1
|
Kim SY, Kim M, Park K, Hong S. A systematic review on analytical methods of the neurotoxin β-N-methylamino-L-alanine (BMAA), and its causative microalgae and distribution in the environment. CHEMOSPHERE 2024; 366:143487. [PMID: 39395475 DOI: 10.1016/j.chemosphere.2024.143487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by various microalgal groups, is associated with neurodegenerative diseases and is considered a major environmental factor potentially linked to sporadic amyotrophic lateral sclerosis. This study systematically reviews the analytical methods used to study BMAA in publications from 2019 to the present. It also investigates the causative microalgae of BMAA and its geographical distributions in aquatic ecosystems based on studies conducted since 2003. A comprehensive search using the Web of Science database revealed that hydrolysis for extraction (67%), followed by quantification using LC-MS/MS (LC: 84%; MS/MS: 88%), is the most commonly employed method in BMAA analysis. Among analytical methods, RPLC-MS/MS had the highest percentage (88%) of BMAA-positive results and included a high number of quality control (QC) assessments. Various genera of cyanobacteria and diatoms have been reported to produce BMAA. The widespread geographical distribution of BMAA across diverse ecosystems highlights significant environmental and public health concerns. Notably, BMAA accumulation and biomagnification are likely more potent in marine or brackish water ecosystems than in freshwater ecosystems, potentially amplifying its ecological impacts. Future research should prioritize advanced, sensitive methods, particularly LC-MS/MS with as many QC assessments as possible, and should expand investigations to identify novel microalgal producers and previously uncharted geographical areas, with a special focus on marine or brackish water ecosystems. This effort will enhance our understanding of the environmental distribution and impacts of BMAA.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mungi Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiho Park
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Drobac Backović D, Tokodi N. Cyanotoxins in food: Exposure assessment and health impact. Food Res Int 2024; 184:114271. [PMID: 38609248 DOI: 10.1016/j.foodres.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow 30387, Poland.
| |
Collapse
|
3
|
Santiago-Maldonado X, Rodríguez-Martínez JA, López L, Cunci L, Bayro M, Nicolau E. Selection, characterization, and biosensing applications of DNA aptamers targeting cyanotoxin BMAA. RSC Adv 2024; 14:13787-13800. [PMID: 38681844 PMCID: PMC11046380 DOI: 10.1039/d4ra02384f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Scientists have established a connection between environmental exposure to toxins like β-N-methylamino-l-alanine (BMAA) and a heightened risk of neurodegenerative disorders. BMAA is a byproduct from certain strains of cyanobacteria that are present in ecosystems worldwide and is renowned for its bioaccumulation and biomagnification in seafood. The sensitivity, selectivity, and reproducibility of the current analytical techniques are insufficient to support efforts regarding food safety and environment monitoring adequately. This work outlines the in vitro selection of BMAA-specific DNA aptamers via the systematic evolution of ligands through exponential enrichment (SELEX). Screening and characterization of the full-length aptamers was achieved using the SYBR Green (SG) fluorescence displacement assay. Aptamers BMAA_159 and BMAA_165 showed the highest binding affinities, with dissociation constants (Kd) of 2.2 ± 0.1 μM and 0.32 ± 0.02 μM, respectively. After truncation, the binding affinity was confirmed using a BMAA-conjugated fluorescence assay. The Kd values for BMAA_159_min and BMAA_165_min were 6 ± 1 μM and 0.63 ± 0.02 μM, respectively. Alterations in the amino proton region studied using solution nuclear magnetic resonance (NMR) provided further evidence of aptamer-target binding. Additionally, circular dichroism (CD) spectroscopy revealed that BMAA_165_min forms hybrid G-quadruplex (G4) structures. Finally, BMAA_165_min was used in the development of an electrochemical aptamer-based (EAB) sensor that accomplished sensitive and selective detection of BMAA with a limit of detection (LOD) of 1.13 ± 0.02 pM.
Collapse
Affiliation(s)
- Xaimara Santiago-Maldonado
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | | | - Luis López
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | - Marvin Bayro
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
- Molecular Science Research Center, University of Puerto Rico San Juan 00931-3346 USA
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
- Molecular Science Research Center, University of Puerto Rico San Juan 00931-3346 USA
| |
Collapse
|
4
|
Bal P, Sinam G, Yahavi C, Singh SP, Jena S, Pant AB, Barik SK. A UPLC-MS/MS method for quantification of β-N-methylamino-L-alanine (BMAA) in Cycas sphaerica roxb. and its use in validating efficacy of a traditional BMAA removal method. Toxicon 2024; 238:107566. [PMID: 38151204 DOI: 10.1016/j.toxicon.2023.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
The presence of neurotoxin β-N-Methylamino-L-alanine (BMAA) in the seeds of Cycas sphaerica is reported for first time. We developed a UPLC-MS/MS method for BMAA quantification by derivatizing with dansyl chloride. The method successfully differentiated L-BMAA from its structural isomer 2,4-diaminobutyric acid (DAB). The extracting mixture 0.1M TCA: ACN 4:1 v/v had a recovery level of >95%. The method is a high throughput sensitive chromatographic technique with 16.42 ng g-1 Limit of Quantification. BMAA was present in the endosperm of C. sphaerica, and was not detected in the leaves and pith. Washing of seeds in running cold water for 48 h reduced BMAA content by 86%. The local communities also treat the seeds under running cold water, but only for 24 h. The results of the study thus validated the traditional BMAA removal process through cold water treatment, but recommend for increase in the treatment period to 48 h or more.
Collapse
Affiliation(s)
- Pankajini Bal
- Plant Genetic Resources & Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Geetgovind Sinam
- Plant Ecology & Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India.
| | | | | | - Satyanarayan Jena
- Plant Genetic Resources & Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Aditya Bhushan Pant
- Systems Toxicology & Health Risk Assessment, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Saroj Kanta Barik
- Department of Botany, North-Eastern Hill University, Shillong, India.
| |
Collapse
|
5
|
Pravadali-Cekic S, Vojvodic A, Violi JP, Mitrovic SM, Rodgers KJ, Bishop DP. Simultaneous Analysis of Cyanotoxins β-N-methylamino-L-alanine (BMAA) and Microcystins-RR, -LR, and -YR Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Molecules 2023; 28:6733. [PMID: 37764509 PMCID: PMC10537148 DOI: 10.3390/molecules28186733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
β-N-methylamino-L-alanine (BMAA) and its isomers, 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG), along with microcystins (MCs)-RR, -LR, and -YR (the major MC congeners), are cyanotoxins that can cause detrimental health and environmental impacts during toxic blooms. Currently, there are no reverse-phase (RP) LC-MS/MS methods for the simultaneous detection and quantification of BMAA, its isomers, and the major MCs in a single analysis; therefore, multiple analyses are required to assess the toxic load of a sample. Here, we present a newly developed and validated method for the detection and quantification of BMAA, 2,4-DAB, AEG, MC-LR, MC-RR, and MC-YR using RP LC-MS/MS. Method validation was performed, assessing linearity (r2 > 0.996), accuracy (>90% recovery for spiked samples), precision (7% relative standard deviation), and limits of detection (LODs) and quantification (LOQs) (ranging from 0.13 to 1.38 ng mL-1). The application of this combined cyanotoxin analysis on a culture of Microcystis aeruginosa resulted in the simultaneous detection of 2,4-DAB (0.249 ng mg-1 dry weight (DW)) and MC-YR (4828 ng mg-1 DW). This study provides a unified method for the quantitative analysis of BMAA, its isomers, and three MC congeners in natural environmental samples.
