1
|
Wang Y, Huang Y, Liu X, Kang C, Wu W. Rapid detection of drug abuse via tear analysis using surface enhanced Raman spectroscopy and machine learning. Sci Rep 2025; 15:1108. [PMID: 39774298 PMCID: PMC11707011 DOI: 10.1038/s41598-025-85451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
With the growing global challenge of drug abuse, there is an urgent need for rapid, accurate, and cost-effective drug detection methods. This study introduces an innovative approach to drug abuse screening by quickly detecting ephedrine (EPH) in tears using drop coating deposition-surface enhanced Raman spectroscopy (DCD-SERS) combined with machine learning (ML). Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the average concentration of EPH in tear fluid of Sprague-Dawley (SD) rats, measured over 3 h post-injection, was 1235 ng/mL. DCD-SERS effectively identified EPH in tear samples, with distinct Raman peaks observed at 1001 cm-1 and 1242 cm-1. To enable rapid analysis of complex SERS data, three ML algorithms-linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), and random forest (RF)-were employed. These algorithms achieved over 90% accuracy in distinguishing between EPH-injected and non-injected SD rats, with area under the ROC curve (AUC) values ranging from 0.9821 to 0.9911. This approach offers significant potential for law enforcement by being easily accessible, non-invasive and ethically appropriate for examinees, while being rapid, accurate, and affordable for examiners.
Collapse
Affiliation(s)
- Yingbin Wang
- Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, 134 Dongjie Rd, Fuzhou, 350001, Fujian, China
| | - Yulong Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaobao Liu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Chishan Kang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenjie Wu
- Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, 134 Dongjie Rd, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Ranasinghe JC, Wang Z, Huang S. Unveiling brain disorders using liquid biopsy and Raman spectroscopy. NANOSCALE 2024; 16:11879-11913. [PMID: 38845582 PMCID: PMC11290551 DOI: 10.1039/d4nr01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.
Collapse
Affiliation(s)
- Jeewan C Ranasinghe
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Ziyang Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
3
|
Thomas KM, Ajithaprasad S, N M, Pavithran M S, Chidangil S, Lukose J. Raman spectroscopy assisted tear analysis: A label free, optical approach for noninvasive disease diagnostics. Exp Eye Res 2024; 243:109913. [PMID: 38679225 DOI: 10.1016/j.exer.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
In recent times, tear fluid analysis has garnered considerable attention in the field of biomarker-based diagnostics due to its noninvasive sample collection method. Tears encompass a reservoir of biomarkers that assist in diagnosing not only ocular disorders but also a diverse list of systemic diseases. This highlights the necessity for sensitive and dependable screening methods to employ tear fluid as a potential noninvasive diagnostic specimen in clinical environments. Considerable research has been conducted to investigate the potential of Raman spectroscopy-based investigations for tear analysis in various diagnostic applications. Raman Spectroscopy (RS) is a highly sensitive and label free spectroscopic technique which aids in investigating the molecular structure of samples by evaluating the vibrational frequencies of molecular bonds. Due to the distinct chemical compositions of different samples, it is possible to obtain a sample-specific spectral fingerprint. The distinctive spectral fingerprints obtained from Raman spectroscopy enable researchers to identify specific compounds or functional groups present in a sample, aiding in diverse biomedical applications. Its sensitivity to changes in molecular structure or environment provides invaluable insights into subtle alterations associated with various diseases. Thus, Raman Spectroscopy has the potential to assist in diagnosis and treatment as well as prognostic evaluation. Raman spectroscopy possesses several advantages, such as the non-destructive examination of samples, remarkable sensitivity to structural variations, minimal prerequisites for sample preparation, negligible interference from water, and the aptness for real-time investigation of tear samples. The purpose of this review is to highlight the potential of Raman spectroscopic technique in facilitating the clinical diagnosis of various ophthalmic and systemic disorders through non-invasive tear analysis. Additionally, the review delves into the advancements made in Raman spectroscopy with regards to paper-based sensing substrates and tear analysis methods integrated into contact lenses. Furthermore, the review also addresses the obstacles and future possibilities associated with implementing Raman spectroscopy as a routine diagnostic tool based on tear analysis in clinical settings.
