1
|
Zheng J, Wang X, Huang R, Xian P, Cui J, Amo A, Chen L, Han Y, Hou S, Yang Y. Integration of comparative cytology, ionome, transcriptome and metabolome provide a basic framework for the response of foxtail millet to Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137684. [PMID: 40007366 DOI: 10.1016/j.jhazmat.2025.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/28/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Apart from directly affecting the growth and development of crops, Cd in the soil can easily enter the human body through the food chain and pose a threat to human health. Therefore, understanding the toxicity of Cd to specific crops and the molecular mechanisms of their response to Cd is essential. In this study, hydroponic experiments were utilized to study the response of foxtail millet to Cd stress through phenotypic investigation, enzyme activity determination, ultrastructure, ionome, transcriptome and metabolome. With the increase in cadmium concentration, both the growth and photosynthetic capacity of foxtail millet seedlings are severely inhibited. The ultrastructure of cells is damaged, cells are deformed, chloroplasts swell and disappear, and cell walls thicken. Cd stress affects the absorption, transport, and redistribution of beneficial metal ions in the seedlings. Multi-omics analysis reveals the crucial roles of glycolysis, glutathione metabolism and phenylpropanoid and lignin biosynthesis pathways in Cd detoxification via energy metabolism, the antioxidant system and cell wall changes. Finally, a schematic diagram of foxtail millet in response to Cd stress was we preliminarily drew. This work provides a basic framework for further revealing the molecular mechanism of Cd tolerance in foxtail millet.
Collapse
Affiliation(s)
- Jie Zheng
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Xinyue Wang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Rong Huang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Peiyu Xian
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Jian Cui
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA.
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yuanhuai Han
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Siyu Hou
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Yang Yang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| |
Collapse
|
2
|
Malik K, Iftikhar A, Maqsood Q, Tariq MR, Ali SW. Cleaner horizons: Exploring advanced technologies for pollution remediation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00890. [PMID: 40255475 PMCID: PMC12008138 DOI: 10.1016/j.btre.2025.e00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 04/22/2025]
Abstract
Soil pollution causes many harmful effects by its contaminants or pollutants, which are known as soil pollutants. They are causing serious problems in plants as well as in humans. By entering into plants, harmful chemicals become part of the food chain. When humans consume contaminated food, it has harmful effects on human health. Pollutants are making soil unfit for living. Many techniques are being used for the remediation of soil pollution. Some are traditional techniques; some are innovative and effective as emerging science and technology are going on. In this review, we have discussed some significant methods, their aspects, and how they are playing their role in the remediation. Biological methods such as living organisms, chemical, and genetic manipulation are modern techniques that are being used for soil pollution remediation. Genetic manipulations sometimes change the enzyme processes, which enhance the whole activity by changing some of the proteins of organisms related to enzymes. Pollution remediation can be done by the process of bio-augmentation, which uses different types of strains of microbes for treatment. As there is an increase in the formation of OH compounds, advanced oxidation technologies are being introduced to treat them. Trace metals and heavy metals are also a big problem for soil pollution, which can be treated by phytoremediation techniques that use many different strategies. Nanoparticles are also being used for the treatment of compounds like nitrates, manganese, arsenic, etc. This review will guide you through the different technologies for soil pollution remediation.
Collapse
Affiliation(s)
- Khadija Malik
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Ashja Iftikhar
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Tariq
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Zhang X, Shao M, Peng W, Qu H, Han X, Xing H. BnDREB1 confers cadmium tolerance in ramie. Sci Rep 2025; 15:11662. [PMID: 40185939 PMCID: PMC11971442 DOI: 10.1038/s41598-025-96051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Cadmium (Cd) is a toxic heavy metal whose contamination in soil threatens food safety, agricultural production, and human health. To date, phytoremediation is a low-cost and environmentally friendly method for eliminating Cd contamination. In this study, we report a gene from ramie (Boehmeria nivea) that encodes a dehydration responsive element binding (DREB) factor associated with plant tolerance to Cd, namely BnDREB1. The open reading frame of BnDREB1 comprises 873 bp encoding 290 amino acids and includes a characteristic AP2 domain. Its cloned promoter sequence contains various hormone and stress responsive elements. Quantitative RT-PCR analysis showed that BnDREB1 is expressed in different organs of ramie. Treatments with polyethylene glycol (PEG), abscisic acid (ABA), and Cd upregulated the expression of BnDREB1. Confocal microscopic analysis revealed that BnDREB1 is mainly localized in the nucleus. Overexpression of BnDREB1 in Arabidopsis thaliana increased the tolerance of transgenic plants to Cd, thereby protecting plant growth from its toxicity. Biochemical analysis revealed that overexpression of BnDREB1 reduced the levels of Cd induced malonaldehyde and hydrogen peroxide, inhibited the reduction of Cd caused soluble protein contents, increased the Cd accumulation, and enhanced Cd translocation in transgenic plants. Taken together, these findings suggest that BnDREB1 is an appropriate candidate gene for phytoremediation of Cd-contaminated soil .
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
- Gansu Agricultural Engineering Technology Research Institute, Lanzhou, 730030, China
| | - Mingyu Shao
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
| | - Wenxian Peng
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
| | - Hongyue Qu
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
| | - Xinran Han
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China
| | - Hucheng Xing
- Ramie Research Institute of Hunan Agricultural University, Changsha, 410128, China.
- Hunan Key Laboratory of Germplasm Resources Innovation and Resource Utilization, Changsha, 410128, China.
- Hunan Provincial Engineering Technology Research Center of Grass Crop Germplasm Innovation and Utilization, Changsha, 410128, China.
| |
Collapse
|
4
|
Oztas T, Akar M, Virkanen J, Beier C, Goericke-Pesch S, Peltoniemi O, Kareskoski M, Björkman S. Concentrations of arsenic (As), cadmium (Cd) and lead (Pb) in blood, hair and semen of stallions in Finland. J Trace Elem Med Biol 2025; 89:127633. [PMID: 40122019 DOI: 10.1016/j.jtemb.2025.127633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Heavy metal contamination poses significant environmental and health risks to both humans and animals. This study investigates the concentrations of arsenic (As), cadmium (Cd), and lead (Pb) in blood, hair, and semen samples collected from 16 breeding stallions in Western Finland to assess whether concentrations in hair and serum samples represent concentrations in semen. The analysis was conducted using an inductively coupled plasma mass spectrometry (ICP-MS) system. Results showed that hair samples exhibited the highest concentrations of heavy metals, particularly Pb and As, while semen showed the lowest levels. No significant correlations were found between the concentrations of heavy metals in blood and semen, or between hair and semen, indicating that blood and hair may not reliably predict metal content in semen. This study is the first to compare Pb, As, and Cd levels in hair, blood, and semen of Finnish stallions and highlights hair as a promising non-invasive biomarker of heavy metal exposure. The results underline hair's potential as a reliable long-term biomarker due to its ability to accumulate metals over time.
Collapse
Affiliation(s)
- Turkan Oztas
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland.
| | - Melih Akar
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland.
| | - Juhani Virkanen
- Department of Geosciences and Geography, Research programme of Geology and Geophysics (GeoHel), University of Helsinki, Helsinki, Finland.
| | - Christoph Beier
- Department of Geosciences and Geography, Research programme of Geology and Geophysics (GeoHel), University of Helsinki, Helsinki, Finland.
| | - Sandra Goericke-Pesch
- Unit for Reproductive Medicine, Stiftung Tierärztliche Hochschule Hannover, University of Hannover, Germany.
| | - Olli Peltoniemi
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland.
| | - Maria Kareskoski
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland.
| | - Stefan Björkman
- Faculty of Veterinary Medicine, Department of Production Animal Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Humane SK, Badge Y, Humane SS, Gajbhiye P, T DAK, Juare SG. Trace metal contamination in core sediments of Pandharabodi Lake, Central India: eco-environmental implications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:377. [PMID: 40067467 DOI: 10.1007/s10661-025-13835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
Freshwater lakes in central India like Pandharabodi Lake (PBL), face escalating environmental pressures due to anthropogenic activities, threatening their ecological conditions. Despite growing concerns, systematic investigations on trace metal pollution in the PBL sediments are so far not done, hindering effective conservation strategies. The present study aims to evaluate temporal distribution, enrichment, and potential eco-environmental risks of 14 trace metals (Al, Fe, Mn, Zn, Cu, Cr, Ni, Pb, Co, U, V, Rb, Th, and Sc) in the PBL core sediments. A sediment core from the deepest part of the PBL along with 06 soil samples around the lake was collected and analyzed for trace metal concentrations using X-ray fluorescence (XRF) technique. The metal pollution was assessed using enrichment factor (EF), Index of geo-accumulation (Igeo), contamination factor (CF), ecological risk factor (Er), potential ecological risk index (PERI), and multivariate statistical analyses. The geochemical study of trace metals in the vertical profile, pollution indices, and statistical assessment revealed low to moderate pollution in the core sediments of the lake. The highest contamination factor (CF) values were observed at 8 cm core depth for Cu indicating "considerable pollution", while Fe, Mn, Al, Co, Cr, V, Zn, Ni, and Sc show "moderate pollution". The maximum enrichment factor (EF) values were recorded at 32 cm core depth for Rb and at 24 cm for U indicating "moderate enrichment". The mean geo-accummulation index (Igeo) values for Cu show that the PBL core sediments had "low level of pollution" by Cu, while remaining metals show the unpolluted nature of sediments. The estimated potential ecological risk index (PERI) showed "low potential risk" for aquatic organisms and plants due to its low value (< 150), i.e., < 66.80 in 100% of samples in consideration of eco-environmental risk. The principal component analysis (PCA)/factor analysis (FA), correlation coefficients, and hierarchical cluster analysis (HCA) showed that Cu had considerable contamination in the PBL core sediments due to anthropogenic activities like particulate matters released from adjoining iron and steel plant and opencast coal mine in addition to its origin from the geogenic (natural) sources like weathering and erosion of basalts and soils present in the catchment area. The present findings provide valuable insights for policymakers, contributing to the development of effective conservation strategies for freshwater lakes in central India and other tropical regions.
