a portable, disposable format. The proposed immunosensor has good sensitivity, and it can prove to be an adequate real-time monitoring solution for PCBs in soil samples or other samples.
Collapse
|
5
|
Steglich P, Lecci G, Mai A. Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:2901. [PMID: 35458884 PMCID: PMC9028357 DOI: 10.3390/s22082901] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
Label-free direct-optical biosensors such as surface-plasmon resonance (SPR) spectroscopy has become a gold standard in biochemical analytics in centralized laboratories. Biosensors based on photonic integrated circuits (PIC) are based on the same physical sensing mechanism: evanescent field sensing. PIC-based biosensors can play an important role in healthcare, especially for point-of-care diagnostics, if challenges for a transfer from research laboratory to industrial applications can be overcome. Research is at this threshold, which presents a great opportunity for innovative on-site analyses in the health and environmental sectors. A deeper understanding of the innovative PIC technology is possible by comparing it with the well-established SPR spectroscopy. In this work, we shortly introduce both technologies and reveal similarities and differences. Further, we review some latest advances and compare both technologies in terms of surface functionalization and sensor performance.
Collapse
Affiliation(s)
- Patrick Steglich
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
- Department of Photonics, Technische Hochschule Wildau, 15745 Wildau, Germany
| | - Giulia Lecci
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
| | - Andreas Mai
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
- Department of Photonics, Technische Hochschule Wildau, 15745 Wildau, Germany
| |
Collapse
|
6
|
Ouyang S, Yu S, Le Y. Current Advances in Immunoassays for the Detection of β2-Agonists. Foods 2022; 11:foods11060803. [PMID: 35327226 PMCID: PMC8947354 DOI: 10.3390/foods11060803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
β2-agonists are a group of synthetic phenylethanolamine compounds which are traditionally used for treating bronchospasm. These compounds can also increase skeletal muscle mass and decrease body fat. The illegal use of β2-agonists in food-producing animals results in residue of β2-agonists in edible tissues and causes adverse health effects in humans. Thus, the detection of β2-agonists at trace level in complex sample matrices is of great importance for monitoring the abuse of β2-agonists. Many methods have been developed to detect β2-agonists. Among them, a variety of antigen–antibody interaction-based techniques have been established to detect β2-agonists in various samples, including animal feed, urine, serum, milk, tissues and hair. In this review, we summarized current achievement in the extraction of β2-agonists from testing samples and detection of β2-agonists using immunological techniques. Future perspectives were briefly discussed.
Collapse
Affiliation(s)
- Shuyu Ouyang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (S.O.); (S.Y.)
| | - Shuting Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (S.O.); (S.Y.)
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (S.O.); (S.Y.)
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
- Correspondence:
| |
Collapse
|
7
|
Lertvachirapaiboon C, Baba A, Shinbo K, Kato K. Dual-mode surface plasmon resonance sensor chip using a grating 3D-printed prism. Anal Chim Acta 2020; 1147:23-29. [PMID: 33485581 DOI: 10.1016/j.aca.2020.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
The method for fabricating a grating prism surface plasmon resonance (SPR) sensor chip was developed. The grating prism was 3D-printed by a stereolithography 3D printer and subsequently created a grating pattern by soft lithography. A gold film was thermally evaporated on the grating prism. Moreover, a liquid cell was 3D-printed and assembled into a gold-coated grating prism. To make the sensor chip compact and practical, a compatible prism holder was 3D-printed by a fused deposition model 3D printer. The SPR sensor chip was mounted on the rotation stage and the SPR spectrum was recorded by spectrometer. The SPR excitation of the sensor chip can be extended to the near-infrared region by creating a grating pattern on the prism surface. A gold-coated grating prism exhibited dual modes of SPR excitations, namely, prism-coupling SPR (PC-SPR) and grating-coupling SPR (GC-SPR). The dual-mode SPR excitation was observed at the incident angles of 45°-80°. When the incident angle increased, the SPR excitation of the PC-SPR mode exhibited a blue shift in the wavelength region of 480-690 nm, whereas the GC-SPR mode exhibited a red shift in the wavelength region of 670-770 nm. The surface plasmon (SP) dispersion obtained from the dual-mode SPR configuration confirmed observable PC-SPR (which corresponded to + SP0 of the gold-resin interface) and GC-SPR (which corresponded to -SP+1 of the gold-air interface), which could be excited from the developed substrate. The refractive index sensitivities of the PC-SPR and GC-SPR modes were 2924.4 and 414.9 nm RIU-1, respectively. The SPR excitations of the sensor chip exhibited a simultaneous shift when the local refractive index of the materials adjacent to the gold-coated grating prism surface was changed, especially the material that had overlapping light absorption at the SPR excitation wavelength. Using this fabrication process, the prism is designed and then printed; moreover, the grating pattern on the prism surface can be employed to tune the SPR excitation wavelength of the sensor chip for the versatility and broad perspective of the optical sensing-based SPR.