Collapse
Affiliation(s)
- Sercan Pravadali-Cekic
- Hyphenated Mass Spectrometry Laboratory (HyMaS), University of Technology Sydney, Sydney, NSW 2007, Australia; (S.P.-C.)
| | - Aleksandar Vojvodic
- Hyphenated Mass Spectrometry Laboratory (HyMaS), University of Technology Sydney, Sydney, NSW 2007, Australia; (S.P.-C.)
| | - Jake P. Violi
- School of Chemistry, University of New South Wales, Sydney, NSW 2033, Australia;
| | - Simon M. Mitrovic
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.M.M.); (K.J.R.)
| | - Kenneth J. Rodgers
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.M.M.); (K.J.R.)
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), University of Technology Sydney, Sydney, NSW 2007, Australia; (S.P.-C.)
| |
Collapse
|
6
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
7
|
Costa HN, Esteves AR, Empadinhas N, Cardoso SM. Parkinson's Disease: A Multisystem Disorder. Neurosci Bull 2023; 39:113-124. [PMID: 35994167 PMCID: PMC9849652 DOI: 10.1007/s12264-022-00934-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/11/2022] [Indexed: 01/22/2023] Open
Abstract
The way sporadic Parkinson's disease (PD) is perceived has undergone drastic changes in recent decades. For a long time, PD was considered a brain disease characterized by motor disturbances; however, the identification of several risk factors and the hypothesis that PD has a gastrointestinal onset have shed additional light. Today, after recognition of prodromal non-motor symptoms and the pathological processes driving their evolution, there is a greater understanding of the involvement of other organ systems. For this reason, PD is increasingly seen as a multiorgan and multisystemic pathology that arises from the interaction of susceptible genetic factors with a challenging environment during aging-related decline.
Collapse
Affiliation(s)
- Helena Nunes Costa
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
8
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
9
|
Emmons RV, Karaj E, Cudjoe E, Bell DS, Tillekeratne LV, Gionfriddo E. Leveraging multi-mode microextraction and liquid chromatography stationary phases for quantitative analysis of neurotoxin β-N-methylamino-L-alanine and other non-proteinogenic amino acids. J Chromatogr A 2022; 1685:463636. [DOI: 10.1016/j.chroma.2022.463636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
10
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
11
|
Mantas MJQ, Nunn PB, Codd GA, Barker D. Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 3-N-methyl-2,3-diaminopropanoic acid (BMAA). PHYTOCHEMISTRY 2022; 200:113198. [PMID: 35447107 DOI: 10.1016/j.phytochem.2022.113198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are an ancient clade of photosynthetic prokaryotes, present in many habitats throughout the world, including water resources. They can present health hazards to humans and animals due to the production of a wide range of toxins (cyanotoxins), including the diaminoacid neurotoxin, 3-N-methyl-2,3-diaminopropanoic acid (β-N-methylaminoalanine, BMAA). Knowledge of the biosynthetic pathway for BMAA, and its role in cyanobacteria, is lacking. Present evidence suggests that BMAA is derived by 3-N methylation of 2,3-diaminopropanoic acid (2,3-DAP) and, although the latter has never been reported in cyanobacteria, there are multiple pathways to its biosynthesis known in other bacteria and in plants. Here, we used bioinformatics analyses to investigate hypotheses concerning 2,3-DAP and BMAA biosynthesis in cyanobacteria. We assessed the potential presence or absence of each enzyme in candidate biosynthetic routes known in Albizia julibrissin, Lathyrus sativus seedlings, Streptomyces, Clostridium, Staphylococcus aureus, Pantoea agglomerans, and Paenibacillus larvae, in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. Most enzymes involved in pathways leading to 2,3-DAP in other species were not found in the cyanobacteria analysed. Nevertheless, two species appear to have the genes sbnA and sbnB, responsible for forming the 2,3-DAP constituent in staphyloferrin B, a siderophore from Staphylococcus aureus. It is currently undetermined whether these species are also capable of biosynthesising BMAA. It is possible that, in some cyanobacteria, the formation of 2,3-DAP and/or BMAA is associated with environmental iron-scavenging. The pam gene cluster, responsible for the biosynthesis of the BMAA-containing peptide, paenilamicin, so far appears to be restricted to Paenibacillus larvae. It was not detected in any of the cyanobacterial genomes analysed, nor was it found in 93 other Paenibacillus genomes or in the genomes of two BMAA-producing diatom species. We hypothesise that the presence, in some cyanobacterial species, of the enzymes 2,3-diaminopropionate ammonia-lyase (DAPAL) and reactive intermediate deaminase A (RidA) may explain the failure to detect 2,3-DAP in analytical studies. Overall, the taxonomic distribution of 2,3-DAP and BMAA in cyanobacteria is unclear; there may be multiple and additional routes, and roles, for the biosynthesis of 2,3-DAP and BMAA in these organisms.