Collapse
Affiliation(s)
- Sumedh K Humane
- Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Law College Square, Nagpur, 440001, Maharashtra, India
| | - Yogita Badge
- Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Law College Square, Nagpur, 440001, Maharashtra, India
| | - Samaya S Humane
- Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Law College Square, Nagpur, 440001, Maharashtra, India.
| | - Pranit Gajbhiye
- Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Law College Square, Nagpur, 440001, Maharashtra, India
| | - Dileep Abdul Kalam T
- Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Law College Square, Nagpur, 440001, Maharashtra, India
| | - Snehal G Juare
- Department of Geology, Yashwantrao Chawhan Arts Commerce and Science College, Lakhandur, 441803, Maharashtra, India
| |
Collapse
|
6
|
Ren H, Xiang Y, Zhang A, Zhao H, Tian H, Guo X, Zheng Y, Zhang B. Optimization and Mechanism of Ca 2+ Biosorption by Virgibacillus pantothenticus Isolated from Gelatine Wastewater. Pol J Microbiol 2025; 74:19-32. [PMID: 40146791 PMCID: PMC11949390 DOI: 10.33073/pjm-2025-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/24/2024] [Indexed: 03/29/2025] Open
Abstract
Gelatine-processing wastewater contains much residual sludge due to its high calcium ion concentration and chemical oxygen demand. In this study, N3-4, a microbial strain with excellent calcium tolerance capacity, was screened and identified as Virgibacillus pantothenticus using morphological observation, physiological and biochemical testing, and 16S rRNA sequence analysis. Its growth characteristics were investigated, and the maximum adsorption of calcium reached 572.43 μg/g under the optimal conditions (contact time, 72.68 min; biomass dosage, 1.3 g/l; initial calcium concentration, 142.01 mg/l). Conditions were optimized using response surface methodology and structural characterization. The structure of the bacterial pellets was altered from flat to rough, accompanied by bulges and sediments after Ca2+ treatment, according to structural characterization. Energy-dispersive X-ray spectroscopy of the bacterial precipitates under calcium(II) treatment revealed the immobilization of Ca2+ species on the bacterial cell surface. The results indicate that -OH, -NH2, C≡C, C=O, -CH2, -C-O-, and -C-N groups play a significant role in calcium dispersion on the surface of V. pantothenticus.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
- China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, Lanzhou, P. R. China
| | - Yumeng Xiang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Aili Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Hongyuan Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Hui Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
- China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, Lanzhou, P. R. China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, United States
| | - Bingyun Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| |
Collapse
|
7
|
Aliza D, Zuki FM, Hassan CRC, Suhendrayatna S, Javanmard A. Potential use of Escherichia coli and Aeromonas hydrophila as bioremediation agents for CuSO 4 and ZnCl 2 water pollution: insights from AAS and histopathological analysis of Oreochromis mossambicus. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:338. [PMID: 40016595 DOI: 10.1007/s10661-025-13755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
This study investigates the potential of Escherichia coli and Aeromonas hydrophila as bioremediation agents for removing copper (Cu) and zinc (Zn) from contaminated water. Although Cu and Zn are necessary in trace levels, excessive amounts can be harmful and can linger in aquatic environments, endangering the food chain. Bioremediation using microorganisms offers an alternative method for mitigating heavy metal pollution. In this study, 126 tilapia fish (Oreochromis mossambicus) were exposed to CuSO4 and ZnCl2 for 15 days, followed by treatment with E. coli and A. hydrophila. Atomic absorption spectrometry (AAS) revealed that both bacterial treatments reduced copper and zinc accumulation in fish organs, though they did not fully heal external lesions. Histopathological analysis showed significant reductions in melanomacrophage centers (MMC), cell necrosis, cell dissociation, and vacuolization in fish liver tissue after bacterial treatment, particularly at concentrations of 2.5 mg.L-1 and 5 mg.L-1 for CuSO4 and 7.5 mg.L-1 for ZnCl2. These findings suggest that E. coli and A. hydrophila have the potential to be developed as effective bioremediation agents for CuSO4 and ZnCl2 pollution in aquatic environments.
Collapse
Affiliation(s)
- Dwinna Aliza
- Health, Safety and Environment, Department of Chemical Engineering, Universiti Malaya, Engineering Faculty, Kuala Lumpur, Malaysia
- Pathology Laboratory, Veterinary Medicine Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Fathiah Mohamed Zuki
- Department of Chemical Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
- Health, Safety and Environment, Department of Chemical Engineering, Universiti Malaya, Engineering Faculty, Kuala Lumpur, Malaysia.
| | | | - Suhendrayatna Suhendrayatna
- Pathology Laboratory, Veterinary Medicine Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemical Engineering, Engineering Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Arash Javanmard
- Department of Chemical Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Lo Medico F, Rizzo P, Rotigliano E, Celico F. Groundwater Contamination: Study on the Distribution and Mobility of Metals and Metalloids in Soil and Rocks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:182. [PMID: 40003408 PMCID: PMC11855521 DOI: 10.3390/ijerph22020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
This study investigates the distribution and mobility of metals and metalloids (M&Ms) in soils, rocks, and groundwater within the geologically complex southwestern region of Sicily. The study aims to highlight how natural sources, like rocks and soils, can release elements potentially harmful to human health. It underlines their dual role as both natural reservoirs and active sources of M&M release, driven by leaching processes influenced by physicochemical factors such as pH and redox potential (Eh). Lithological characteristics significantly influence the retention and release of elements, with clay-rich formations exhibiting higher immobilization capacity. However, environmental parameter variations can enhance element mobilization, increasing bioavailability and the risk of groundwater contamination. Water quality analyses reveal regulatory exceedances for As, B, Ni, and Be, underscoring potential health and ecological risks. Concurrently, microbiological investigations identify diverse microbial communities capable of altering the oxidative states of specific elements through oxidation and reduction processes, further influencing their mobility. This study underscores the importance of understanding natural sources of M&Ms and their interactions with geochemical and microbiological processes for effective environmental risk assessment. The findings provide a foundation for developing integrated and sustainable water resource management strategies to mitigate contamination risks and safeguard ecosystems and public health.
Collapse
Affiliation(s)
- Federica Lo Medico
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy; (F.L.M.); (E.R.)
| | - Pietro Rizzo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Edoardo Rotigliano
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy; (F.L.M.); (E.R.)
| | - Fulvio Celico
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
9
|
Nieścioruk MJ, Bandrow P, Szufa S, Woźniak M, Siczek K. Biomass-Based Hydrogen Extraction and Accompanying Hazards-Review. Molecules 2025; 30:565. [PMID: 39942668 PMCID: PMC11819887 DOI: 10.3390/molecules30030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Nowadays, there is an increased demand for energy, the access to which, however, is limited due to the decreasing of fossil sources and the need to reduce emissions, especially carbon dioxide. One possible remedy for this situation is using hydrogen as a source of green energy. Hydrogen is usually bound to other chemical elements and can be separated via energy-intensive few-step conversion processes. A few methods are involved in separating H2 from biomass, including biological and thermochemical (TC) ones. Such methods and possible hazards related to them are reviewed in this study.
Collapse
Affiliation(s)
- Mariusz J. Nieścioruk
- Mjniescioruk AEI, Traktorowa Str. 55/34, 91-111 Lodz, Poland;
- Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo Str. 3, 61-138 Poznań, Poland
| | - Paulina Bandrow
- The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland;
- BADER Polska Sp. z o.o., Mostowa 1 St., 59-700 Bolesławiec, Poland
| | - Szymon Szufa
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - Marek Woźniak
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (M.W.); (K.S.)
| | - Krzysztof Siczek
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (M.W.); (K.S.)
| |
Collapse
|
10
|
Yovchevska L, Gocheva Y, Stoyancheva G, Miteva-Staleva J, Dishliyska V, Abrashev R, Stamenova T, Angelova M, Krumova E. Halophilic Fungi-Features and Potential Applications. Microorganisms 2025; 13:175. [PMID: 39858943 PMCID: PMC11767630 DOI: 10.3390/microorganisms13010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Extremophiles are of significant scientific interest due to their unique adaptation to harsh environmental conditions and their potential for diverse biotechnological applications. Among these extremophiles, filamentous fungi adapted to high-salt environments represent a new and valuable source of enzymes, biomolecules, and biomaterials. While most studies on halophiles have focused on bacteria, reports on filamentous fungi remain limited. This review compiles information about salt-adapted fungi and details their distribution, adaptation mechanisms, and potential applications in various societal areas. Understanding the adaptive mechanisms of halophilic fungi not only sheds light on the biology of extremophilic fungi but also leads to promising biotechnological applications, including the development of salt-tolerant enzymes and strategies for bioremediation of saline habitats. To fully realize this potential, a comprehensive understanding of their ecology, diversity and physiology is crucial. In addition, understanding their survival mechanisms in saline environments is important for the development of astrobiology. The significant potential of applications of halophilic fungi is highlighted.
Collapse
Affiliation(s)
- Lyudmila Yovchevska
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Yana Gocheva
- Departament of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (Y.G.); (G.S.)
| | - Galina Stoyancheva
- Departament of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (Y.G.); (G.S.)
| | - Jeny Miteva-Staleva
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Vladislava Dishliyska
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Radoslav Abrashev
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Tsvetomira Stamenova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Maria Angelova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Ekaterina Krumova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| |
Collapse
|
11
|
Mao X, Ahmad B, Hussain S, Azeem F, Waseem M, Alhaj Hamoud Y, Shaghaleh H, Abeed AHA, Rizwan M, Yong JWH. Microbial assisted alleviation of nickel toxicity in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117669. [PMID: 39788037 DOI: 10.1016/j.ecoenv.2025.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Nickel (Ni) is required in trace amounts (less than 500 µg kg-1) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases. Due to anthropogenic activities, the nickel concentrations in various environmental scenarios have progressively risen to levels as high as 26,000 ppm in soil and 0.2 mg L-1 in water; surpassing the established safety threshold limits of 100 ppm for soil and 0.005 ppm for surface water. Nickel is required by various plant species for facilitating biological processes; in the range of 0.01-5 µg g-1 (dry weight). When present in excess, nickel toxicity in plants (10-1000 mg kg-1 dry weight mass) causes many disrupted metabolic processes; leading to lower growth, altered development, hindered seed germination, chlorosis, and necrosis. To tackle any metal-linked pollution issues, various remediation approaches are employed to remove heavy metals (especially nickel) and metalloids including physicochemical, and biological methods. Based on literature, the physicochemical methods are not commonly used due to their costly nature and the potential for producing secondary pollutants. Interestingly, bioremediation is considered by many practitioners as an easy-to-handle, efficient, and cost-effective approach, encompassing techniques such as phytoremediation, bioleaching, bioreactors, green landforming, and bio-augmentation. Operationally, phytoremediation is widely utilized for cleaning up contaminated sites. To support the phytoremediative processes, numerous nickel hyperaccumulating plants have been identified; these species can absorb from their surroundings and store high concentrations of nickel (through various mechanisms) in their biomass, thereby helping to detoxify nickel-contaminated soils via phytoextraction. The microbe-assisted phytoremediation further optimizes the nickel detoxification processes by fostering beneficial interactions between microbes and the nickel-hyperaccumulators; promoting enhanced metal uptake, transformation, and sequestration. Microbe-assisted phytoremediation can be categorized into four subtypes: bacterial-assisted phytoremediation, cyanoremediation, mycorrhizal-assisted remediation, and rhizoremediation. These diverse approaches are likely to offer more effective and sustainable remediative strategy to ecologically restore the nickel-contaminated environments.