Collapse
Affiliation(s)
- Chutiparn Lertvachirapaiboon
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
8
|
Matsui K, Tanabe S, Sun S, Nguyen D, Kinoshita T, Yamamoto Y, Shiigi H. Development of Metal Nanoparticle-immobilized Microplate for High-throughput and Highly Sensitive Fluorescence Analysis. ANAL SCI 2020; 36:1461-1465. [PMID: 32779577 DOI: 10.2116/analsci.20p225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is a widespread analytical biochemistry assay. In this work, a direct ELISA method using a metallic nanoparticle (NP)-immobilized 96-well plate was developed for high-throughput, highly sensitive fluorescence analysis. Immobilization of metallic NPs on a 96-well plate effectively amplified fluorescence signals of the assay. The silver (Ag) NP-immobilized plate showed the best fluorescence enhancement effect of all the metal-immobilized plates tested. We used the Ag NP-immobilized plate to detect biomolecules and bacteria and found that both the fluorescence intensity and the limit of detection (LOD) were strongly enhanced by more than 100 times compared with those of the unmodified 96-well plates. Quantitative and qualitative considerations for target bacteria regarding the impact of autofluorescence on detection were successfully obtained for several strains. Our results demonstrate the potential of applying Ag NPs for enhancing the efficiency of direct and indirect ELISA assays.
Collapse
Affiliation(s)
- Kyohei Matsui
- Department of Applied Chemistry, Osaka Prefecture University
| | - So Tanabe
- Department of Applied Chemistry, Osaka Prefecture University
| | - Shuyi Sun
- Department of Applied Chemistry, Osaka Prefecture University
| | - Dung Nguyen
- Department of Applied Chemistry, Osaka Prefecture University
| | | | - Yojiro Yamamoto
- Department of Applied Chemistry, Osaka Prefecture University.,GreenChem. Inc
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University
| |
Collapse
|
9
|
Sun C, Liu M, Sun H, Lu H, Zhao G. Immobilization-free photoelectrochemical aptasensor for environmental pollutants: Design, fabrication and mechanism. Biosens Bioelectron 2019; 140:111352. [PMID: 31163397 DOI: 10.1016/j.bios.2019.111352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 01/21/2023]
Abstract
Atrazine (ATZ) is one of the most widely used and highly toxic triazine herbicides in the world. Photoelectrochemical (PEC) method is an attractive and sensitive alternate for ATZ. However, for conventional PEC sensors, recognition elements usually need to immobilize on electrode surface, where a complex procedure is unavoidable and the reproducibility of sensors fabrication is usually poor. Therefore, we herein proposed a new and feasible strategy for developing a signal-on immobilization-free PEC aptasensor to ATZ. Aptamer for ATZ is combined with graphene to obtain APT-GN complex, serving as the recognition element in solution. TiO2 nanotubes (NTs) electrode deposited with Au nanoparticles (NPs) is used as the substrate electrode. After further self-assembled with 1-Mercaptooctane (MCT), the photo-generated carriers transfer between the resultant electrode and the electrolyte will be blocked, leading to a signal-off of the photocurrent. But when sensing ATZ, aptamers on APT-GN will be grasped by ATZ, leaving free graphene to assemble onto MCT/Au NPs/TiO2 NTs, which will largely "turn on" the photocurrent response of the substrate electrode due to the efficient carrier transport efficiency of graphene. Meanwhile, simultaneous addition of deoxyribonuclease I (DNase I) can bring about further cycling amplification of the signal enhancement. The as-designed PEC aptasensor exhibits a linear range from 50.0 fM to 0.3 nM with detection limit of 12.0 fM for ATZ. Since the reaction of recognition elements and targets ATZ occurs in homogeneous solution rather than on the photoelectrode surface, this PEC aptasensor exhibits advantages of high stability, anti-interference ability, reproducibility, and wide pH and ion strength feasibility range. A promising immobilization-free aptasensing platform has thus been provided not only for ATZ but also for other kinds of environmental pollutants.