Collapse
Affiliation(s)
- Keziah Mary Thomas
- Dr. Agarwal's Eye Hospital and Eye Research Centre, Chennai, Tamil Nadu, India
| | - Sreeprasad Ajithaprasad
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanoop Pavithran M
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
4
|
Harris G, Stickland CA, Lim M, Goldberg Oppenheimer P. Raman Spectroscopy Spectral Fingerprints of Biomarkers of Traumatic Brain Injury. Cells 2023; 12:2589. [PMID: 37998324 PMCID: PMC10670390 DOI: 10.3390/cells12222589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient's biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 (σ2 = 0.000164) and the highest for sulfatide (σ2 = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.
Collapse
Affiliation(s)
- Georgia Harris
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Clarissa A. Stickland
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Lim
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
5
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
6
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
7
|
Derivative Three-Dimensional Synchronous Fluorescence Analysis of Tear Fluid and Their Processing for the Diagnosis of Glaucoma. SENSORS 2022; 22:s22155534. [PMID: 35898036 PMCID: PMC9331211 DOI: 10.3390/s22155534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Background: Sensitive and rapid diagnosis of the early stages of glaucoma from tear fluid is a great challenge for researchers. Methods: Tear fluid was analyzed using three-dimensional synchronous fluorescence spectroscopy (3D-SFS). Our previously published results briefly describe the main methods which applied the second derivative to a selected synchronous spectrum Δλ = 110 nm in distinguishing between healthy subjects (CTRL) and patients with glaucoma (POAG). Results: In this paper, a novel strategy was used to evaluate three-dimensional spectra from the tear fluid database of our patients. A series of synchronous excitation spectra were processed as a front view and presented as a single curve showcasing the overall fluorescence profile of the tear fluid. The second derivative spectrum provides two parameters that can enhance the distinction between CTRL and POAG tear fluid. Conclusions: Combining different types of 3D-SFS data can offer interesting and useful diagnostic tools and it can be used as input for machine learning and process automation.
Collapse
|
8
|
Acri G, Micali A, D’Angelo R, Puzzolo D, Aragona P, Testagrossa B, Aragona E, Wylegala E, Nowinska A. Raman Spectroscopic Study of Amyloid Deposits in Gelatinous Drop-like Corneal Dystrophy. J Clin Med 2022; 11:jcm11051403. [PMID: 35268494 PMCID: PMC8911144 DOI: 10.3390/jcm11051403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
The genetic and histopathological features of the cornea of a Polish patient with Gelatinous Drop-like Corneal Dystrophy (GDCD) and the molecular composition with Raman spectroscopy of corneal deposits were examined. A 62 year-old Polish woman was diagnosed with GDCD and underwent penetrating corneal transplant. A blood sample was collected, and genetic analysis was performed. The cornea was processed for light microscopy and Raman analysis. The genetic exam revealed a previously undescribed homozygous 1-base pair deletion in exon 1 of TACSTD2 gene (c.185delT), resulting in a frame shift causing a premature stop codon. When compared with a control cornea, in GDCD cornea stained with PAS evident deposits were present over the anterior stroma, with apple green birefringence under polarized light. Raman spectroscopy showed peculiar differences between normal and GDCD cornea, consisting in peaks either of different height or undetectable in the normal cornea and related to amyloid. The possible causative role of the novel mutation was discussed and Raman spectroscopy as a further morphological tool in the evaluation of corneal dystrophies, characterized by the deposition of abnormal materials, was suggested.
Collapse
Affiliation(s)
- Giuseppe Acri
- Department of Biomedical Sciences, Section of Physics, University of Messina, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Antonio Micali
- Department of Adult and Pediatric Pathology, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-90-2213630
| | - Rosalia D’Angelo
- Department of Biomedical Sciences, Section of Biology and Genetics, University of Messina, 98125 Messina, Italy;
| | - Domenico Puzzolo
- Department of Biomedical Sciences, Section of Histology and Embryology, University of Messina, 98125 Messina, Italy;
| | - Pasquale Aragona
- Department of Biomedical Sciences, Eye Clinic, Regional Referral Center for the Ocular Surface Diseases, University of Messina, 98125 Messina, Italy;
| | - Barbara Testagrossa
- Department of Biomedical Sciences, Section of Physics, University of Messina, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, 20132 Milan, Italy;
| | - Edward Wylegala
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-555 Katowice, Poland; (E.W.); (A.N.)