Collapse
Affiliation(s)
- Xinyu Mao
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Bilal Ahmad
- Molecular, Cellular, and Developmental Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing 210098, China
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| |
Collapse
|
12
|
Kaur H, Katyal P, Chandel S, Singh D, Kumar P, Choudhary M. Microbes mediated alleviation of chromium (Cr VI) stress for improved phytoextraction in fodder maize ( Zea mays L.) cultivar. Heliyon 2024; 10:e40361. [PMID: 39669136 PMCID: PMC11636098 DOI: 10.1016/j.heliyon.2024.e40361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
This study investigates the potential of chromium (VI) resistant bacterial isolates to alleviate heavy metal stress in fodder maize plants and enhance phytoremediation. Twenty-one bacterial strains were isolated from contaminated water, with five strains; Bacillus thuringiensis (BHR1), Bacillus cereus (BHR2), Enterobacter cloacae (BHR4), Bacillus pumilus (BHR5), and Bacillus altitudinis (BHR6) selected based on their significant plant-growth promoting (PGP) traits and heavy metal tolerance. Under chromium (Cr VI) stress, the BHR1 strain significantly improved seed germination, seedling length and vigor index of fodder maize variety (J 1007) especially at 150 mg/L Cr (VI), where these parameters increased by 3.75, 3.23 and 6.44 folds, respectively. After 60 days, BHR1 also enhanced shoot and root lengths by 4.91 and 4.06 folds, respectively and increase fresh and dry biomass, especially at higher Cr (VI) concentrations. Photosynthetic pigments, chlorophyll a and b, were also elevated by 3.04 and 2.26 times, respectively. Additionally, BHR1 reduced oxidative stress markers, including proline and malondialdehyde (MDA), and decreased electrolyte leakage, thus improving membrane stability. The strain further increased antioxidant enzyme activities and chromium uptake in root and shoot tissues, enhancing the translocation factor by 95 %. This suggests that BHR1 can significantly promote fodder maize growth and accelerate chromium removal from contaminated soil, offering valuable insights into plant-microbe interactions under Cr (VI) stress.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Priya Katyal
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Sumita Chandel
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Dhanwinder Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Pardeep Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, 141004, Punjab, India
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana, 141004, Punjab, India
| |
Collapse
|
13
|
Jiang Z, Wan X, Bai X, Chen Z, Zhu L, Feng J. Cd indirectly affects the structure and function of plankton ecosystems by affecting trophic interactions at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136242. [PMID: 39442296 DOI: 10.1016/j.jhazmat.2024.136242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The toxic effects of potentially toxic elements have been observed at low concentrations; however, many studies have focused on single-species toxicity testing. Consequently, it is imperative to quantify toxicity at the community level at environmental concentrations. A microcosm approach was employed in conjunction with the Lotka-Volterra model to ascertain the impact of environmentally relevant concentrations of cadmium (Cd) on plankton abundance, community function, and stability. The results demonstrated that Cd led to a reduction in the abundance of Daphnia magna, yet unexpectedly resulted in an increase in the abundance of Brachionus calyciflorus and Paramecium caudatum. Additionally, Cd was observed to impede primary productivity, metabolic capacity and the stability of the planktonic community. Further model analyses revealed that the environmental concentration of Cd directly reduced intrinsic growth rates and intraspecific interactions. In particular, we found that the predation effects of Daphnia magna on Brachionus calyciflorus were significantly weakened. The findings of this study offer quantitative evidence that Cd exposure exerts an indirect influence on the structure and functioning of plankton ecosystems, mediated by alterations in trophic interactions. The findings indicate that the impact of environmental concentrations of potentially toxic elements may be underestimated in single-species experiments.
Collapse
Affiliation(s)
- Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuhao Wan
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhongzhi Chen
- InnoTech Alberta, Hwy 16A & 75 Street, P.O. Box 4000, Vegreville, AB T9C 1T4, Canada
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Lahori AH, Tunio M, Ahmed SR, Mierzwa-Hersztek M, Vambol V, Afzal A, Kausar A, Vambol S, Umar A, Muhammad A. Role of pressmud compost for reducing toxic metals availability and improving plant growth in polluted soil: Challenges and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175493. [PMID: 39142404 DOI: 10.1016/j.scitotenv.2024.175493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Pressmud compost is an organic soil amendment and a robust technology that has potential to restore toxic metals (TMs) polluted soil. The application of organic amendments including pressmud compost in soil for toxic metals (TMs) alleviation have gained considerable attention as compared to traditional methods among the scientific community. In this review paper, we summarized the literature aiming to understand the immobilization efficacy of TMs such as cadmium, lead, chromium, copper, nickel, iron, zinc, and manganese, underlying mechanisms, plant growth, essential nutrients and soil health under pot, field and incubation conditions which has not been well investigated up-to-date. The application of pressmud compost at 10 t ha-1 rate has shown highly potential to reduce the bioavailability and bioaccumulation of TMs in the polluted soil. The immobilization mechanism of TMs in soil depends on soil pH, soil type, cation exchange capacity, hydraulic conditions, nutrients dynamics and soil properties. The application of pressmud compost integrated with biochar, compost, rock phosphate, farmyard manure, bagasse ash, molasses immobilized the cadmium, lead, copper, chromium, nickel and zinc in alkaline polluted soil, whereas pressmud compost combined with poultry manure and farmyard manure increased the bioavailability of lead, cadmium, cobalt, chromium, copper, zinc, iron and manganese in acidic soil, it could be due to aging of pressmud compost, application rate, metal type, nature of soil, particle size, application method, plant type and agronomic practices. There is a lack of knowledge on the phyto-management of arsenic, mercury and boron in soil amended with pressmud compost. Future studies must be focused on potential of pressmud compost co-amended with minerals, modified biochars and nano-material for immobilization of TMs in polluted soil-plant through machine learning/artificial intelligence in order to reduce the health risks and improve public health safety in urban and rural areas.
Collapse
Affiliation(s)
- Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan.
| | - Maira Tunio
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Samreen Riaz Ahmed
- Department of English, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| | - Viola Vambol
- Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Lublin, Poland; Department of Applied Ecology and Environmental Sciences, National University "Yuri Kondratyuk Poltava Polytechnic", Poltava, Ukraine
| | - Ambreen Afzal
- National Institute of Maritime Affairs, Bahria University Karachi Campus, 75260, Pakistan
| | - Anila Kausar
- Department of Geography, University of Karachi, Pakistan
| | - Sergij Vambol
- Department of Occupational and Environmental Safety, National Technical University Kharkiv Polytechnic Institute, Kharkiv, Ukraine
| | - Aqsa Umar
- Department of Computer Science, Sindh Madressatul Islam University, Karachi, Pakistan
| | - Atif Muhammad
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Pakistan
| |
Collapse
|
15
|
Misra SK, Kumar A, Pathak K, Kumar G, Virmani T. Role of Genetically Modified Microorganisms for Effective Elimination of Heavy Metals. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9582237. [PMID: 39553392 PMCID: PMC11568892 DOI: 10.1155/2024/9582237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Heavy metals are lethal and hazardous pollutants for the ecosystem owing to their virtues including acute toxicity, prolonged persistence, and bioaccumulation. These contaminants are not only a threat to aquatic/terrestrial biota but also pose serious health issues to humans. Natural and anthropologic processes consistently upsurge heavy metal concentration beyond acceptable limits and mobilization and hence disturb biogeochemical cycles and the food chain, although several conventional strategies including adsorption, chemical precipitation, ion exchange, and membrane separation methods are being employed for the removal of these lethal heavy metals from the ecosystem but failed due to lower efficiency rates and high application charges. The current scenario highly demands advanced biosorption or bioaccumulation processes that slow down heavy metal mobilization within the acceptable limit in the ecosystem. Genetically modified microorganisms (GMMs) with desired features are developed through interdisciplinary participation of genomics, molecular microbiology, and bioinformatics that have more potential to bioremediate heavy metals than the native microbes from polluted ecosystems. The study focuses on different sources of heavy metals, their impact on the ecosystem, and the bioremediation of toxic heavy metals via GMMs.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University 208024, Kanpur, Uttar Pradesh, India
| | - Ajay Kumar
- School of Pharmaceutical Sciences, CSJM University 208024, Kanpur, Uttar Pradesh, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences Saifai 206130, Etawah, India
| | - Girish Kumar
- Amity Institute of Pharmacy, Amity University, Greater Noida, Uttar Pradesh, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
Pandey K, Saharan BS, Kumar R, Jabborova D, Duhan JS. Modern-Day Green Strategies for the Removal of Chromium from Wastewater. J Xenobiot 2024; 14:1670-1696. [PMID: 39584954 PMCID: PMC11587030 DOI: 10.3390/jox14040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent form of chromium [Cr(VI)] is particularly toxic and carcinogenic, linked to severe health issues such as cancer, kidney disorders, liver failure, and environmental biomagnification. Due to the high risks associated with chromium contamination in potable water, researchers have focused on developing effective removal strategies. Among these strategies, biosorption has emerged as a promising, cost-effective, and energy-efficient method for eliminating toxic metals, especially chromium. This process utilizes agricultural waste, plants, algae, bacteria, fungi, and other biomass as adsorbents, demonstrating substantial potential for the remediation of heavy metals from contaminated environments at minimal cost. This review paper provides a comprehensive analysis of various strategies, materials, and mechanisms involved in the bioremediation of chromium, along with their commercial viability. It also highlights the advantages of biosorption over traditional chemical and physical methods, offering a thorough understanding of its applications and effectiveness.
Collapse
Affiliation(s)
- Komal Pandey
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India;
| | - Baljeet Singh Saharan
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India;
- Department of Microbiology, Kurukshetra University, Kurukshetra 136 119, India
- USDA-ARS Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA 99164-6430, USA
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125 055, India;
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Qibray 111 208, Uzbekistan;
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125 055, India;
| |
Collapse
|
17
|
Yuan S, Yu H, Guo Y, Xie Y, Cheng Y, Qian H, Yao W. Recent advance in probiotics for the elimination of pesticide residues in food and feed: mechanisms, product toxicity, and reinforcement strategies. Crit Rev Food Sci Nutr 2024; 64:12025-12039. [PMID: 37584269 DOI: 10.1080/10408398.2023.2246545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The extensive utilization of pesticides in agriculture has resulted in the presence of pesticide residues in food and feed, which poses a significant threat to human health. Various physical and chemical methods have been proposed to remove pesticides, but most of these methods are either costly or susceptible to secondary contamination. Consequently, the utilization of microorganisms, such as probiotics, for eliminating pesticides, has emerged as a promising alternative. Probiotics, including lactic acid bacteria, yeasts, and fungi, have demonstrated remarkable efficiency and convenience in eliminating pesticide residues from food or feed. To promote the application of probiotic decontamination, this review examines the current research status on the utilization of probiotics for pesticide reduction. The mechanisms involved in microbial decontamination are discussed, along with the toxicity and potential health risks of degradation products. Furthermore, the review explores strategies to enhance probiotic detoxification and outlines prospects for future development.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Vinayagam Y, Rajeswari VD. Genetic Adaptations and Mechanistic Insights Into Bacterial Bioremediation in Ecosystems. J Basic Microbiol 2024; 64:e2400387. [PMID: 39245917 DOI: 10.1002/jobm.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Metal pollution poses significant threats to the ecosystem and human health, demanding effective remediation strategies. Bioremediation, which leverages the unique metal-resistant genes found in bacteria, offers a cost-effective and efficient solution to heavy metal contamination. Genes such as Cad, Chr, Cop, and others provide pathways to improve the detoxification of the ecosystem. Through multiple techniques, genetic engineering makes bacterial genomes more capable of improving metal detoxification; nonetheless, there are still unanswered questions regarding the nature of new metal-resistant genes. This article examines bacteria's complex processes to detoxify toxic metals, including biosorption, bioaccumulation, bio-precipitation, and bioleaching. It also explores essential genes, proteins, signaling mechanisms, and bacterial biomarkers involved in breaking toxic metals.