Collapse
Affiliation(s)
- Maria José Q Mantas
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| | - Peter B Nunn
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom; School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom.
| | - Daniel Barker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
12
|
Zhao P, Qiu J, Li A, Yan G, Li M, Ji Y. Matrix Effect of Diverse Biological Samples Extracted with Different Extraction Ratios on the Detection of β-N-Methylamino-L-Alanine by Two Common LC-MS/MS Analysis Methods. Toxins (Basel) 2022; 14:toxins14060387. [PMID: 35737048 PMCID: PMC9230712 DOI: 10.3390/toxins14060387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Neurotoxin β-N-methylamino-L-alanine (BMAA) is hypothesized as an important pathogenic factor for neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC). Comparative study on the accuracy of BMAA analyzed by the regular LC-MS/MS methods is still limited for different biological matrices. In this study, a free-BMAA sample of cyanobacterium and BMAA-containing positive samples of diatom, mussel, scallop, and oyster were extracted with varied extraction ratios (ER) ranging from 1:20 to 1:2000. These extracts were then purified by MCX cartridges. After SPE purification, these different biological samples were analyzed by two common LC-MS/MS analysis methods, a direct analysis without derivatization by a hydrophilic interaction liquid chromatography (HILIC)-MS/MS and pre-column 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization combined with a C18 column. The results suggested that the recoveries of BMAA spiked in the cyanobacterial sample were close to 100% in the total soluble form extracts with the ER of 1:100 (g/mL) and the precipitated bound form extracts with the ER of 1:500. The recommended ER for the precipitated bound form of BMAA in diatoms and the total soluble form of BMAA in mollusks are 1:500 and 1:50, respectively. The quantitative results determined by the AQC derivatization method were lower than those determined by the direct analysis of the HILIC method in diatom and mollusk samples. The results of the HILIC method without the derivatization process were closer to the true value of BMAA in cyanobacteria. This work contributes to the performance of the solid-phase extraction (SPE) purification protocol and the accuracy of BMAA analysis by LC-MS/MS in diverse biological samples.
Collapse
Affiliation(s)
- Peng Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Correspondence: ; Tel.: +86-532-66781935
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
| | - Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
| |
Collapse
|
13
|
Martin RM, Bereman MS, Marsden KC. The Cyanotoxin 2,4-DAB Reduces Viability and Causes Behavioral and Molecular Dysfunctions Associated with Neurodegeneration in Larval Zebrafish. Neurotox Res 2022; 40:347-364. [PMID: 35029765 PMCID: PMC9035002 DOI: 10.1007/s12640-021-00465-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Exposure to cyanotoxins has been linked to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. While the cyanotoxin β-methylamino-L-alanine (BMAA) has received much attention, cyanobacteria produce many cyanotoxic compounds, several of which have been detected in nature alongside BMAA, including 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Thus, the question of whether 2,4-DAB and AEG also cause neurotoxic effects in vivo is of great interest, as is the question of whether they interact to enhance toxicity. Here, we evaluate the toxic and neurotoxic effects of these cyanotoxins alone or in combination by measuring zebrafish larval viability and behavior after exposure. 2,4-DAB was the most potent cyanotoxin as it decreased larval viability by approximately 50% at 6 days post fertilization, while BMAA and AEG decreased viability by just 16% and 8%, respectively. Although we only observed minor neurotoxic effects on spontaneous locomotion, BMAA and AEG enhanced acoustic startle sensitivity, and they interacted in an additive manner to exert their effects. 2,4-DAB; however, only modulated startle kinematics, an indication of motor dysfunction. To investigate the mechanisms of 2,4-DAB's effects, we analyzed the protein profile of larval zebrafish exposed to 500 µM 2,4-DAB at two time points and identified molecular signatures consistent with neurodegeneration, including disruption of metabolic pathways and downregulation of the ALS-associated genes SOD1 and UBQLN4. Together, our data demonstrate that BMAA and its isomers AEG and 2,4-DAB cause neurotoxic effects in vivo, with 2,4-DAB as the most potent of the three in the zebrafish model.
Collapse
Affiliation(s)
- Rubia M Martin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Michael S Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Abbes S, Vo Duy S, Munoz G, Dinh QT, Simon DF, Husk B, Baulch HM, Vinçon-Leite B, Fortin N, Greer CW, Larsen ML, Venkiteswaran JJ, Martínez Jerónimo FF, Giani A, Lowe CD, Tromas N, Sauvé S. Occurrence of BMAA Isomers in Bloom-Impacted Lakes and Reservoirs of Brazil, Canada, France, Mexico, and the United Kingdom. Toxins (Basel) 2022; 14:251. [PMID: 35448860 PMCID: PMC9026818 DOI: 10.3390/toxins14040251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neurotoxic alkaloid β-N-methyl-amino-l-alanine (BMAA) and related isomers, including N-(2-aminoethyl glycine) (AEG), β-amino-N-methyl alanine (BAMA), and 2,4-diaminobutyric acid (DAB), have been reported previously in cyanobacterial samples. However, there are conflicting reports regarding their occurrence in surface waters. In this study, we evaluated the impact of amending lake water samples with trichloroacetic acid (0.1 M TCA) on the detection of BMAA isomers, compared with pre-existing protocols. A sensitive instrumental method was enlisted for the survey, with limits of detection in the range of 5−10 ng L−1. Higher detection rates and significantly greater levels (paired Wilcoxon’s signed-rank tests, p < 0.001) of BMAA isomers were observed in TCA-amended samples (method B) compared to samples without TCA (method A). The overall range of B/A ratios was 0.67−8.25 for AEG (up to +725%) and 0.69−15.5 for DAB (up to +1450%), with absolute concentration increases in TCA-amended samples of up to +15,000 ng L−1 for AEG and +650 ng L−1 for DAB. We also documented the trends in the occurrence of BMAA isomers for a large breadth of field-collected lakes from Brazil, Canada, France, Mexico, and the United Kingdom. Data gathered during this overarching campaign (overall, n = 390 within 45 lake sampling sites) indicated frequent detections of AEG and DAB isomers, with detection rates of 30% and 43% and maximum levels of 19,000 ng L−1 and 1100 ng L−1, respectively. In contrast, BAMA was found in less than 8% of the water samples, and BMAA was not found in any sample. These results support the analyses of free-living cyanobacteria, wherein BMAA was often reported at concentrations of 2−4 orders of magnitude lower than AEG and DAB. Seasonal measurements conducted at two bloom-impacted lakes indicated limited correlations of BMAA isomers with total microcystins or chlorophyll-a, which deserves further investigation.