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
| | - Anna Nowinska
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-555 Katowice, Poland; (E.W.); (A.N.)
| |
Collapse
|
9
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
10
|
Romano I, Camerlingo C, Vaccari L, Birarda G, Poli A, Fujimori A, Lepore M, Moeller R, Di Donato P. Effects of Ionizing Radiation and Long-Term Storage on Hydrated vs. Dried Cell Samples of Extremophilic Microorganisms. Microorganisms 2022; 10:190. [PMID: 35056640 PMCID: PMC8782055 DOI: 10.3390/microorganisms10010190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
A main factor hampering life in space is represented by high atomic number nuclei and energy (HZE) ions that constitute about 1% of the galactic cosmic rays. In the frame of the "STARLIFE" project, we accessed the Heavy Ion Medical Accelerator (HIMAC) facility of the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. By means of this facility, the extremophilic species Haloterrigena hispanica and Parageobacillus thermantarcticus were irradiated with high LET ions (i.e., Fe, Ar, and He ions) at doses corresponding to long permanence in the space environment. The survivability of HZE-treated cells depended upon either the storage time and the hydration state during irradiation; indeed, dry samples were shown to be more resistant than hydrated ones. With particular regard to spores of the species P. thermantarcticus, they were the most resistant to irradiation in a water medium: an analysis of the changes in their biochemical fingerprinting during irradiation showed that, below the survivability threshold, the spores undergo to a germination-like process, while for higher doses, inactivation takes place as a consequence of the concomitant release of the core's content and a loss of integrity of the main cellular components. Overall, the results reported here suggest that the selected extremophilic microorganisms could serve as biological model for space simulation and/or real space condition exposure, since they showed good resistance to ionizing radiation exposure and were able to resume cellular growth after long-term storage.
Collapse
Affiliation(s)
- Ida Romano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (I.R.); (A.P.)
| | - Carlo Camerlingo
- SuPerconducting and Other INnovative Materials and Devices Institute, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy;
| | - Lisa Vaccari
- Elettra—Sincrotrone Trieste S.C.p.A. S.S., 14 km 163,5 in Area Science Park, Basovizza, 34149 Trieste, Italy; (L.V.); (G.B.)
| | - Giovanni Birarda
- Elettra—Sincrotrone Trieste S.C.p.A. S.S., 14 km 163,5 in Area Science Park, Basovizza, 34149 Trieste, Italy; (L.V.); (G.B.)
| | - Annarita Poli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (I.R.); (A.P.)
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba 263-8555, Japan;
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania “L. Vanvitelli”, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy;
| | - Ralf Moeller
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, DLR, Linder Höhe, D-51147 Köln, Germany; or
- Natural Sciences Department, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - Paola Di Donato
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy; (I.R.); (A.P.)
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale—Isola C4, 80143 Napoli, Italy
| |
Collapse
|
11
|
Wu W, Huang S, Xie X, Chen C, Yan Z, Lv X, Fan Y, Chen C, Yue F, Yang B. Raman spectroscopy may allow rapid noninvasive screening of keratitis and conjunctivitis. Photodiagnosis Photodyn Ther 2021; 37:102689. [PMID: 34933166 DOI: 10.1016/j.pdpdt.2021.102689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/30/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Keratitis and conjunctivitis are the most common ocular diseases, their symptoms are similar and easy to confuse, however infectious conjunctivitis is highly contagious. If misdiagnosed, it may worsen the disease and pose a threat to public health.This is a preclinical study to propose a method for rapid and accurate screening of keratitis and conjunctivitis by combining tear Raman spectroscopy with deep learning models that may be applied to clinical applications in the future.The tears of 16 cases of keratitis patients, 13 cases of conjunctivitis patients and 46 cases of healthy subjects were collected, and their Raman spectra were compared and analyzed. By adding different decibels of Gaussian white noise to expand the data, the performance of the tear Raman spectra with a large sample size in the deep learning model was discussed. Principal component analysis (PCA), partial least squares (PLS) and maximum correlation minimum redundancy (mRMR) were used for feature extraction. The processed data were imported into convolutional neural network (CNN) and recurrent neural network (RNN) depth models for classification. After the data were enhanced and processed by PLS, the highest classification accuracy of healthy subjects and keratitis patients, healthy subjects and conjunctivitis patients, and keratitis and conjunctivitis patients reached 94.8%, 95.4%, and 92.7%, respectively. The results of this study show that the use of large sample tear Raman spectra data combined with PLS feature extraction and depth learning algorithms may have great potential in clinical screening of keratitis and conjunctivitis.