Collapse
Affiliation(s)
- Yamini Vinayagam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vijayarangan Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
19
|
Zhang B, Hu X, Zhao D, Wang Y, Qu J, Tao Y, Kang Z, Yu H, Zhang J, Zhang Y. Harnessing microbial biofilms in soil ecosystems: Enhancing nutrient cycling, stress resilience, and sustainable agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122973. [PMID: 39437688 DOI: 10.1016/j.jenvman.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Soil ecosystems are complex networks of microorganisms that play pivotal roles in nutrient cycling, stress resilience, and the provision of ecosystem services. Among these microbial communities, soil biofilms, and complex aggregations of microorganisms embedded within extracellular polymeric substances (EPS) exert significant influence on soil health and function. This review delves into the dynamics of soil biofilms, highlighting their structural intricacies and the mechanisms by which they facilitate nutrient cycling, and discusses how biofilms enhance the degradation of pollutants through the action of extracellular enzymes and horizontal gene transfer, contributing to soil detoxification and fertility. Furthermore, the role of soil biofilms in stress resilience is underscored, as they form symbiotic relationships with plants, bolstering their growth and resistance to environmental stressors. The review also explores the ecological functions of biofilms in enhancing soil structure stability by promoting aggregate formation, which is crucial for water retention and aeration. By integrating these insights, we aim to provide a comprehensive understanding of the multifaceted benefits of biofilms in soil ecosystems. This knowledge is essential for developing strategies to manipulate soil biofilms to improve agricultural productivity and ecological sustainability. This review also identifies research gaps and emphasizes the need for practical applications of biofilms in sustainable agriculture.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoying Hu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuping Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhonghui Kang
- Longjiang Environmental Protection Group Co.,Ltd., Harbin, 150050, PR China
| | - Hongqi Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingyi Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
20
|
Rahim HU, Allevato E, Stazi SR. Sulfur-functionalized biochar: Synthesis, characterization, and utilization for contaminated soil and water remediation-a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122670. [PMID: 39366224 DOI: 10.1016/j.jenvman.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The development of innovative, eco-friendly, and cost-effective adsorbents is crucial for addressing the widespread issue of organic and inorganic pollutants in soil and water. Recent advancements in sulfur reagents-based materials, such as FeS, MoS2, MnS, S0, CS2, Na2S, Na2S2O32-, H2S, S-nZVI, and sulfidated Fe0, have shown potential in enhancing the functional properties and elemental composition of biochar for pollutant removal. This review explores the synthesis and characterization of sulfur reagents/species functionalized biochar (S-biochar), focusing on factors like waste biomass attributes, pyrolysis conditions, reagent adjustments, and experimental parameters. S-biochar is enriched with unique sulfur functional groups (e.g., C-S, -C-S-C, C=S, thiophene, sulfone, sulfate, sulfide, sulfite, elemental S) and various active sites (Fe, Mn, Mo, C, OH, H), which significantly enhance its adsorption efficiency for both organic pollutants (e.g., dyes, antibiotics) and inorganic pollutants (e.g., metal and metalloid ions). The literature analysis reveals that the choice of feedstock, influenced by its lignocellulosic content and xylem structure, critically impacts the effectiveness of pollutant removal in soil and water. Pyrolysis parameters, including temperature (200-600 °C), duration (2-10 h), carbon-to-hydrogen (C:H) and oxygen-to-hydrogen (O:H) ratios in biochar, as well as the biochar-to-sulfur reagent modification ratio, play key roles in determining adsorption performance. Additionally, solution pH (2-8) and temperature (288, 298, and 308 K) affect the efficiency of pollutant removal, though optimal dosages for adsorbents remain inconsistent. The primary removal mechanisms involve physisorption and chemisorption, encompassing adsorption, reduction, degradation, surface complexation, ion exchange, electrostatic interactions, π-π interactions, and hydrogen bonding. This review highlights the need for further research to optimize synthesis protocols and to better understand the long-term stability and optimal dosage of S-biochar for practical environmental applications.
Collapse
Affiliation(s)
- Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
21
|
Ooi QE, Nguyen CTT, Laloo AE, Koh YZ, Swarup S. Soil-sediment connectivity through Bayesian source tracking in an urban naturalised waterway via microbial and isotopic markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175152. [PMID: 39097031 DOI: 10.1016/j.scitotenv.2024.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/27/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Riverine sediments are important habitats for microbial activity in naturalised waterways to provide potential ecosystem services that improve stormwater quality. Yet, little is known about the sources of these sediment microbes, and the factors shaping them. This study investigated the dominant source of sediments in a tropical naturalised urban waterway, using two Bayesian methods for microbial and isotopic 13C/15N markers concurrently. Additionally, key factors shaping microbial communities from the surrounding landscape were evaluated. A comprehensive two-year field survey identified source land covers of interest based on topology and soil context. Among these land covers, riverbanks were the dominant source of sediments contribution for both edaphic and microbial components. The physico-chemical environment explains most of the variation in sediment communities compared to inter-location distances and microbial source contribution. As microbes provide ecosystem services important for rewilding waterways, management strategies that establish diverse sediment microbial communities are encouraged. Since riverbanks play a disproportionately important role in material contribution to sediment beds, management practices aimed at controlling soil erosion from riverbanks can improve overall functioning of waterway systems.
Collapse
Affiliation(s)
- Qi En Ooi
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| | - Canh Tien Trinh Nguyen
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Centre for Radiation Research Education and Innovation, The University of Adelaide, 5005, Australia
| | - Andrew Elohim Laloo
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore.
| | - Yi Zi Koh
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Sanjay Swarup
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
22
|
Nowruzi B, Ghazi S, Norouzi R, Norouzi R. The impact of plasma-activated water on the process of nickel bioremediation by Neowestiellopsis persica A1387. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117101. [PMID: 39357379 DOI: 10.1016/j.ecoenv.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Cyanobacteria provide an economical, feasible, and environmentally friendly solution for heavy metal removal. In addition, plasma can facilitate the removal of heavy metals across various time frames. In this study, we applied plasma-activated water (PAW) to prepare Neowestiellopsis persica A1387 strain medium culture for 0, 10, 15, and 20 min via an Atmospheric Cold Plasma Jet device (ACPJ-17A). Nickel removal efficiency was evaluated after 48 hours of cultivation under controlled conditions at 0, 10, 30, 60, and 90 min. Further investigation was performed through FTIR, GC-MS, and XRD techniques. Statistical analysis of ANOVA and Tukey's test indicated that the samples treated for 15 min had the highest biomass dry weight, polysaccharide content, and nickel removal rate (p ≤ 0.05). The GC-MS analysis presented elevated concentrations of ethanol, 1,3-dimethylbenzene, acetic acid, 3-methylbutyl ester, aromatic chemicals, 2-methyl-1-propanol, and 3-octen-2-ol in all samples treated with plasma. The functional group analysis using the FT-IR approach showed increased peak intensities with more extended treatment periods, indicating the addition of methyl, methylene, and hydroxyl groups to the cyanobacterium cell wall. Furthermore, a peak at 468 cm⁻¹ wavelength was observed, correlating to the Ni-O stretching mode after absorption of Ni on the cyanobacterium surface. The XRD data exhibited prominent peaks in all diffraction patterns angles below 20 degrees, suggesting the presence of amorphous and non-crystalline chemical structures within the cyanobacterial structures. The peak intensity increased with longer treatment durations. The 15-min plasma treatment optimized Ni removal, but the efficiency decreased with prolonged exposure due to adverse effects such as increased reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University Science and Research Branch, Tehran, Iran.
| | - Shokoofeh Ghazi
- Department of Microbiology, Faculty of New Sciences and Technologies, Islamic Azad University, Medical Research Branch, Tehran, Iran
| | - Radin Norouzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Rambod Norouzi
- Department of Molecular Biosciences, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
23
|
Basit A, Andleeb S, Liaqat I, Ashraf N, Ali S, Naseer A, Nazir A, Kiyani F. Characterization of heavy metal-associated bacteria from petroleum-contaminated soil and their resistogram and antibiogram analysis. Folia Microbiol (Praha) 2024; 69:975-991. [PMID: 38319458 DOI: 10.1007/s12223-024-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
The aim of the current study was to screen and identify heavy metal (chromium, cadmium, and lead) associated bacteria from petroleum-contaminated soil of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan to develop ecofriendly technology for contaminated soil remediation. The petroleum-contaminated soil was collected from 99 different localities of district Muzaffarabad and the detection of heavy metals via an atomic absorption spectrometer. The isolation and identification of heavy metals-associated bacteria were done via traditional and molecular methods. Resistogram and antibiogram analysis were also performed using agar well diffusion and agar disc diffusion methods. The isolated bacteria were classified into species, i.e., B. paramycoides, B. albus, B. thuringiensis, B. velezensis, B. anthracis, B. pacificus Burkholderia arboris, Burkholderia reimsis, Burkholderia aenigmatica, and Streptococcus agalactiae. All heavy metals-associated bacteria showed resistance against both high and low concentrations of chromium while sensitive towards high and low concentrations of lead in the range of 3.0 ± 0.0 mm to 13.0 ± 0.0 mm and maximum inhibition was recorded when cadmium was used. Results revealed that some bacteria showed sensitivity towards Sulphonamides, Norfloxacin, Erythromycin, and Tobramycin. It was concluded that chromium-resistant bacteria could be used as a favorable source for chromium remediation from contaminated areas and could be used as a potential microbial filter.
Collapse
Affiliation(s)
- Abdul Basit
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan.
| | - Iram Liaqat
- Department of Zoology, GC University, Lahore, Pakistan
| | - Nasra Ashraf
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Shaukat Ali
- Department of Zoology, GC University, Lahore, Pakistan
| | - Anum Naseer
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Fahad Kiyani
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| |
Collapse
|
24
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
25
|
Wu ZH, Li F, Wang F, Jin R, Li Y, Li S, Zhou Z, Jia P, Li JT. A synthetic bacterial consortium improved the phytoremediation efficiency of ryegrass on polymetallic contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116691. [PMID: 38981391 DOI: 10.1016/j.ecoenv.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Polymetallic contamination of soils caused by mining activities seriously threatens soil fertility, biodiversity and human health. Bioremediation is thought to be of low cost and has minimal environmental risk but its effectiveness needs to be improved. This study aimed to identify the combined effect of plant growth and microbial strains with different functions on the enhancement of bioremediation of polymetallic contaminated soil. The microbiological mechanism of bioremediation was explored by amplicon sequencing and gene prediction. Soil was collected from polymetallic mine wastelands and a non-contaminated site for use in a pot experiment. Remediation efficiency of this method was evaluated by planting ryegrass and applying a mixed bacterial consortium comprising P-solubilizing, N-fixing and SO4-reducing bacteria. The plant-microbe joint remediation method significantly enhanced the above-ground biomass of ryegrass and soil nutrient contents, and at the same time reduced the content of heavy metals in the plant shoots and soil. The application of the composite bacterial inoculum significantly affected the structure of soil bacterial communities and increased the bacterial diversity and complexity, and the stability of co-occurrence networks. The relative abundance of the multifunctional genera to which the strains belonged showed a significant positive correlation with the soil nutrient content. Genera related to carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) cycling and heavy metal resistance showed an up-regulation trend in heavy metal-contaminated soils after the application of the mixed bacterial consortium. Also, bacterial strains with specific functions in the mixed consortium regulated the expression of genes involved in soil nutrient cycling, and thus assisted in making the soil self-sustainable after remediation. These results suggested that the remediation of heavy metal-contaminated soil needs to give priority to the use of multifunctional bacterial agents.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Feifan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Rongzhou Jin
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shilin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuang Zhou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
26
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
27
|
Baek K, Jang S, Goh J, Choi A. Salmonirosea aquatica gen. nov., sp. nov., a Novel Genus within the Family Spirosomaceae, Was Isolated from Brackish Water in the Republic of Korea. Microorganisms 2024; 12:1671. [PMID: 39203513 PMCID: PMC11356934 DOI: 10.3390/microorganisms12081671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
A Gram-stain-negative, obligately aerobic, non-motile, rod-shaped bacterial strain designated SJW1-29T was isolated from brackish water samples collected from the Seomjin River, Republic of Korea. The purpose of this study was to characterize strain SJW1-29T and determine its taxonomic position as a potential new genus within the family Spirosomaceae. The strain grew within the range of 10-30 °C (optimum, 25 °C), pH 5.0-10.0 (optimum, 7.0), and 1-4% NaCl (optimum, 3%). Phylogenetic analysis based on the 16S rRNA gene revealed that strain SJW1-29T belongs to the family Spirosomaceae and is closely related to Persicitalea jodogahamensis Shu-9-SY12-35CT (91.3% similarity), Rhabdobacter roseus R491T (90.6%), and Arundinibacter roseus DMA-K-7aT (90.0%), while the similarities to strains within the order Cytophagales were lower than 90.0%. The genome is 7.1 Mbp with a G+C content of 50.7 mol%. The use of genome-relatedness indices confirmed that this strain belongs to a new genus. The major polar lipid profile consisted of phosphatidylethanolamine, and MK-7 was the predominant menaquinone. The predominant fatty acids were summed feature 3 (C16:1ω7c and/or C16:1ω6c), iso-C15:0, iso-C17:0 3-OH, and C16:0, representing more than 80% of the total fatty acids. The phenotypic, chemotaxonomic, genetic, and phylogenetic properties suggest that strain SJW1-29T represents a novel species within a new genus in the family Spirosomaceae, for which the name Salmonirosea aquatica gen. nov., sp. nov., is proposed. The type strain of Salmonirosea aquatica is SJW1-29T (=KCTC 72493T = NBRC 114061T = FBCC-B16924T).