Collapse
Affiliation(s)
- Safa Abbes
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Barry Husk
- BlueLeaf Inc., Drummondville, QC J2B 5E9, Canada;
| | - Helen M. Baulch
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada;
| | | | - Nathalie Fortin
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Charles W. Greer
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Megan L. Larsen
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | - Jason J. Venkiteswaran
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | | | - Alessandra Giani
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Chris D. Lowe
- Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Nicolas Tromas
- Department of Biological Sciences, Université de Montréal, Montréal, QC H2V 0B3, Canada;
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| |
Collapse
|
15
|
Dulić T, Svirčev Z, Palanački Malešević T, Faassen EJ, Savela H, Hao Q, Meriluoto J. Assessment of Common Cyanotoxins in Cyanobacteria of Biological Loess Crusts. Toxins (Basel) 2022; 14:toxins14030215. [PMID: 35324712 PMCID: PMC8953721 DOI: 10.3390/toxins14030215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Cyanotoxins are a diverse group of bioactive compounds produced by cyanobacteria that have adverse effects on human and animal health. While the phenomenon of cyanotoxin production in aquatic environments is well studied, research on cyanotoxins in terrestrial environments, where cyanobacteria abundantly occur in biocrusts, is still in its infancy. Here, we investigated the potential cyanotoxin production in cyanobacteria-dominated biological loess crusts (BLCs) from three different regions (China, Iran, and Serbia) and in cyanobacterial cultures isolated from the BLCs. The presence of cyanotoxins microcystins, cylindrospermopsin, saxitoxins, and β-N-methylamino-L-alanine was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, while the presence of cyanotoxin-encoding genes (mcyE, cyrJ, sxtA, sxtG, sxtS, and anaC) was investigated by polymerase chain reaction (PCR) method. We could not detect any of the targeted cyanotoxins in the biocrusts or the cyanobacterial cultures, nor could we amplify any cyanotoxin-encoding genes in the cyanobacterial strains. The results are discussed in terms of the biological role of cyanotoxins, the application of cyanobacteria in land restoration programs, and the use of cyanotoxins as biosignatures of cyanobacterial populations in loess research. The article highlights the need to extend the field of research on cyanobacteria and cyanotoxin production to terrestrial environments.
Collapse
Affiliation(s)
- Tamara Dulić
- Department of Biochemistry, Faculty of Sciences and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (Z.S.); (J.M.)
- Correspondence:
| | - Zorica Svirčev
- Department of Biochemistry, Faculty of Sciences and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (Z.S.); (J.M.)
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| | - Elisabeth J. Faassen
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands;
- Aquatic Ecology and Water Quality Management, Wageningen University and Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Henna Savela
- Department of Life Technologies, Faculty of Technology, University of Turku, Kiinamyllynkatu 10, 20014 Turku, Finland;
| | - Qingzhen Hao
- Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19, Beitucheng Western Road, Beijing 100029, China;
| | - Jussi Meriluoto
- Department of Biochemistry, Faculty of Sciences and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (Z.S.); (J.M.)
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| |
Collapse
|
16
|
No β-N-Methylamino-L-alanine (BMAA) Was Detected in Stranded Cetaceans from Galicia (North-West Spain). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), a non-proteinogenic amino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms) microorganisms, has been proposed to be associated with the development of neurodegenerative diseases. At first, BMAA appeared to be ubiquitously present worldwide in various organisms, from aquatic and terrestrial food webs. However, recent studies, using detection methods based on mass spectrometry, instead of fluorescence detection, suggest that the trophic transfer of BMAA is debatable. This study evaluated BMAA in 22 cetaceans of three different species (Phocoena phocoena, n = 8, Delphinus delphis, n = 8, and Tursiops truncatus, n = 6), found stranded in North-West Spain. BMAA analysis of the liver, kidney, or muscle tissues via sensitive liquid chromatography with tandem mass spectrometry did not reveal the presence of this compound or its isomers. The absence recorded in this study highlights the need to better understand the trophic transfer of BMAA and its anatomical distribution in marine mammals.
Collapse
|
17
|
Cyanobacteria and Cyanotoxins in a Changing Environment: Concepts, Controversies, Challenges. WATER 2021. [DOI: 10.3390/w13182463] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Concern is widely being published that the occurrence of toxic cyanobacteria is increasing in consequence of climate change and eutrophication, substantially threatening human health. Here, we review evidence and pertinent publications to explore in which types of waterbodies climate change is likely to exacerbate cyanobacterial blooms; whether controlling blooms and toxin concentrations requires a balanced approach of reducing not only the concentrations of phosphorus (P) but also those of nitrogen (N); how trophic and climatic changes affect health risks caused by toxic cyanobacteria. We propose the following for further discussion: (i) Climate change is likely to promote blooms in some waterbodies—not in those with low concentrations of P or N stringently limiting biomass, and more so in shallow than in stratified waterbodies. Particularly in the latter, it can work both ways—rendering conditions for cyanobacterial proliferation more favourable or less favourable. (ii) While N emissions to the environment need to be reduced for a number of reasons, controlling blooms can definitely be successful by reducing only P, provided concentrations of P can be brought down to levels sufficiently low to stringently limit biomass. Not the N:P ratio, but the absolute concentration of the limiting nutrient determines the maximum possible biomass of phytoplankton and thus of cyanobacteria. The absolute concentrations of N or P show which of the two nutrients is currently limiting biomass. N can be the nutrient of choice to reduce if achieving sufficiently low concentrations has chances of success. (iii) Where trophic and climate change cause longer, stronger and more frequent blooms, they increase risks of exposure, and health risks depend on the amount by which concentrations exceed those of current WHO cyanotoxin guideline values for the respective exposure situation. Where trophic change reduces phytoplankton biomass in the epilimnion, thus increasing transparency, cyanobacterial species composition may shift to those that reside on benthic surfaces or in the metalimnion, changing risks of exposure. We conclude that studying how environmental changes affect the genotype composition of cyanobacterial populations is a relatively new and exciting research field, holding promises for understanding the biological function of the wide range of metabolites found in cyanobacteria, of which only a small fraction is toxic to humans. Overall, management needs case-by-case assessments focusing on the impacts of environmental change on the respective waterbody, rather than generalisations.