Collapse
Affiliation(s)
- Wei Wu
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060 China
| | - Xiaodong Xie
- People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Ophthalmology, Urumqi 830001, China.
| | - Cheng Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Ziwei Yan
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; Key Laboratory of signal detection and processing, Xinjiang University, Urumqi 830046, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi 830046, China; Key Laboratory of signal detection and processing, Xinjiang University, Urumqi 830046, China
| | - Yangyang Fan
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; Key Laboratory of signal detection and processing, Xinjiang University, Urumqi 830046, China
| | - Feilong Yue
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Bo Yang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
12
|
Abstract
The common approach of the diagnosis of Alzheimer’s Disease (AD) is made with an analysis of the cerebrospinal fluid or the study of retinal fundus and the plaques formation through optical corneal tomography (OCT), or more simply with a fundus camera. Tears analysis is widely discussed in literature as an essential method to describe molecular and biochemical alterations in different diseases. The aim of our study was the identification with immunocytochemistry of Amyloid Beta-42 in tears from patients with or without familiarity for Alzheimer Disease, in order to make the diagnosis earlier and more accessible compared to other invasive methods. Our study was performed on tears from three phenotypically healthy subjects: two of them were Caucasian with Alzheimer familiarity (48 and 55 years old) and the other one was Asian without Alzheimer familiarity (45 years old) and affected by an adenoviral keratoconjunctivitis at the moment of withdrawal. Tear samples were collected from eye fornix and were examinated by immunocytochemistry (ICC) assay using anti-Amyloid Beta X-42 antibody. Two out of three tears samples showed positive Amyloid Beta-42. Considering that our patients were phenotypically healthy, the identification of Amyloid Beta-42 by ICC could be a candidable method to make the diagnosis of the disease earlier and more accessible and available then other current and invasive methods and it could be a candidate for a screening method too.
Collapse
|
13
|
Cennamo G, Montorio D, Morra VB, Criscuolo C, Lanzillo R, Salvatore E, Camerlingo C, Lisitskiy M, Delfino I, Portaccio M, Lepore M. Surface-enhanced Raman spectroscopy of tears: toward a diagnostic tool for neurodegenerative disease identification. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-12. [PMID: 32767890 PMCID: PMC7406892 DOI: 10.1117/1.jbo.25.8.087002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/23/2020] [Indexed: 05/31/2023]
Abstract
SIGNIFICANCE A noninvasive method based on surface-enhanced Raman spectroscopy (SERS) of tears was proposed as a support for diagnosing neurodegenerative pathologies, including different forms of dementia and Alzheimer's disease (AD). In this field, timely and reliable discrimination and diagnosis are critical aspects for choosing a valid medical therapy, and new methods are highly required. AIM The aim is to evince spectral differences in SERS response of human tears from AD affected, mild cognitive impaired (MCI), and healthy control (Ctr) subjects. APPROACH Human tears were characterized by SERS coupled with multivariate data analysis. Thirty-one informed subjects (Ctr, MCI, and AD) were considered. RESULTS Average SERS spectra from Ctr, MCI, and AD subjects evidenced differences related to lactoferrin and lysozyme protein components. Quantitative changes were also observed by determining the intensity ratio between selected bands. We also constructed a classification model that discriminated among AD, MCI, and Ctr subjects. The model was built using the scores obtained by performing principal component analysis on specific spectral regions (i-PCA). CONCLUSIONS The results are very encouraging with interesting perspectives for medical applications as support of clinical diagnosis and discrimination of AD from other forms of dementia.