Collapse
Affiliation(s)
- Caiqin Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Huanhuan Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hanxing Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
10
|
Nootchanat S, Jaikeandee W, Yaiwong P, Lertvachirapaiboon C, Shinbo K, Kato K, Ekgasit S, Baba A. Fabrication of Miniature Surface Plasmon Resonance Sensor Chips by Using Confined Sessile Drop Technique. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11954-11960. [PMID: 30844226 DOI: 10.1021/acsami.9b01617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we demonstrate a simple and efficient method to fabricate miniature surface plasmon resonance (SPR) sensor chips by using confined sessile drop technique. A liquid optical adhesive (NOA 61) was dropped on the circular flat surface of cylindrical substrates made of poly(dimethylsiloxane) (PDMS). The formation of hemispherical optical prisms was accomplished by taking advantage of the sharp edges of cylindrical PDMS substrates that prevented the overflow of liquid NOA 61 at the edge of substrates. The size of the hemispherical optical prisms can be controlled by changing the diameter of the cylindrical PDMS substrates. After UV curing, the SPR sensor chips were obtained by the deposition of 3 nm thick chromium and 47 nm thick gold on the flat side of the prisms. The fabricated miniature SPR sensor chips were then mounted on a three-dimensional-printed flow cell to complete the microfluidic SPR sensor module. The miniature SPR sensor chips provided a comparable sensitivity to the conventional high-refractive-index glass SPR chips. To demonstrate the detection capability of nanometer-sized materials, we applied the miniature microfluidic SPR system for monitoring the deposition of layer-by-layer ultrathin films of poly(diallyldimethylammonium chloride)/poly(sodium 4-styrenesulfonate) and for detecting human immunoglobulin G.
Collapse
Affiliation(s)
- Supeera Nootchanat
- Graduate School of Science and Technology , Niigata University , 8050 Ikarashi 2-Nocho , Nishi-ku, Niigata 959-2181 , Japan
| | - Wisansaya Jaikeandee
- Graduate School of Science and Technology , Niigata University , 8050 Ikarashi 2-Nocho , Nishi-ku, Niigata 959-2181 , Japan
- Sensor Research Unit, Department of Chemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Patrawadee Yaiwong
- Graduate School of Science and Technology , Niigata University , 8050 Ikarashi 2-Nocho , Nishi-ku, Niigata 959-2181 , Japan
- Department of Chemistry, Faculty of Science , Chiang Mai University , Chiang Mai 50200 , Thailand
| | - Chutiparn Lertvachirapaiboon
- Graduate School of Science and Technology , Niigata University , 8050 Ikarashi 2-Nocho , Nishi-ku, Niigata 959-2181 , Japan
| | - Kazunari Shinbo
- Graduate School of Science and Technology , Niigata University , 8050 Ikarashi 2-Nocho , Nishi-ku, Niigata 959-2181 , Japan
| | - Keizo Kato
- Graduate School of Science and Technology , Niigata University , 8050 Ikarashi 2-Nocho , Nishi-ku, Niigata 959-2181 , Japan
| | - Sanong Ekgasit
- Sensor Research Unit, Department of Chemistry, Faculty of Science , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Akira Baba
- Graduate School of Science and Technology , Niigata University , 8050 Ikarashi 2-Nocho , Nishi-ku, Niigata 959-2181 , Japan
| |
Collapse
|
11
|
Casadiegos S, Bustos RH, Fontanilla MR. Comparative evaluation of healing biomarkers in skin wound exudates using a nanobiosensor and histological analysis of full-thickness skin wounds grafted with multidirectional or unidirectional artificial dermis. J Tissue Eng Regen Med 2018; 12:2299-2308. [PMID: 30350342 DOI: 10.1002/term.2762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/02/2018] [Accepted: 10/18/2018] [Indexed: 11/11/2022]
Abstract
Analysis of factors that play a role on the healing process in exudates from skin wounds might shed light on the effect that grafted artificial tissue has in wound regeneration and repair. The first objective of this work was to standardize an optic surface plasmon resonance method based on self-assembled monolayers to quantify healing mediator factors (angiopoietin-2, epidermal growth factor, tumour necrosis factor-α, transforming growth factor-β1, and vascular endothelial growth factor) in wound exudates. Optimal conditions for self-assembling of alkanethiol monolayers, immobilization of antibodies antifactors, and regeneration of sensor surfaces were established. A second objective was to compare healing of wounds grafted with artificial dermis with wounds left to heal by secondary intention (control) in a lagomorph model of full-thickness skin wound. Each animal included in this study had a control wound and an identical contralateral wound grafted with artificial dermis that was made by seeding autologous skin fibroblasts into unidirectional or multidirectional collagen type I scaffolds. Histological and histomorphometric analyses were carried out when animals were sacrificed, in addition to quantifying the factors in the exudates of wounds sampled 3 days after surgery. There were significant differences between the concentrations of evaluated factors in the exudates from grafted and control wounds. This finding coincides with differences observed in the histological and histomorphometric analyses of repaired tissue formed in treated and control wounds.