Collapse
|
18
|
Heil CA, Muni-Morgan AL. Florida’s Harmful Algal Bloom (HAB) Problem: Escalating Risks to Human, Environmental and Economic Health With Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.646080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Harmful Algal Blooms (HABs) pose unique risks to the citizens, stakeholders, visitors, environment and economy of the state of Florida. Florida has been historically subjected to reoccurring blooms of the toxic marine dinoflagellate Karenia brevis (C. C. Davis) G. Hansen & Moestrup since at least first contact with explorers in the 1500’s. However, ongoing immigration of more than 100,000 people year–1 into the state, elevated population densities in coastal areas with attendant rapid, often unregulated development, coastal eutrophication, and climate change impacts (e.g., increasing hurricane severity, increases in water temperature, ocean acidification and sea level rise) has likely increased the occurrence of other HABs, both freshwater and marine, within the state as well as the number of people impacted by these blooms. Currently, over 75 freshwater, estuarine, coastal and marine HAB species are routinely monitored by state agencies. While only blooms of K. brevis, the dinoflagellate Pyrodinium bahamense (Böhm) Steidinger, Tester, and Taylor and the diatom Pseudo-nitzschia spp. have resulted in closure of commercial shellfish beds, other HAB species, including freshwater and marine cyanobacteria, pose either imminent or unknown risks to human, environmental and economic health. HAB related human health risks can be classified into those related to consumption of contaminated shellfish and finfish, consumption of or contact with bloom or toxin contaminated water or exposure to aerosolized HAB toxins. While acute human illnesses resulting from consumption of brevetoxin-, saxitoxin-, and domoic acid-contaminated commercial shellfish have been minimized by effective monitoring and regulation, illnesses due to unregulated toxin exposures, e.g., ciguatoxins and cyanotoxins, are not well documented or understood. Aerosolized HAB toxins potentially impact the largest number of people within Florida. While short-term (days to weeks) impacts of aerosolized brevetoxin exposure are well documented (e.g., decreased respiratory function for at-risk subgroups such as asthmatics), little is known of longer term (>1 month) impacts of exposure or the risks posed by aerosolized cyanotoxin [e.g., microcystin, β-N-methylamino-L-alanine (BMAA)] exposure. Environmental risks of K. brevis blooms are the best studied of Florida HABs and include acute exposure impacts such as significant dies-offs of fish, marine mammals, seabirds and turtles, as well as negative impacts on larval and juvenile stages of many biota. When K. brevis blooms are present, brevetoxins can be found throughout the water column and are widespread in both pelagic and benthic biota. The presence of brevetoxins in living tissue of both fish and marine mammals suggests that food web transfer of these toxins is occurring, resulting in toxin transport beyond the spatial and temporal range of the bloom such that impacts of these toxins may occur in areas not regularly subjected to blooms. Climate change impacts, including temperature effects on cell metabolism, shifting ocean circulation patterns and changes in HAB species range and bloom duration, may exacerbate these dynamics. Secondary HAB related environmental impacts are also possible due to hypoxia and anoxia resulting from elevated bloom biomass and/or the decomposition of HAB related mortalities. Economic risks related to HABs in Florida are diverse and impact multiple stakeholder groups. Direct costs related to human health impacts (e.g., increased hospital visits) as well as recreational and commercial fisheries can be significant, especially with wide-spread sustained HABs. Recreational and tourism-based industries which sustain a significant portion of Florida’s economy are especially vulnerable to both direct (e.g., declines in coastal hotel occupancy rates and restaurant and recreational users) and indirect (e.g., negative publicity impacts, associated job losses) impacts from HABs. While risks related to K. brevis blooms are established, Florida also remains susceptible to future HABs due to large scale freshwater management practices, degrading water quality, potential transport of HABs between freshwater and marine systems and the state’s vulnerability to climate change impacts.
Collapse
|
19
|
Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). Neurotoxicology 2020; 79:110-121. [DOI: 10.1016/j.neuro.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
20
|
Yan B, Liu Z, Huang R, Xu Y, Liu D, Wang W, Zhao Z, Cui F, Shi W. Impact factors on the production of β-methylamino-L-alanine (BMAA) by cyanobacteria. CHEMOSPHERE 2020; 243:125355. [PMID: 31759214 DOI: 10.1016/j.chemosphere.2019.125355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacteria produce a series of secondary metabolites, one of which is beta-N-methylamino-l-alanine (BMAA). BMAA is considered to be the cause of human neurodegeneration. Compared with other cyanotoxins, the role of BMAA in cyanobacteria remains unclear. To investigate this question, six strains of cyanobacteria were cultured and tested in this experiment with an optimized and validated BMAA determination method. The results show that four strains can produce BMAA. The effects of nutrient levels on the production of BMAA by Anabaena sp. FACHB-418 were studied by changing the initial concentrations of nitrate (NaNO3) and phosphate (K2HPO4) in mediums. Bound BMAA was detected in all samples and the concentrations were within 50-100 ng/g. Free BMAA was presence when the concentration of nitrogen was lower than 1.7 mg/L (121.43 μM). Free BMAA was released from the dead and ruptured cells during the cell decline period, so dissolved BMAA cannot be detectable in the adaptation and logarithmic periods, but could be abundant in the decline periods. Statistical analyses show that free BMAA concentrations were negatively correlated with nitrogen strongly (p = 2.334 × 10-10 and r = -0.842), but positively correlated with phosphorus weakly (p = 0.016 and r = 0.405). Moreover, the results of culture experiments indicated that exogenous BMAA could inhibit the growth of cyanobacteria that cannot produce BMAA, and the effect was enhanced as the concentration of exogenous BMAA increased. This phenomenon implies that the production of BMAA may be the stress response by some cyanobacteria to low nitrogen conditions to kill other cyanobacteria, i.e., their competitors.
Collapse
Affiliation(s)
- Boyin Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiquan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Rui Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yongpeng Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiwei Zhao
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
21
|
Yan B, Liu Z, Liu Y, Huang R, Xu Y, Liu D, Cui F, Shi W. Effects and mechanism on the removal of neurotoxin β-N-methylamino-l-alanine (BMAA) by chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135513. [PMID: 31761374 DOI: 10.1016/j.scitotenv.2019.135513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
β-N-Methylamino-l-alanine (BMAA), a new cyanobacterial toxin, is found in different aquatic ecosystems worldwide and is to threaten the human nervous system. Therefore, it is important for water plants to develop feasible methods to counter the effects of BMAA. In this study, the removal of BMAA by chlorine, as well as its intermediate products, at different pH values and the mechanism of pH on the removal BMAA were investigated. The results showed that the chlorination of BMAA is in accordance with the second-order kinetics model. The reaction rate of chlorinated BMAA increased with the increase in the concentration of chlorine. The pH of the solution significantly affected the reaction rate. The apparent kinetic constant (kapp) decreased from 6.00 × 103 M-1·min-1 to 35.5 M-1·min-1 when the pH increased from 4.5 to 9 in the chlorine concentration of 32.23 μM. It is probable that the species distribution and proportion of BMAA and chlorine at different pH values were the main causes of this phenomenon. Additionally, the chlorination reaction consisted of four elementary reactions and hydrogen ions were beneficial to the reaction. The temperature also affected the reaction rate and the activation energy of the reaction was 16.6 ± 1.99 kJ·M-1. A variety of degradation products were detected and the path of degradation was speculated. Chlorination, dechlorination, and decarboxylation were the main processes of oxidative degradation. Furthermore, the composition of the degradation products was the same at different pH values.