Collapse
Affiliation(s)
| | | | | | - Ahyoung Choi
- Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea; (K.B.); (S.J.); (J.G.)
| |
Collapse
|
28
|
Elwej A, Ghorbel I, Chaabane M, Chelly S, Boudawara T, Zeghal N. Mitigating effects of selenium and zinc on oxidative stress and biochemical and histopathological changes in lung during prenatal and lactational exposure rats to barium chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50892-50904. [PMID: 39107636 DOI: 10.1007/s11356-024-34483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Selenium (Se) and zinc (Zn) are essential trace elements with antioxidant properties, and their supplementation has been shown to be protective against the toxicity of various environmental and dietary substances. The aim of this study was to investigate the potential protective effect of selenium and zinc as adjuvants against barium (Ba) toxicity in lactating rats and their offspring. The pregnant rats were divided into six groups: the first as control; group 2 received barium (67 ppm) in the drinking water; group 3 had combined Ba + Se (0.5 mg/kg) in the diet; group 4 received Zn (50 mg/kg bw) by gavage together with Ba; groups 5 and 6, positive controls, were treated with selenium (0.5 mg/kg) and zinc (50 mg/kg bw), respectively. MDA, H2O2, AOPP, CAT, GPx, and SOD levels were measured and lung histopathology was performed. Our results showed that barium administration caused lung damage as evidenced by an increase in MDA, H2O2, and AOPP levels and a decrease in the activities of CAT, GPx, and SOD in mothers and their offspring. A decrease in lung GSH, NPSH, and MT levels was also observed. Supplementation of Ba-treated rats with Se and/or Zn significantly improved the pulmonary antioxidant status of mothers and their offspring. Histopathological examinations were also consistent with the results of biochemical parameters, suggesting the beneficial role of Se and Zn supplementation, as evidenced by less accumulation of collagen fibers as studied by hematoxylin and eosin (H&E) and Masson's trichrome staining. In conclusion, we demonstrate the adverse effects of maternal barium exposure during pregnancy and on neonatal lung health and the protective effects of selenium and zinc in preventing the adverse effects of barium exposure.
Collapse
Affiliation(s)
- Awatef Elwej
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia.
| | - Imen Ghorbel
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Mariem Chaabane
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Sabrine Chelly
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, University of Sfax, 3029, Sfax, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
29
|
Mabagala FS, Zhang T, Zeng X, He C, Shan H, Qiu C, Gao X, Zhang N, Su S. A review of amendments for simultaneously reducing Cd and As availability in paddy soils and rice grain based on meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121661. [PMID: 38991353 DOI: 10.1016/j.jenvman.2024.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Arsenic (As) and cadmium (Cd) accumulation in rice grains is a global food safety issue, and various methods and materials have been used to remove or reduce As and Cd in agricultural soils and rice grains. Despite the availability of synthesized materials capable of simultaneous As and Cd reduction from soil and rice grains, the contributions, efficiency, and main ingredients of the materials for As and Cd immobilization remain unclear. The present study first summarized the biogeochemistry of As and Cd in paddy soils and their transfer in the soil-food-human continuum. We also reviewed a series of reported inorganic and organic materials for simultaneous immobilization of As and Cd in paddy soils, and their reduction efficiency of As and Cd bioavailability were listed and compared. Based on the abovementioned materials, the study conducted a meta-analysis of 38 articles with 2565 observations to quantify the impacts of materials on simultaneous As and Cd reduction from soil and rice grains. Meta-analysis results showed that combining organic and inorganic amendments corresponded to effect sizes of -62.3% and -67.8% on As and Cd accumulation in rice grains, while the effect sizes on As and Cd reduction in paddy soils were -44.2% and -46.2%, respectively. Application of Fe based materials significantly (P < 0.05) reduced As (-54.2%) and Cd (-74.9%), accounting for the highest immobilization efficiency of As and Cd in rice grain among all the reviewed materials, outweighing S, Mn, P, Si, and Ca based materials. Moreover, precipitation, surface complexation, ion exchange, and electrostatic attraction mechanisms were involved in the co-immobilization tactics. The present study underlines the application of combined organic and inorganic amendments in simultaneous As and Cd immobilization. It also highlighted that employing Fe-incorporated biochar material may be a potential strategy for co-mitigating As and Cd pollution in paddy soils and accumulation in rice grains.
Collapse
Affiliation(s)
- Frank Stephano Mabagala
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China; Tanzania Agricultural Research Institution (TARI), TARI-Mlingano Centre, P.O. Box 5088, Tanga, Tanzania
| | - Ting Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China; Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hong Shan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| | - Cheng Qiu
- Institute of Agricultural Resources and Environment, Xizang Academy of Agricultural and Animal Husbandry Sciences, 850000, PR China
| | - Xue Gao
- Institute of Agricultural Resources and Environment, Xizang Academy of Agricultural and Animal Husbandry Sciences, 850000, PR China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, PR China
| |
Collapse
|
30
|
Tang H, Xiang G, Xiao W, Yang Z, Zhao B. Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1420408. [PMID: 39100088 PMCID: PMC11294182 DOI: 10.3389/fpls.2024.1420408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Heavy metal pollution has become a serious concern across the globe due to their persistent nature, higher toxicity, and recalcitrance. These toxic metals threaten the stability of the environment and the health of all living beings. Heavy metals also enter the human food chain by eating contaminated foods and cause toxic effects on human health. Thus, remediation of HMs polluted soils is mandatory and it needs to be addressed at higher priority. The use of microbes is considered as a promising approach to combat the adverse impacts of HMs. Microbes aided in the restoration of deteriorated environments to their natural condition, with long-term environmental effects. Microbial remediation prevents the leaching and mobilization of HMs and they also make the extraction of HMs simple. Therefore, in this context recent technological advancement allowed to use of bioremediation as an imperative approach to remediate polluted soils. Microbes use different mechanisms including bio-sorption, bioaccumulation, bioleaching, bio-transformation, bio-volatilization and bio-mineralization to mitigate toxic the effects of HMs. Thus, keeping in the view toxic HMs here in this review explores the role of bacteria, fungi and algae in bioremediation of polluted soils. This review also discusses the various approaches that can be used to improve the efficiency of microbes to remediate HMs polluted soils. It also highlights different research gaps that must be solved in future study programs to improve bioremediation efficency.
Collapse
Affiliation(s)
- Haiying Tang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guohong Xiang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Wen Xiao
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Zeliang Yang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Baoyi Zhao
- Shuangfeng Agriculture and Rural Bureau, Loudi, Hunan, China
| |
Collapse
|
31
|
Nakahata M, Sumiya A, Ikemoto Y, Nakamura T, Dudin A, Schwieger J, Yamamoto A, Sakai S, Kaufmann S, Tanaka M. Hyperconfined bio-inspired Polymers in Integrative Flow-Through Systems for Highly Selective Removal of Heavy Metal Ions. Nat Commun 2024; 15:5824. [PMID: 38992009 PMCID: PMC11239941 DOI: 10.1038/s41467-024-49869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Access to clean water, hygiene, and sanitation is becoming an increasingly pressing global demand, particularly owing to rapid population growth and urbanization. Phytoremediation utilizes a highly conserved phytochelatin in plants, which captures hazardous heavy metal ions from aquatic environments and sequesters them in vacuoles. Herein, we report the design of phytochelatin-inspired copolymers containing carboxylate and thiolate moieties. Titration calorimetry results indicate that the coexistence of both moieties is essential for the excellent Cd2+ ion-capturing capacity of the copolymers. The obtained dissociation constant, KD ~ 1 nM for Cd2+ ion, is four-to-five orders of magnitude higher than that for peptides mimicking the sequence of endogenous phytochelatin. Furthermore, infrared and nuclear magnetic resonance spectroscopy results unravel the mechanism underlying complex formation at the molecular level. The grafting of 0.1 g bio-inspired copolymers onto silica microparticles and cellulose membranes helps concentrate the copolymer-coated microparticles in ≈3 mL volume to remove Cd2+ ions from 0.3 L of water within 1 h to the drinking water level (<0.03 µM). The obtained results suggest that hyperconfinement of bio-inspired polymers in flow-through systems can be applied for the highly selective removal of harmful contaminants from the environmental water.
Collapse
Affiliation(s)
- Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan.
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan.
| | - Ai Sumiya
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, Hyogo, 679-5198, Japan
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Ibaraki, 305-8571, Japan
| | - Anastasia Dudin
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Julius Schwieger
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, 351-0198, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
32
|
Cao Y, Li Y, Jia L, Wang Q, Niu T, Yang Q, Wang Q, Zeng X, Wang R, Yue L. Long-term and combined heavy-metal contamination forms a unique microbiome and resistome: A case study in a Yellow River tributary sediments. ENVIRONMENTAL RESEARCH 2024; 252:118861. [PMID: 38579997 DOI: 10.1016/j.envres.2024.118861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Microorganisms have developed mechanisms to adapt to environmental stress, but how microbial communities adapt to long-term and combined heavy-metal contamination under natural environmental conditions remains unclear. Specifically, this study analyzed the characteristics of heavy metal composition, microbial community, and heavy metal resistance genes (MRGs) in sediments along Mang River, a tributary of the Yellow River, which has been heavily polluted by industrial production for more than 40 years. The results showed that the concentrations of Cr, Zn, Pb, Cu and As in most sediments were higher than the ambient background values. Bringing the heavy metals speciation and concentration into the risk evaluation method, two-thirds of the sediment samples were at or above the moderate risk level, and the ecological risk of combined heavy metals in the sediments decreased along the river stream. The high ecological risk of heavy metals affected the microbial community structure, metabolic pathways and MRG distribution. The formation of a HM-resistant microbiome possibly occurred through the spread of insertion sequences (ISs) carrying multiple MRGs, the types of ISs carrying MRGs outnumber those of plasmids, and the quantity of MRGs on ISs is also higher than that on plasmids. These findings could improve our understanding of the adaptation mechanism of microbial communities to long-term combined heavy metal contamination.