Collapse
Affiliation(s)
- Gilda Cennamo
- Universitá “Federico II” di Napoli, Dipartimento di Sanitá Pubblica, Napoli, Italy
| | - Daniela Montorio
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Vincenzo Brescia Morra
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Chiara Criscuolo
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Roberta Lanzillo
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Elena Salvatore
- Universitá “Federico II” di Napoli, Dipartimento di Neuroscienze e Sci. Riproduttive e Odontostomatologiche, Napoli, Italy
| | - Carlo Camerlingo
- CNR-SPIN, Ist. Superconduttori, Materiali Innovativi e Dispositivi, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Mikhail Lisitskiy
- CNR-SPIN, Ist. Superconduttori, Materiali Innovativi e Dispositivi, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Ines Delfino
- Universitá della Tuscia, Dipartimento di Scienze Ecologiche e Biologiche, Viterbo, Italy
| | - Marianna Portaccio
- Universitá della Campania “L. Vanvitelli,” Dipartimento di Medicina Sperimentale, Napoli, Italy
| | - Maria Lepore
- Universitá della Campania “L. Vanvitelli,” Dipartimento di Medicina Sperimentale, Napoli, Italy
| |
Collapse
|
14
|
Camerlingo C, Di Meo G, Lepore M, Lisitskiy M, Poli A, Portaccio M, Romano I, Di Donato P. Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure. SENSORS 2020; 20:s20154150. [PMID: 32722541 PMCID: PMC7435614 DOI: 10.3390/s20154150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Monitoring the spore life cycle is one of the main issues in several fields including environmental control, sustainable ecosystems, food security, and healthcare systems. In this framework, the study of the living organism resistance to extreme conditions like those mimicking space environments is particularly interesting. The assessment of the local change of the pH level can be extremely useful for this purpose. An optical physiometer method based on the Raman response of the graphene, which is able to locally sense pH of a fluid on a micrometric scale, has been recently proposed. Due to the presence of π-bonds at the surface, the electronic doping of graphene is determined by the external conditions and can be electrochemically controlled or altered by the contact with an acid or alkaline fluid. The doping level affects the vibrational energies of the graphene that can be monitored by conventional Raman spectroscopy. In addition, Surface-Enhanced Raman Spectroscopy (SERS) can give direct information on the biochemical changes occurring in spore components. In this work, we propose the joint use of Graphene-Based Raman Spectroscopy (GbRS) and SERS for the monitoring of the response of spores to exposure to low temperatures down to 100 K. The spores of the thermophilic bacterium Parageobacillus thermantarcticus isolated from an active volcano of Antarctica (Mt. Melbourne) were investigated. These spores are particularly resistant to several stressing stimuli and able to adapt to extreme conditions like low temperatures, UV irradiation, and γ-rays exposure. The results obtained showed that the joint use of GbRS and SERS represents a valuable tool for monitoring the physio-chemical response of bacterial spores upon exposure to stressing stimuli.
Collapse
Affiliation(s)
- Carlo Camerlingo
- CNR-SPIN, Institute for Superconductivity, Innovative Materials and Devices, 80078 Pozzuoli, Italy; (C.C.); (M.L.)
| | - Giuseppe Di Meo
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy; (G.D.M.); (A.P.); (I.R.); (P.D.D.)
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania “L. Vanvitelli”, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy;
- Correspondence:
| | - Mikhail Lisitskiy
- CNR-SPIN, Institute for Superconductivity, Innovative Materials and Devices, 80078 Pozzuoli, Italy; (C.C.); (M.L.)
| | - Annarita Poli
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy; (G.D.M.); (A.P.); (I.R.); (P.D.D.)
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania “L. Vanvitelli”, Via S. Maria di Costantinopoli 16, 80138 Napoli, Italy;
| | - Ida Romano
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy; (G.D.M.); (A.P.); (I.R.); (P.D.D.)
| | - Paola Di Donato
- CNR-ICB, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy; (G.D.M.); (A.P.); (I.R.); (P.D.D.)
- Dipartimento di Scienze e Tecnologie, Università Parthenope di Napoli, Centro Direzionale Isola C/4, 80143 Napoli, Italy
| |
Collapse
|
15
|
Raman Analysis of Tear Fluid Alteration Following Contact Lense Use. SENSORS 2019; 19:s19153392. [PMID: 31382386 PMCID: PMC6695878 DOI: 10.3390/s19153392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/17/2022]
Abstract
Tear fluid is a heterogeneous solution containing mainly proteins, lipids, mucins and electrolytes, which regulates the physiology of the human eye. The complex composition of tears can be altered in the presence of eye inflammations. The use of contact lenses is one of the most frequent causes of inflammatory responses of the eye, with the related discomfort often causing the wearer to give up using them. In this paper, we exploit the potentiality of Raman Spectroscopy to analyse the biochemical changes in tear fluid in a contact lens wearer. In particular, we analysed the tear fluid collected from a volunteer as a function of the wearing time for two types of monthly contact lenses (Hydrogel and Si-Hydrogel). Our experimental results show an alteration of the relative concentrations of proteins and lipids in both of the analysed cases. More importantly, our results highlight the diagnostic sensitivity of Raman analysis to select the proper contact lens type for each wearer and optimise the lens wearing conditions.
Collapse
|