Collapse
Affiliation(s)
- Boyin Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiquan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Ying Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongpeng Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
22
|
Nunes-Costa D, Magalhães JD, G-Fernandes M, Cardoso SM, Empadinhas N. Microbial BMAA and the Pathway for Parkinson's Disease Neurodegeneration. Front Aging Neurosci 2020; 12:26. [PMID: 32317956 PMCID: PMC7019015 DOI: 10.3389/fnagi.2020.00026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a natural non-proteinogenic diamino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms and dinoflagellates) microorganisms. BMAA has been shown to biomagnify through the food chain in some ecosystems, accumulating for example in seafood such as shellfish and fish, common dietary sources of BMAA whose ingestion may have possible neuronal consequences. In addition to its excitotoxic potential, BMAA has been implicated in protein misfolding and aggregation, inhibition of specific enzymes and neuroinflammation, all hallmark features of neurodegenerative diseases. However, the exact molecular mechanisms of neurotoxicity remain to be elucidated in detail. Although BMAA is commonly detected in its free form, complex BMAA-containing molecules have also been identified such as the paenilamicins, produced by an insect gut bacterial pathogen. On the other hand, production of BMAA or BMAA-containing molecules by members of the human gut microbiota, for example by non-photosynthetic cyanobacteria, the Melainabacteria, remains only hypothetical. In any case, should BMAA reach the gut it may interact with cells of the mucosal immune system and neurons of the enteric nervous system (ENS) and possibly target the mitochondria. Here, we review the available evidence and hint on possible mechanisms by which chronic exposure to dietary sources of this microbial neurotoxin may drive protein misfolding and mitochondrial dysfunction with concomitant activation of innate immune responses, chronic low-grade gut inflammation, and ultimately the neurodegenerative features observed across the gut-brain axis in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Daniela Nunes-Costa
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - João Duarte Magalhães
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - Maria G-Fernandes
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
| | - Sandra Morais Cardoso
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute of Cellular and Molecular Biology,
Faculty of Medicine, University of Coimbra,
Coimbra, Portugal
| | - Nuno Empadinhas
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute for Interdisciplinary Research
(IIIUC), University of Coimbra, Coimbra,
Portugal
| |
Collapse
|
23
|
How the Neurotoxin β- N-Methylamino-l-Alanine Accumulates in Bivalves: Distribution of the Different Accumulation Fractions among Organs. Toxins (Basel) 2020; 12:toxins12020061. [PMID: 31972955 PMCID: PMC7076761 DOI: 10.3390/toxins12020061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 01/07/2023] Open
Abstract
The environmental neurotoxin β-methylamino-l-alanine (BMAA) may represent a risk for human health. BMAA accumulates in freshwater and marine organisms consumed by humans. However, few data are available about the kinetics of BMAA accumulation and detoxification in exposed organisms, as well as the organ distribution and the fractions in which BMAA is present in tissues (free, soluble bound or precipitated bound cellular fractions). Here, we exposed the bivalve mussel Dreissena polymorpha to 7.5 µg of dissolved BMAA/mussel/3 days for 21 days, followed by 21 days of depuration in clear water. At 1, 3, 8, 14 and 21 days of exposure and depuration, the hemolymph and organs (digestive gland, the gills, the mantle, the gonad and muscles/foot) were sampled. Total BMAA as well as free BMAA, soluble bound and precipitated bound BMAA were quantified by tandem mass spectrometry. Free and soluble bound BMAA spread throughout all tissues from the first day of exposure to the last day of depuration, without a specific target organ. However, precipitated bound BMAA was detected only in muscles and foot from the last day of exposure to day 8 of depuration, at a lower concentration compared to free and soluble bound BMAA. In soft tissues (digestive gland, gonad, gills, mantle and muscles/foot), BMAA mostly accumulated as a free molecule and in the soluble bound fraction, with variations occurring between the two fractions among tissues and over time. The results suggest that the assessment of bivalve contamination by BMAA may require the quantification of total BMAA in whole individuals when possible.
Collapse
|
24
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
25
|
A Single Laboratory Validation for the Analysis of Underivatized β-N-Methylamino-L-Alanine (BMAA). Neurotox Res 2019; 39:49-71. [PMID: 31823228 DOI: 10.1007/s12640-019-00137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria that can accumulate in ecosystems and food webs. Human exposure to cyanobacterial and algal blooms may be a risk factor for neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. Analytical chemists have struggled to find reliable methods for BMAA analysis in complex sample matrices. Analysis of BMAA is complicated by at least 3 naturally occurring isomers: N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB), and β-aminomethyl-L-alanine (BAMA). More than 350 publications have reported detection and quantification of BMAA and its isomers, but varying results have led to controversy in the literature. The objective of this study was to perform a single laboratory validation (SLV) of a frequently published method for BMAA analysis using a ZIC-HILIC column. We investigated the selectivity, linearity, accuracy, precision, and sensitivity of the method and our data show that this HILIC method fails many of the criteria for a validated method. The method fails the criterion for selectivity as the chromatography does not separate BMAA from its isomer BAMA. Sensitivity of the method greatly decreased over the experimental period and it demonstrated a higher limit of detection (LOD) (7.5 pg on column) and a higher lower limit of quantification (LLOQ) (30 pg on column) than other published validated methods. The method demonstrated poor precision of repeated injections of standards of BMAA with % relative standard deviation (%RSD) values that ranged from 37 to 107% while HorRat values for BMAA had a fail rate of 80% and BAMA had a fail rate of 73%. No HorRat values between 0.5 and 2 were found for repeated injections of standards of AEG and DAB. Recovery of 13C3,15N2-BMAA in a cyanobacterial matrix was < 10% in experiments and we were also unable to accurately detect other protein amino acids including methionine, cysteine, or alanine, indicating matrix effects. The results of this study demonstrate that the ZIC-HILIC column is not fit for purpose for the analysis of BMAA in cyanobacterial matrices and further provides explanations for the high level of negative results reported by researchers using this method.
Collapse
|
26
|
Production of β-methylamino-L-alanine (BMAA) and Its Isomers by Freshwater Diatoms. Toxins (Basel) 2019; 11:toxins11090512. [PMID: 31480725 PMCID: PMC6784237 DOI: 10.3390/toxins11090512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
β-methylamino-L-alanine (BMAA) is a non-protein amino acid that has been implicated as a risk factor for motor neurone disease (MND). BMAA is produced by a wide range of cyanobacteria globally and by a small number of marine diatoms. BMAA is commonly found with two of its constitutional isomers: 2,4-diaminobutyric acid (2,4-DAB), and N-(2-aminoethyl)glycine (AEG). The isomer 2,4-DAB, like BMAA, has neurotoxic properties. While many studies have shown BMAA production by cyanobacteria, few studies have looked at other algal groups. Several studies have shown BMAA production by marine diatoms; however, there are no studies examining freshwater diatoms. This study aimed to determine if some freshwater diatoms produced BMAA, and which diatom taxa are capable of BMAA, 2,4-DAB and AEG production. Five axenic diatom cultures were established from river and lake sites across eastern Australia. Cultures were harvested during the stationary growth phase and intracellular amino acids were extracted. Using liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS), diatom extracts were analysed for the presence of both free and protein-associated BMAA, 2,4-DAB and AEG. Of the five diatom cultures analysed, four were found to have detectable BMAA and AEG, while 2,4-DAB was found in all cultures. These results show that BMAA production by diatoms is not confined to marine genera and that the prevalence of these non-protein amino acids in Australian freshwater environments cannot be solely attributed to cyanobacteria.