Collapse
Affiliation(s)
- Sergio Casadiegos
- Tissue Engineering Group, Department of Pharmacy, National University of Colombia, Bogotá, Colombia
| | - Rosa Helena Bustos
- Tissue Engineering Group, Department of Pharmacy, National University of Colombia, Bogotá, Colombia
| | - Marta R Fontanilla
- Tissue Engineering Group, Department of Pharmacy, National University of Colombia, Bogotá, Colombia
| |
Collapse
|
12
|
Recent Developments in Enzyme, DNA and Immuno-Based Biosensors. SENSORS 2018; 18:s18061924. [PMID: 29899282 PMCID: PMC6021829 DOI: 10.3390/s18061924] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022]
Abstract
Novel sensitive, rapid and economical biosensors are being developed in a wide range of medical environmental and food applications. In this paper, we review some of the main advances in the field over the past few years by discussing recent studies from literature. A biosensor, which is defined as an analytical device consisting of a biomolecule, a transducer and an output system, can be categorized according to the type of the incorporated biomolecule. The biomolecules can be enzymes, antibodies, ssDNA, organelles, cells etc. The main biosensor categories classified according to the biomolecules are enzymatic biosensors, immunosensors and DNA-based biosensors. These sensors can measure analytes produced or reduced during reactions at lower costs compared to the conventional detection techniques. Numerous types of biosensor studies conducted over the last decade have been explored here to reveal their key applications in medical, environmental and food industries which provide comprehensive perspective to the readers. Overviews of the working principles and applications of the reviewed sensors are also summarized.
Collapse
|
13
|
Lago S, Nadai M, Rossetto M, Richter SN. Surface Plasmon Resonance kinetic analysis of the interaction between G-quadruplex nucleic acids and an anti-G-quadruplex monoclonal antibody. Biochim Biophys Acta Gen Subj 2018; 1862:1276-1282. [PMID: 29524541 PMCID: PMC5988565 DOI: 10.1016/j.bbagen.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND G-quadruplexes (G4s) are nucleic acids secondary structures formed in guanine-rich sequences. Anti-G4 antibodies represent a tool for the direct investigation of G4s in cells. Surface Plasmon Resonance (SPR) is a highly sensitive technology, suitable for assessing the affinity between biomolecules. We here aimed at improving the orientation of an anti-G4 antibody on the SPR sensor chip to optimize detection of binding antigens. METHODS SPR was employed to characterize the anti-G4 antibody interaction with G4 and non-G4 oligonucleotides. Dextran-functionalized sensor chips were used both in covalent coupling and capturing procedures. RESULTS The use of two leading molecule for orienting the antibody of interest allowed to improve its activity from completely non-functional to 65% active. The specificity of the anti-G4 antobody for G4 structures could thus be assessed with high sensitivity and reliability. CONCLUSIONS Optimization of the immobilization protocol for SPR biosensing, allowed us to determine the anti-G4 antibody affinity and specificity for G4 antigens with higher sensitivity with respect to other in vitro assays such as ELISA. Anti-G4 antibody specificity is a fundamental assumption for the future utilization of this kind of antibodies for monitoring G4s directly in cells. GENERAL SIGNIFICANCE The heterogeneous orientation of amine-coupling immobilized ligands is a general problem that often leads to partial or complete inactivation of the molecules. Here we describe a new strategy for improving ligand orientation: driving it from two sides. This principle can be virtually applied to every molecule that loses its activity or is poorly immobilized after standard coupling to the SPR chip surface.
Collapse
Affiliation(s)
- Sara Lago
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
| |
Collapse
|
14
|
Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples. Biosens Bioelectron 2018. [PMID: 29522968 DOI: 10.1016/j.bios.2018.02.051] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although surface plasmon resonance (SPR) technique and aptamer technology shows great potential in analytical and biological chemistry, direct capture and analysis of small molecules using SPR remains tough. Detection sensitivity of aptasensor and recognition ability of aptamer is limited, because direct immobilization of aptamer causes large steric hindrance and strand entanglement. Herein, we chose a typical small molecule-tetracycline (Mw. 444.4 g/mol) as a model, and combined aptamer technology, DNA nanostructure, and commercial Biacore T200 SPR instrument to develop a straightforward format SPR aptasensor. Anti-tetracycline aptamer (Apt76) was fabricated on the top of a tetrahedron nanostructure to provide a better accessibility to tetracycline than the single-stranded Apt76 (ss-Apt76), and thus to improve sensitivity of the SPR aptasensor. The aptasensor was then validated in real world application for tetracycline screening in multiple honey samples, achieving good recovery rates of 80.20-114.3%, intuitive sensorgrams indicating the binding kinetic properties, and high specificity towards tetracycline. LOD of the tetrahedron-based SPR aptasensor was obtained using the real honey sample and calculated to be 0.0069 μg/kg, which was 10-fold range lower than that of the ss-Apt76-based aptasensor. The proof-of-concept demonstrated that aptamers of small molecules can be oriented immobilized on the SPR surface in a uniform nanoscale distance in both lateral and vertical direction, so as to achieve better conformational folding and better accessibility to small molecules. The concept is promising to be a universal and powerful tool for other ligand immobilization and SPR studies for both real world detection and molecular interaction.
Collapse
|