Collapse
Affiliation(s)
- Yu Cao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Yongjie Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Lifen Jia
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Tianqi Niu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| | - Qingqing Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Xiangpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Ruifei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| | - Lifan Yue
- Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, United Kingdom.
| |
Collapse
|
33
|
Mng'ong'o ME, Mabagala FS. Arsenic and cadmium availability and its removal in paddy farming areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121190. [PMID: 38763118 DOI: 10.1016/j.jenvman.2024.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Arsenic (As) and cadmium (Cd) accumulation in rice grain is a global concern threatening food security and safety to the growing population. As and Cd are toxic non-essential elements poisonous to animal and human at higher levels. Its accumulation in agro-ecosystems pose a public health risk to consumers of agro-ecosystem products. Due to their hazards, As and Cd sources should be cleared, avoiding entering plants and the human body. As and Cd removal in soils and grains in agro-ecosystems has been conducted by various materials (natural and synthesized), however, there are little documentation on their contribution on As and Cd removal or reduction in rice grains. This identified knowledge gap necessitate a systematically review to understand efficiency and mechanisms of As and Cd availability reduction and removal in paddy farming areas through utilization of various synthetic and modified materials. To achieve this, published peer reviewed articles between 2010 and 2024 were collected from various database i.e., Science Direct, Web of Science, Google Scholar, and Research Gate and analyzed its content in respect to As and Cd reduction and removal. Furthermore, collected data were re-analyzed to determine standardized mean differences (SMD) with 95% confidence intervals (CI). Based on 96 studies with 228 observations involving Fe, Ca, Si, and Se-based materials were identified, it was found that application of Fe, Ca, Si, and Se-based materials potentially reduced As and Cd in rice grains among various study sites and across studies. Among the studied materials, Fe-based materials observed to be more efficient compared to other utilized materials. However, there little or no information on performance of materials when used in combination and how they can improve crop productivity and soil health, thus requiring further studies. Thus, this study confirm Fe, Ca, Si, and Se modified materials have significant potential to reduce As and Cd availability in paddy farming areas and rice grains, thus necessary effort must be made to ensure materials access and availability for farmers utilization in paddy fields to reduce As and Cd accumulation.
Collapse
Affiliation(s)
- Marco E Mng'ong'o
- Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania.
| | | |
Collapse
|
34
|
He Z, Chen J, Yuan S, Chen S, Hu Y, Zheng Y, Li D. Iron Plaque: A Shield against Soil Contamination and Key to Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1476. [PMID: 38891285 PMCID: PMC11174575 DOI: 10.3390/plants13111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Soils play a dominant role in supporting the survival and growth of crops and they are also extremely important for human health and food safety. At present, the contamination of soil by heavy metals remains a globally concerning environmental issue that needs to be resolved. In the environment, iron plaque, naturally occurring on the root surface of wetland plants, is found to be equipped with an excellent ability at blocking the migration of heavy metals from soils to plants, which can be further developed as an environmentally friendly strategy for soil remediation to ensure food security. Because of its large surface-to-volume porous structure, iron plaque exhibits high binding affinity to heavy metals. Moreover, iron plaque can be seen as a reservoir to store nutrients to support the growth of plants. In this review, the formation process of iron plaque, the ecological role that iron plaque plays in the environment and the interaction between iron plaque, plants and microbes, are summarized.
Collapse
Affiliation(s)
- Zeping He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
| | - Jinyuan Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
| | - Shilin Yuan
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
| | - Sha Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China;
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China
| | - Yi Zheng
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
| | - Ding Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
35
|
Prieto-Fernández F, Lambert S, Kujala K. Assessment of microbial communities from cold mine environments and subsequent enrichment, isolation and characterization of putative antimony- or copper-metabolizing microorganisms. Front Microbiol 2024; 15:1386120. [PMID: 38855773 PMCID: PMC11160943 DOI: 10.3389/fmicb.2024.1386120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Mining activities, even in arctic regions, create waste materials releasing metals and metalloids, which have an impact on the microorganisms inhabiting their surroundings. Some species can persist in these areas through tolerance to meta(loid)s via, e.g., metabolic transformations. Due to the interaction between microorganisms and meta(loid)s, interest in the investigation of microbial communities and their possible applications (like bioremediation or biomining) has increased. The main goal of the present study was to identify, isolate, and characterize microorganisms, from subarctic mine sites, tolerant to the metalloid antimony (Sb) and the metal copper (Cu). During both summer and winter, samples were collected from Finnish mine sites (site A and B, tailings, and site C, a water-treatment peatland) and environmental parameters were assessed. Microorganisms tolerant to Sb and Cu were successfully enriched under low temperatures (4°C), creating conditions that promoted the growth of aerobic and fermenting metal(loid) tolerating or anaerobic metal(loid) respiring organism. Microbial communities from the environment and Sb/Cu-enriched microorganisms were studied via 16S rRNA amplicon sequencing. Site C had the highest number of taxa and for all sites, an expected loss of biodiversity occurred when enriching the samples, with genera like Prauserella, Pseudomonas or Clostridium increasing their relative abundances and others like Corynebacterium or Kocuria reducing in relative abundance. From enrichments, 65 putative Sb- and Cu-metabolizing microorganisms were isolated, showing growth at 0.1 mM to 10 mM concentrations and 0°C to 40°C temperatures. 16S rRNA gene sequencing of the isolates indicated that most of the putative anaerobically Sb-respiring tolerators were related to the genus Clostridium. This study represents the first isolation, to our knowledge, of putative Sb-metabolizing cold-tolerant microorganisms and contributes to the understanding of metal (loid)-tolerant microbial communities in Arctic mine sites.
Collapse
|
36
|
Enjavinejad SM, Zahedifar M, Moosavi AA, Khosravani P. Integrated application of multiple indicators and geographic information system-based approaches for comprehensive assessment of environmental impacts of toxic metals-contaminated agricultural soils and vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171747. [PMID: 38531460 DOI: 10.1016/j.scitotenv.2024.171747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Conventional monitoring and mapping approaches are laborious, expensive, and time-consuming because they need a large number of data and consequently extensive sampling and experimental operations. Therefore, due to the growing concern about the potential of contamination of soils and agricultural products with heavy metals (HMs), a field experiment was conducted on 77 farm lands in an area of 2300 ha in the southeast of Shiraz (Iran) to investigate the source of metal contamination in the soils and vegetables and to model spatial distribution of HMs (iron, Fe; manganese, Mn; copper, Cu; zinc, Zn; cadmium, Cd; nickel, Ni, and lead, Pb) over the region using geographic information system (GIS) and geostatistical (Ordinary Kriging, OK) approaches and compare the results with deterministic approaches (Inverse Distance Weighting, IDW with different weighting power). Furthermore, some ecological and health risks indices including Pollution index (PI), Nemerow integrated pollution index (NIPI), pollution load index (PLI), degree of contamination (Cdeg), modified contamination degree (mCd), PIaverage and PIvector for soil quality, multi-element contamination (MEC), the probability of toxicity (MERMQ), the potential ecological index (RI), total hazard index (THI) and total carcinogenic risk index (TCR) based on ingestion, inhalation, and dermal exposure pathways for adults and children respectively for analyzing the noncarcinogenic and carcinogenic risks were calculated. Experimental semivariogram of the mentioned HMs were calculated and theoretical models (i.e., exponential, spherical, Gaussian, and linear models) were fitted in order to model their spatial structures and to investigate the most representative models. Moreover, principal component analysis (PCA) and cluster analysis (CA) were used to identify sources of HMs in the soils. Results showed that IDW method was more efficient than the OK approach to estimate the properties and HMs contents in the soils and plants. The estimated daily intake of metals (DIM) values of Pb and Ni exceeded their safe limits. In addition, Cd was the main element responsible for ecological risk. The PIave and PIvector indices showed that soil quality in the study area is not suitable. According to mCd values, the soils classified as ultra-high contaminated for Cu and Cd, extremely high for Zn and Pb, very high, high, and very low degree of contamination for Ni, Mn, and Fe, respectively. 36, 60, and 4 % of the sampling sites had high, medium, and low risk levels with 49, 21, and 9 % probability of toxicity, respectively. The maximum health risk index (HRI) value of 20.42 with extremely high risk for children was obtained for Ni and the HI for adults and children were 0.22 and 1.55, respectively. The THI values of Pb and Cd were the highest compared to the other HMs studied, revealing a possible non-cancer risk in children associated with exposure to these metals. The routes of exposure with the greatest influence on the THI and TCR indices were in the order of ingestion > inhalation > dermal. Therefore, ingestion, as the main route of exposure, is the route of greatest contribution to health risks. PCA analysis revealed that Fe, Mn, Cu, and Ni may originate from natural sources, while Fe was appeared to be controlled by fertilizer, and Cu primarily coming from pesticide, while Cd and Pb were mainly associated with the anthropogenic contamination, atmospheric depositions, and terrific in the urban soils. While, Zn mainly originated from fertilization. Findings are vital for developing remediation approaches for controlling the contaminants distribution as well as for monitoring and mapping the quality and health of soil resources.
Collapse
Affiliation(s)
| | - Maryam Zahedifar
- Department of Range and Watershed Management (Nature Engineering), Faculty of Agriculture, Fasa University, Fasa, IR, Iran.
| | - Ali Akbar Moosavi
- Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, IR, Iran.
| | - Pegah Khosravani
- Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, IR, Iran
| |
Collapse
|
37
|
Doolotkeldieva T, Bobusheva S, Konurbaeva M. In vitro and in vivo screening of bacterial species from contaminated soil for heavy metal biotransformation activity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:315-332. [PMID: 38676363 DOI: 10.1080/03601234.2024.2343236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Heavy metals (HMs) are widely used in various industries. High concentrations of HMs can be severely toxic to plants, animals and humans. Microorganism-based bioremediation has shown significant potential in degrading and detoxifying specific HM contaminants. In this study, we cultivated a range of bacterial strains in liquid and solid nutrient medium containing different concentrations of different HMs to select and analyze bacteria capable of transforming HMs. The bacterial strains most resistant to selected HMs and exhibiting the ability to remove HMs from contaminated soils were identified. Then, the bacterial species capable of utilizing HMs in soil model experiments were selected, and their ability to transform HMs was evaluated. This study has also generated preliminary findings on the use of plants for further removal of HMs from soil after microbial bioremediation. Alcaligenes faecalis, Delftia tsuruhatensis and Stenotrophomonas sp. were selected for their ability to grow in and utilize HM ions at the maximum permissible concentration (MPC) and two times the MPC. Lysinibacillus fusiformis (local microflora) can be used as a universal biotransformation tool for many HM ions. Brevibacillus parabrevis has potential for the removal of lead ions, and Brevibacillus reuszeri and Bacillus safensis have potential for the removal of arsenic ions from the environment. The bacterial species have been selected for bioremediation to remove heavy metal ions from the environment.
Collapse
Affiliation(s)
| | - Saykal Bobusheva
- Plant Protection Department, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Mahabat Konurbaeva
- Plant Protection Department, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| |
Collapse
|
38
|
Angon PB, Islam MS, KC S, Das A, Anjum N, Poudel A, Suchi SA. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024; 10:e28357. [PMID: 38590838 PMCID: PMC10999863 DOI: 10.1016/j.heliyon.2024.e28357] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Heavy metal (HM) poisoning of agricultural soils poses a serious risk to plant life, human health, and global food supply. When HM levels in agricultural soils get to dangerous levels, it harms crop health and yield. Chromium (Cr), arsenic (As), nickel (Ni), cadmium (Cd), lead (Pb), mercury (Hg), zinc (Zn), and copper (Cu) are the main heavy metals. The environment contains these metals in varying degrees, such as in soil, food, water, and even the air. These substances damage plants and alter soil characteristics, which lowers crop yield. Crop types, growing circumstances, elemental toxicity, developmental stage, soil physical and chemical properties, and the presence and bioavailability of heavy metals (HMs) in the soil solution are some of the factors affecting the amount of HM toxicity in crops. By interfering with the normal structure and function of cellular components, HMs can impede various metabolic and developmental processes. Humans are exposed to numerous serious diseases by consuming these affected plant products. Exposure to certain metals can harm the kidneys, brain, intestines, lungs, liver, and other organs of the human body. This review assesses (1) contamination of heavy metals in soils through different sources, like anthropogenic and natural; (2) the effect on microorganisms and the chemical and physical properties of soil; (3) the effect on plants as well as crop production; and (4) entering the food chain and associated hazards to human health. Lastly, we identified certain research gaps and suggested further study. If people want to feel safe in their surroundings, there needs to be stringent regulation of the release of heavy metals into the environment.