Collapse
|
27
|
Vo Duy S, Munoz G, Dinh QT, Tien Do D, Simon DF, Sauvé S. Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry. PLoS One 2019; 14:e0220698. [PMID: 31386693 PMCID: PMC6684067 DOI: 10.1371/journal.pone.0220698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), suspected to trigger neurodegenerative diseases, can be produced during cyanobacterial bloom events and subsequently affect ecosystems and water sources. Some of its isomers including β-amino-N-methylalanine (BAMA), N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid (DAB) may show different toxicities than BMAA. Here, we set out to provide a fast and sensitive method for the monitoring of AEG, BAMA, DAB and BMAA in surface waters. A procedure based on aqueous derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was investigated for this purpose. Under optimized conditions, a small aqueous sample aliquot (5 mL) was spiked with BMAA-d3 internal standard, subjected to FMOC-Cl derivatization, centrifuged, and analyzed. The high-throughput instrumental method (10 min per sample) involved on-line pre-concentration and desalting coupled to ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Chromatographic gradient and mobile phases were adjusted to obtain suitable separation of the 4 isomers. The method limits of detection were in the range of 2-5 ng L-1. In-matrix validation parameters including linearity range, accuracy, precision, and matrix effects were assessed. The method was applied to surface water samples (n = 82) collected at a large spatial scale in lakes and rivers in Canada. DAB was found in >70% of samples at variable concentrations (<3-1,900 ng L-1), the highest concentrations corresponding to lake samples in cyanobacterial bloom periods. BMAA was only reported (110 ng L-1) at one HAB-impacted location. This is one of the first studies to report on the profiles of AEG, BAMA, DAB, and BMAA in background and impacted surface waters.
Collapse
Affiliation(s)
- Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dat Tien Do
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
28
|
Insufficient evidence for BMAA transfer in the pelagic and benthic food webs in the Baltic Sea. Sci Rep 2019; 9:10406. [PMID: 31320701 PMCID: PMC6639344 DOI: 10.1038/s41598-019-46815-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
The evidence regarding BMAA occurrence in the Baltic Sea is contradictory, with benthic sources appearing to be more important than pelagic ones. The latter is counterintuitive considering that the identified sources of this compound in the food webs are pelagic primary producers, such as diatoms, dinoflagellates, and cyanobacteria. To elucidate BMAA distribution, we analyzed BMAA in the pelagic and benthic food webs in the Northern Baltic Proper. As potential sources, phytoplankton communities were used. Pelagic food chain was represented by zooplankton, mysids and zooplanktivorous fish, whereas benthic invertebrates and benthivorous fish comprised the benthic chain. The trophic structure of the system was confirmed by stable isotope analysis. Contrary to the reported ubiquitous occurrence of BMAA in the Baltic food webs, only phytoplankton, zooplankton and mysids tested positive, whereas no measurable levels of this compound occurred in the benthic invertebrates and any of the tested fish species. These findings do not support the widely assumed occurrence and transfer of BMAA to the top consumers in the Baltic food webs. More controlled experiments and field observations are needed to understand the transfer and possible transformation of BMAA in the food web under various environmental settings.
Collapse
|
29
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
30
|
Rutkowska M, Płotka-Wasylka J, Majchrzak T, Wojnowski W, Mazur-Marzec H, Namieśnik J. Recent trends in determination of neurotoxins in aquatic environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev Camb Philos Soc 2018; 94:849-873. [PMID: 30467930 DOI: 10.1111/brv.12480] [Citation(s) in RCA: 855] [Impact Index Per Article: 122.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
Collapse
Affiliation(s)
- Andrea J Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | - Andrew K Carlson
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife and Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Irena F Creed
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93117, U.S.A
| | - Peter A Gell
- School of Life and Health Sciences, University Drive, Federation University Australia, Mount Helen, 3350, Australia
| | - Pieter T J Johnson
- Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309, U.S.A
| | - Karen A Kidd
- Department of Biology and School of Geography and Earth Sciences, McMaster University, Hamilton, L8S 4K1, Canada
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, E4L 1G8, Canada
| | - Julian D Olden
- School of Aquatic and Fishery Science, University of Washington, Seattle, WA 98195-5020, U.S.A
| | - Steve J Ormerod
- Water Research Institute & School of Biosciences, Cardiff University, Cardiff, CF10 3AX, U.K
| | - John P Smol
- Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen's University, Kingston, K7L 3N6, Canada
| | - William W Taylor
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife and Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Klement Tockner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
| | - Jesse C Vermaire
- Institute of Environmental Science, Carleton University, Ottawa, K1S 5B6, Canada
| | - David Dudgeon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada.,Institute of Environmental Science, Carleton University, Ottawa, K1S 5B6, Canada
| |
Collapse
|
32
|
Carion A, Hétru J, Markey A, Suarez-Ulloa V, Frédéric S. Behavioral effects of the neurotoxin -N-methylamino- L-alanine on the mangrove rivulus ( Kryptolebias marmoratus) larvae. J Xenobiot 2018; 8:7820. [PMID: 30701065 PMCID: PMC6343106 DOI: 10.4081/xeno.2018.7820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
Mangrove rivulus, Kryptolebias marmoratus, is a hermaphrodite fish capable of self-fertilization. This particularity allows to naturally produce highly homozygous and isogenic individuals. Despite the low genetic diversity, rivulus can live in extremely variable environments and adjust its phenotype accordingly. This species represents a unique opportunity to clearly distinguish the genetic and non-genetic factors implicated in adaptation and evolution, such as epigenetic mechanisms. It is thus a great model in aquatic ecotoxicology to investigate the effects of xenobiotics on the epigenome, and their potential long-term impacts. In the present study, we used the mangrove rivulus to investigate the effects of the neurotoxin b-N-methylamino-L-alanine (BMAA) on larvae behaviors after 7 days exposure to two sub-lethal concentrations. Results show that BMAA can affect the maximal speed and prey capture (trials and failures), suggesting potential impacts on the organism’s fitness.