Collapse
Affiliation(s)
- Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Shafiul Islam
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shreejana KC
- Institute of Agriculture and Animal Science, Tribhuwan University, Nepal
- Department of Plant Sciences and Plant Pathology, Faculty of Plant Science, Montana State University, Bozeman, MT, USA
| | - Arpan Das
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Nafisa Anjum
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Amrit Poudel
- Institute of Agriculture and Animal Science, Tribhuwan University, Nepal
- Department of Plant Sciences and Plant Pathology, Faculty of Plant Science, Montana State University, Bozeman, MT, USA
| | - Shaharia Akter Suchi
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
39
|
Ahmed MM, Nur AAU, Sultana S, Jolly YN, Paray BA, Arai T, Yu J, Hossain MB. Risk Assessment and Sources Apportionment of Toxic Metals in Two Commonly Consumed Fishes from a Subtropical Estuarine Wetland System. BIOLOGY 2024; 13:260. [PMID: 38666872 PMCID: PMC11047917 DOI: 10.3390/biology13040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The widespread occurrence of heavy metals in aquatic environments, resulting in their bioaccumulation within aquatic organisms like fish, presents potential hazards to human health. This study investigates the concentrations of five toxic heavy metals (Pb, Hg, Zn, Cu, and Cr) and their potential health implications in two economically important fish species (Otolithoides pama and Labeo bata) from a subtropical estuarine wetland system (Feni estuary, Bangladesh). Muscle and gill samples from 36 individual fish were analyzed using energy dispersive X-ray fluorescence (EDXRF). The results revealed that the average quantities of heavy metals in both fishes' muscle followed the declining order of Zn (109.41-119.93 mg/kg) > Cu (45.52-65.43 mg/kg) > Hg (1.25-1.39 mg/kg) > Pb (0.68-1.12 mg/kg) > Cr (0.31-5.82 mg/kg). Furthermore, Zn was found to be present in the highest concentration within the gills of both species. While the levels of Cu, Zn, and Cr in the fish muscle were deemed acceptable for human consumption, the concentrations of Pb and Hg exceeded the permissible limits (>0.5 mg/kg) for human consumption. Different risk indices, including estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and carcinogenic or target risk (TR), revealed mixed and varying degrees of potential threat to human health. According to the EDI values, individuals consuming these fish may face health risks as the levels of Zn, Cu, and Cr in the muscle are either very close to or exceed the maximum tolerable daily intake (MTDI) threshold. Nevertheless, the THQ and HI values suggested that both species remained suitable for human consumption, as indicated by THQ (<1) and HI (<1) values. Carcinogenic risk values for Pb, Cr, and Zn all remained within permissible limits, with TR values falling below the range of (10-6 to 10-4), except for Zn, which exceeded it (>10-4). The correlation matrix and multivariate principal component analysis (PCA) findings revealed that Pb and Cr primarily stemmed from natural geological backgrounds, whereas Zn, Cu, and Hg were attributed to human-induced sources such as agricultural chemicals, silver nanoparticles, antimicrobial substances, and metallic plating. Given the significance of fish as a crucial and nutritious element of a balanced diet, it is essential to maintain consistent monitoring and regulation of the levels and origins of heavy metals found within it.
Collapse
Affiliation(s)
- Md. Moudud Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - As-Ad Ujjaman Nur
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Salma Sultana
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Yeasmin N. Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei;
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Mohammad Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
40
|
Alkhanjaf AAM, Sharma S, Sharma M, Kumar R, Arora NK, Kumar B, Umar A, Baskoutas S, Mukherjee TK. Microbial strategies for copper pollution remediation: Mechanistic insights and recent advances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123588. [PMID: 38401635 DOI: 10.1016/j.envpol.2024.123588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Environmental contamination is aninsistent concern affecting human health and the ecosystem. Wastewater, containing heavy metals from industrial activities, significantly contributes to escalating water pollution. These metals can bioaccumulate in food chains, posing health risks even at low concentrations. Copper (Cu), an essential micronutrient, becomes toxic at high levels. Activities like mining and fungicide use have led to Copper contamination in soil, water, and sediment beyond safe levels. Copper widely used in industries, demands restraint of heavy metal ion release into wastewater for ecosystem ultrafiltration, membrane filtration, nanofiltration, and reverse osmosis, combat heavy metal pollution, with emphasis on copper.Physical and chemical approaches are efficient, large-scale feasibility may have drawbackssuch as they are costly, result in the production of sludge. In contrast, bioremediation, microbial intervention offers eco-friendly solutions for copper-contaminated soil. Bacteria and fungi facilitate these bioremediation avenues as cost-effective alternatives. This review article emphasizes on physical, chemical, and biological methods for removal of copper from the wastewater as well asdetailing microorganism's mechanisms to mobilize or immobilize copper in wastewater and soil.
Collapse
Affiliation(s)
- Abdulrab Ahmed M Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Sonu Sharma
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Monu Sharma
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Raman Kumar
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India.
| | - Naresh Kumar Arora
- Division of Soil and Crop Management, Central Soil Salinity Research Institute, Karnal, 133001, Haryana, India
| | - Brajesh Kumar
- Division of Soil and Crop Management, Central Soil Salinity Research Institute, Karnal, 133001, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| | | |
Collapse
|
41
|
Qin H, Wang Z, Sha W, Song S, Qin F, Zhang W. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Microorganisms 2024; 12:700. [PMID: 38674644 PMCID: PMC11052264 DOI: 10.3390/microorganisms12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Heavy metals migrate easily and are difficult to degrade in the soil environment, which causes serious harm to the ecological environment and human health. Thus, soil heavy metal pollution has become one of the main environmental issues of global concern. Plant-growth-promoting rhizobacteria (PGPR) is a kind of microorganism that grows around the rhizosphere and can promote plant growth and increase crop yield. PGPR can change the bioavailability of heavy metals in the rhizosphere microenvironment, increase heavy metal uptake by phytoremediation plants, and enhance the phytoremediation efficiency of heavy-metal-contaminated soils. In recent years, the number of studies on the phytoremediation efficiency of heavy-metal-contaminated soil enhanced by PGPR has increased rapidly. This paper systematically reviews the mechanisms of PGPR that promote plant growth (including nitrogen fixation, phosphorus solubilization, potassium solubilization, iron solubilization, and plant hormone secretion) and the mechanisms of PGPR that enhance plant-heavy metal interactions (including chelation, the induction of systemic resistance, and the improvement of bioavailability). Future research on PGPR should address the challenges in heavy metal removal by PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | - Fenju Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
42
|
Dong Q, Wu Y, Wang H, Li B, Huang R, Li H, Tao Q, Li Q, Tang X, Xu Q, Luo Y, Wang C. Integrated morphological, physiological and transcriptomic analyses reveal response mechanisms of rice under different cadmium exposure routes. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133688. [PMID: 38310845 DOI: 10.1016/j.jhazmat.2024.133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haidong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
43
|
Roy R, Samanta S, Pandit S, Naaz T, Banerjee S, Rawat JM, Chaubey KK, Saha RP. An Overview of Bacteria-Mediated Heavy Metal Bioremediation Strategies. Appl Biochem Biotechnol 2024; 196:1712-1751. [PMID: 37410353 DOI: 10.1007/s12010-023-04614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Contamination-free groundwater is considered a good source of potable water. Even in the twenty-first century, over 90 percent of the population is reliant on groundwater resources for their lives. Groundwater influences the economical state, industrial development, ecological system, and agricultural and global health conditions worldwide. However, different natural and artificial processes are gradually polluting groundwater and drinking water systems throughout the world. Toxic metalloids are one of the major sources that pollute the water system. In this review work, we have collected and analyzed information on metal-resistant bacteria along with their genetic information and remediation mechanisms of twenty different metal ions [arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), cadmium (Cd), palladium (Pd), zinc (Zn), cobalt (Co), antimony (Sb), gold (Au), silver (Ag), platinum (Pt), selenium (Se), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and uranium (U)]. We have surveyed the scientific information available on bacteria-mediated bioremediation of various metals and presented the data with responsible genes and proteins that contribute to bioremediation, bioaccumulation, and biosorption mechanisms. Knowledge of the genes responsible and self-defense mechanisms of diverse metal-resistance bacteria would help us to engineer processes involving multi-metal-resistant bacteria that may reduce metal toxicity in the environment.
Collapse
Affiliation(s)
- Rima Roy
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Tahseena Naaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Srijoni Banerjee
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Janhvi Mishra Rawat
- Department of Life Sciences, Graphic Era Deemed to Be University, Dehradun, 248002, Uttarakhand, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Rudra P Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| |
Collapse
|
44
|
Tengku-Mazuki TA, Darham S, Convey P, Shaharuddin NA, Zulkharnain A, Khalil KA, Zahri KNM, Subramaniam K, Merican F, Gomez-Fuentes C, Ahmad SA. Effects of heavy metals on bacterial growth parameters in degradation of phenol by an Antarctic bacterial consortium. Braz J Microbiol 2024; 55:629-637. [PMID: 38110706 PMCID: PMC10920555 DOI: 10.1007/s42770-023-01215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/25/2023] [Indexed: 12/20/2023] Open
Abstract
Antarctica has often been perceived as a pristine continent until the recent few decades as pollutants have been observed accruing in the Antarctic environment. Irresponsible human activities such as accidental oil spills, waste incineration and sewage disposal are among the primary anthropogenic sources of heavy metal contaminants in Antarctica. Natural sources including animal excrement, volcanism and geological weathering also contribute to the increase of heavy metals in the ecosystem. A microbial growth model is presented for the growth of a bacterial cell consortium used in the biodegradation of phenol in media containing different metal ions, namely arsenic (As), cadmium (Cd), aluminium (Al), nickel (Ni), silver (Ag), lead (Pb) and cobalt (Co). Bacterial growth was inhibited by these ions in the rank order of Al < As < Co < Pb < Ni < Cd < Ag. Greatest bacterial growth occurred in 1 ppm Al achieving an OD600 of 0.985 and lowest in 1 ppm Ag with an OD600 of 0.090. At a concentration of 1.0 ppm, Ag had a considerable effect on the bacterial consortium, inhibiting the degradation of phenol, whereas this concentration of the other metal ions tested had no effect on degradation. The biokinetic growth model developed supports the suitability of the bacterial consortium for use in phenol degradation.
Collapse
Affiliation(s)
- Tengku Athirrah Tengku-Mazuki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Syazani Darham
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-Ku, Saitama, 337-8570, Japan
| | - Khalilah Abdul Khalil
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 45000 Section 2, Shah Alam, Selangor, Malaysia
| | - Khadijah Nabilah Mohd Zahri
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Kavilasni Subramaniam
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes 01855, Punta Arenas, Chile
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, 01855, Bulnes, Chile
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, 01855, Bulnes, Chile.
| |
Collapse
|
45
|
Zhang Y, Sun D, Gao W, Zhang X, Ye W, Zhang Z. The metabolic mechanisms of Cd-induced hormesis in photosynthetic microalgae, Chromochloris zofingiensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168966. [PMID: 38043816 DOI: 10.1016/j.scitotenv.2023.168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Cadmium, an environmental pollutant, is highly toxic and resistant to degradation. It exhibits toxicity at elevated doses but triggers excitatory effects at low doses, a phenomenon referred to as hormesis. Microalgae, as primary producers in aquatic ecosystems, demonstrate hormesis induced by cadmium, though the specific mechanisms are not yet fully understood. Consequently, we examined the hormesis of cadmium in Chromochloris zofingiensis. A minimal Cd2+ concentration (0.05 mg L-1) prompted cell proliferation, whereas higher concentrations (2.50 mg L-1) inhibited growth. The group exposed to higher doses exhibited increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Contrastingly, the group exposed to low doses exhibited a moderate antioxidant response without significantly increasing ROS. This implies that increased levels of antioxidative components counteract excessive ROS, maintaining cellular redox balance and promoting growth under conditions of low Cd2+. Validation experiments have established that NADPH oxidase-derived ROS primarily coordinates the hormesis effect in microalgae. Comparative transcriptome analysis has proved the involvement of antioxidant systems and photosynthesis in regulating hormesis. Notably, Aurora A kinases consistently displayed varying expression levels across all Cd2+ treatments, and their role in microalgal hormesis was confirmed through validation with SNS-314 mesylate. This study unveils the intricate regulatory mechanisms of Cd-induced hormesis in C. zofingiensis, with implications for environmental remediation and industrial microalgae applications.
Collapse
Affiliation(s)
- Yushu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weizheng Gao
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Xinwei Zhang
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Wenqi Ye
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China; Hebei Innovation Center for Bioengineering and Biotechnology, Baoding 071000, China.
| |
Collapse
|
46
|
Soomro SEH, Shi X, Guo J, Jalbani S, Asad M, Anwar MI, Hu C, Ke S, Bai Y, Wang Y. Effects of seasonal temperature regimes: Does Cyprinus carpio act as a health hazard during the construction of Suki Kinari hydropower project on Kunhar River in Pakistan? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168023. [PMID: 37907102 DOI: 10.1016/j.scitotenv.2023.168023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
The main purpose of the current study was to assess the levels of trace elements (iron, lead, zinc, copper, and manganese) in both water and fish muscles of common carp (Cyprinus carpio) in the Kunhar River during the development of the Suki Kinari hydropower project (SKHPP). Additionally, the aim was to shed light on the potential health hazards associated with the consumption of fish by residents. Surface water and fish (muscle and liver) from ten specific sampling locations in the Mansehra district (affected by an SKHPP) along the river were examined to determine the levels of trace elements. The findings divulged that the water at all locations exhibited concentration levels of iron (Fe), lead (Pb), and manganese (Mn) that surpassed the benchmarks established by the World Health Organization in 2011. Conversely, the concentration levels of copper (Cu) and zinc (Zn) fell beneath the stipulated standards. Moreover, the concentrations of Mn, Zn, and Pb were found to be excessively high. The findings presented in the present study offer a comprehensive comprehension of the spatial and distribution characteristics of trace elements in both water and fish species along the Kunhar River, taking into consideration the impact of the SKHPP. Additionally, our data emphasize the potential health hazards that may arise from the prolonged consumption of fish by the local population.
Collapse
Affiliation(s)
- Shan-E-Hyder Soomro
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; College of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China.
| | - Jiali Guo
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China.
| | - Shaista Jalbani
- Fisheries and Aquaculture SBBUVAS, Sakrand 67210, Sindh, Pakistan
| | - Muhammad Asad
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | | | - Caihong Hu
- College of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Senfan Ke
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yanqin Bai
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China.
| | - Yuanyang Wang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
47
|
Firdous KA, Vivek PJ, Neethu K, Resmi MS. Physio-anatomical modifications and element allocation pattern in Alternanthera tenella Colla. associated with phytoextraction of chromium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5784-5806. [PMID: 38129728 DOI: 10.1007/s11356-023-31597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Intensive industrial activities have elevated chromium (Cr) concentrations in the environment, particularly in soil and water, posing a significant threat due to its cytotoxic and carcinogenic properties. Phytoremediation has emerged as a sustainable and economical alternative for detoxifying pollutants. In this context, an attempt has been made to assess the efficacy of Cr remediation by the invasive plant Alternanthera tenella Colla. The study investigated morphological, anatomical, and physiological adaptations in plant tissues in response to 240 µM of K2Cr2O7, considering elemental distribution patterns and bioaccumulation potential. Growth parameter assessments revealed a notable 50% reduction in root elongation and biomass content; however, the plant exhibited a comparatively higher tolerance index (47%) under Cr stress. Chromium significantly influenced macro and micro-elemental distribution in plant tissues, particularly in roots and leaves. Structural modifications, including changes in the thickness and diameter of xylem walls in the root, stem, and leaf tissues of Cr-treated A. tenella, were observed. Distinct cell structural distortions and Cr deposit inclusions in the xylem wall and inner parenchyma cells were distinct. Under Cr stress, there was a reduction in pigment content and metabolites such as proteins and soluble sugars, while proline, phenol, and malondialdehyde showed a twofold increase. The concentration of Cr was higher in the shoots of A. tenella (185.7 mg/kg DW) than in the roots (179.625 mg/kg DW). With a high BCFroot value (16.23) and TF > 1, coupled with effective mechanisms to cope with metal stress, A. tenella emerges as an ideal candidate for chromium phytoextraction.
Collapse
Affiliation(s)
| | | | - Kizhakkepurath Neethu
- Department of Botany, Sree Neelakanta Government Sanskrit College, Pattambi, Kerala, 679306, India
| | | |
Collapse
|
48
|
Thakur A, Kumar A. Unraveling the multifaceted mechanisms and untapped potential of activated carbon in remediation of emerging pollutants: A comprehensive review and critical appraisal of advanced techniques. CHEMOSPHERE 2024; 346:140608. [PMID: 37925026 DOI: 10.1016/j.chemosphere.2023.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
The rapid global expansion of industrialization has resulted in the discharge of a diverse range of hazardous contaminants into the ecosystem, leading to extensive environmental contamination and posing a pressing ecological concern. In this context, activated carbon (AC) has emerged as a highly promising adsorbent, offering significant advantages over conventional forms. For instance, AC has demonstrated remarkable adsorption capabilities, as evidenced by the successful removal of atrazine and ibuprofen using KOH and KOH-CO2-activated char, achieving impressive adsorption rates of 90% and 95%, respectively, at an initial dosage of 10 mg L-1. Moreover, AC can effectively adsorb aromatic compounds through π-π stacking interactions. The aromatic rings in organic molecules can align and interact with the carbon atoms in AC's structure, leading to effective adsorption. In this review, by employing a systematic analysis of recent research findings (majorly from 2015 to 2023), an in-depth exploration of AC's evolution and its wide-ranging applications in adsorbing and remediating emerging pollutants, including dyes, organic contaminants, and hazardous gases and mitigating the adverse impacts of such emerging pollutants on ecosystems have been discussed. It serves as a valuable resource for researchers, professionals, and policymakers involved in environmental remediation and pollution control, facilitating the development of sustainable and effective strategies for mitigating the global impact of emerging pollutants.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department , Government of Bihar, 803108, India.
| |
Collapse
|
49
|
Naz R, Khan MS, Hafeez A, Fazil M, Khan MN, Ali B, Javed MA, Imran M, Shati AA, Alfaifi MY, Elbehairi SEI, Ahmed AE. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted industrial soils. BRAZ J BIOL 2024; 84:e264473. [DOI: 10.1590/1519-6984.264473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/25/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract The present study was carried out in Hayat Abad Industrial Estate located in Peshawar to assess the levels of cadmium (Cd) that were present in the soil as well as the plant parts (Roots and shoots). To evaluate the phytoremediation potential of the plants different factors i.e. Bioconcentration Factor (BCF), Translocation Factor (TF), and Bioaccumulation Coefficient were determined. These plants were grown in their native habitats (BAC). We have analysed, cadmium concentration from soil which are collected from 50 different locations ranged from 11.54 mg/Kg (the lowest) to 89.80 mg/Kg (highest). The maximum concentration (89.80 mg/Kg) of cadmium was found in HIE-ST-16L Marble City and HIE-ST-7 Bryon Pharma (88.51 mg/Kg) while its minimum concentration (12.47 mg/Kg) were detected in the soil of Site (HIE-ST-14L Royal PVC Pipe) and (11.54 mg/Kg) at the site (HIE-ST-11 Aries Pharma). Most plant species showed huge potential for plant based approaches like phyto-extraction and phytoremediation. They also showed the potential for phyto-stabilization as well. Based on the concentration of cadmium the most efficient plants for phytoextraction were Cnicus benedictus, Parthenium hysterophorus, Verbesina encelioides, Conyza canadensis, Xanthium strumarium, Chenopodium album, Amaranthus viridis, Chenopodiastrum murale, Prosopis juliflora, Convolvulus arvensis, Stellaria media, Arenaria serpyllifolia, Cerastium dichotomum, Chrozophora tinctoria, Mirabilis jalapa, Medicago polymorpha, Lathyrus aphaca, Dalbergia sissoo, Melilotus indicus and Anagallis arvensis. The cadmium heavy metals in the examined soil were effectively removed by these plant species. Cerastium dichotomum, and Chenopodium murale were reported to be effective in phyto-stabilizing Cd based on concentrations of selected metals in roots and BCFs, TFs, and BACs values.
Collapse
Affiliation(s)
- R. Naz
- Islamia College, Pakistan
| | | | | | | | - M. N. Khan
- Islamia College, Pakistan; The University of Agriculture, Pakistan
| | - B. Ali
- Quaid-i-Azam University, Pakistan
| | | | | | | | | | - S. E. I. Elbehairi
- King Khalid University, Saudi Arabia; Egyptian Organization for Biological Products and Vaccines – VACSERA Holding Company, Egypt
| | - A. E. Ahmed
- King Khalid University, Saudi Arabia; South Valley University, Egypt
| |
Collapse
|
50
|
Sevak P, Pushkar B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119504. [PMID: 37956515 DOI: 10.1016/j.jenvman.2023.119504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Arsenic pollution and its allied impacts on health are widely reported and have gained global attention in the last few decades. Although the natural distribution of arsenic is limited, anthropogenic activities have increased its mobility to distant locations, thereby increasing the number of people affected by arsenic pollution. Arsenic has a complex biogeochemical cycle which has a significant role in pollution. Therefore, this review paper has comprehensively analysed the biogeochemical cycle of arsenic which can dictate the occurrence of arsenic pollution. Considering the toxicity and nature of arsenic, the present work has also analysed the current status of arsenic pollution around the world. It is noted that the south of Asia, West-central Africa, west of Europe and Latin America are major hot spots of arsenic pollution. Bibliometric analysis was performed by using scopus database with specific search for keywords such as arsenic pollution, health hazards to obtain the relevant data. Scopus database was searched for the period of 20 years from year 2003-2023 and total of 1839 articles were finally selected for further analysis using VOS viewer. Bibliometric analysis of arsenic pollution and its health hazards has revealed that arsenic pollution is primarily caused by anthropogenic sources and the key sources of arsenic exposure are drinking water, sea food and agricultural produces. Arsenic pollution was found to be associated with severe health hazards such as cancer and other health issues. Thus considering the severity of the issue, few sustainable remediation technologies such as adsorption using microbes, biological waste material, nanomaterial, constructed wetland, phytoremediation and microorganism bioremediation are proposed for treating arsenic pollution. These approaches are environmentally friendly and highly sustainable, thus making them suitable for the current scenario of environmental crisis.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| |
Collapse
|