Collapse
Affiliation(s)
- Alessandra Carion
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Julie Hétru
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Angèle Markey
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Victoria Suarez-Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Silvestre Frédéric
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| |
Collapse
|
33
|
Foss AJ, Chernoff N, Aubel MT. The analysis of underivatized β-Methylamino-L-alanine (BMAA), BAMA, AEG & 2,4-DAB in Pteropus mariannus mariannus specimens using HILIC-LC-MS/MS. Toxicon 2018; 152:150-159. [PMID: 30102919 DOI: 10.1016/j.toxicon.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023]
Abstract
β-Methylamino-L-alanine (BMAA) has been identified as the potential cause of the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) observed in the Chamorro people of Guam. The principal hypothesis for BMAA exposure and intoxication relies on the biomagnification of BMAA in flying fox specimens ingested by the Chamorro people. Although high levels of BMAA were quantitated in flying fox specimens utilizing liquid chromatography-fluorescence (LC-FL), there have not been any confirmatory analyses conducted to date. Therefore, a method for the tissue homogenization, extraction and direct analysis of BMAA (including BAMA, 2,4-DAB and AEG) was utilized. The approach was applied to mammalian dried skin and hair from various rodent species (negative controls) and archived flying fox (Pteropus mariannus mariannus) specimens. A positive control sample of homogenized mussel (Mytelius edulis) with native BMAA was used to verify the method. It was determined that the direct analysis using HILIC MS/MS required additional quality control in order to allow for the confident identification of BMAA due to the near co-elution of BAMA. BMAA was not present above 0.2 μg g-1 (free fraction) or 2.8 μg g-1 (total fraction) in the flying fox specimens. While analysis did not result in BMAA detection in flying fox or negative control samples, the positive control sample and spiked samples were successfully detected.
Collapse
Affiliation(s)
- Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA.
| | - Neil Chernoff
- Developmental Biology Division, National Health and Environmental Effects Research Lab, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Mark T Aubel
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA
| |
Collapse
|
34
|
|
35
|
Spasic S, Stanojevic M, Nesovic Ostojic J, Kovacevic S, Prostran M, Lopicic S. Extensive depolarization and lack of recovery of leech Retzius neurons caused by 2,4 diaminobutyric acid. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:269-275. [PMID: 29679946 DOI: 10.1016/j.aquatox.2018.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
In this paper we present, for the first time, a detailed account of electrophysiological effects of 2,4-diaminobutyric acid (2,4-DABA). 2,4-DABA is a neurotoxic non-protein amino acid produced by Cyanobacteria with a possible link to neurodegenerative disorders in animals and humans. Intracellular recordings were performed on Retzius nerve cells of the leech Haemopis sanguisuga using glass microelectrodes filled with 3 mol/L KCl. Our results show that 2,4-DABA is an excitatory amino acid, causing membrane depolarization in a concentration-dependent manner. The most prominent depolarizations of 39.63±2.22 mV and 47.05±4.33 mV, induced by 5×10-3 and 10-2 mol/L 2,4-DABA respectively, are several times larger than maximal depolarizations induced by either Glutamate, Aspartate, β-N-methylamino-alanine (BMAA) or β-N-oxalylamino-alanine (BOAA) on our model. These 2,4-DABA induced depolarizations evolve through two distinct stages, which is a novel phenomenon in electrical cell activity upon application of an excitatory amino acid, at least on our model. Involvement of two separate mechanisms, suggested by the two stage phenomenon, is discussed in the paper. We also provide evidence that 2,4-DABA induces irreversible functional disturbances in neurons in a concentration-dependent manner, since only half of the cells recovered normal electrical activity after application of 5×10-3 mol/L 2,4-DABA, and none recovered after application of 10-2 mol/L 2,4-DABA. Effects of both L-2,4-DABA and DL-2,4-DABA were tested and are not significantly different.
Collapse
Affiliation(s)
- S Spasic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia
| | - M Stanojevic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia
| | - J Nesovic Ostojic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia
| | - S Kovacevic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia
| | - M Prostran
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty University of Belgrade, Dr Subotica 1/III, 11000 Belgrade, Serbia
| | - S Lopicic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia.
| |
Collapse
|
36
|
Main BJ, Bowling LC, Padula MP, Bishop DP, Mitrovic SM, Guillemin GJ, Rodgers KJ. Detection of the suspected neurotoxin β-methylamino-l-alanine (BMAA) in cyanobacterial blooms from multiple water bodies in Eastern Australia. HARMFUL ALGAE 2018; 74:10-18. [PMID: 29724339 DOI: 10.1016/j.hal.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/09/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The emerging toxin β-methylamino-l-alanine (BMAA) has been linked to the development of a number of neurodegenerative diseases in humans including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease. BMAA has been found to be produced by a range of cyanobacteria, diatoms, and dinoflagellates worldwide, and is present in freshwater, saltwater, and terrestrial ecosystems. Surface scum samples were collected from waterways in rural and urban New South Wales, Australia and algal species identified. Reverse phase liquid chromatography-tandem mass spectrometry was used to analyse sixteen cyanobacterial scum for the presence of BMAA as well as its toxic structural isomer 2,4-diaminobutyric acid (2,4-DAB). BMAA was detected in ten of the samples analysed, and 2,4-DAB in all sixteen. The presence of these toxins in water used for agriculture raises concerns for public health and food security in Australia.
Collapse
Affiliation(s)
- Brendan J Main
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Lee C Bowling
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia; DPI Water, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - David P Bishop
- Elemental Bio-imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Gilles J Guillemin
- MND Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
37
|
Beri J, Kirkwood KI, Muddiman DC, Bereman MS. A novel integrated strategy for the detection and quantification of the neurotoxin β-N-methylamino-L-alanine in environmental samples. Anal Bioanal Chem 2018; 410:2597-2605. [PMID: 29455280 DOI: 10.1007/s00216-018-0930-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
We describe a set of new tools for the detection and quantification of β-N-methylamino-L-alanine (BMAA) which includes a novel stable isotope-labeled BMAA standard (13C3,15N2) and a chip-based capillary electrophoresis mass spectrometry platform for separation and detection. Baseline resolution of BMAA from its potentially confounding structural isomers N-2-aminoethylglycine (AEG) and 2,4-diaminobutyric acid (2,4-DAB) is achieved using the chip-based CE-MS system in less than 1 min. Detection and linearity of response are demonstrated across > 3.5 orders of dynamic range using parallel reaction monitoring (PRM). The lower limit of detection and quantification were calculated for BMAA detection at 40 nM (4.8 ng/mL) and 400 nM (48 ng/mL), respectively. Finally, the strategy was applied to detect BMAA in seafood samples purchased at a local market in Raleigh, NC where their harvest location was known. BMAA was detected in a sea scallop sample. Because the BMAA/stable isotope-labeled 13C3,15N2-BMAA (SIL-BMAA) ratio in the scallop sample was below the limit of quantification, a semiquantitative analysis of BMAA content was carried out, and BMAA content was estimated to be approximately 820 ng BMAA/1 g of wet scallop tissue. Identification was verified by high mass measurement accuracy of precursor (< 5 ppm) and product ions (< 10 ppm), comigration with SIL-BMAA spike-in standard, and conservation of ion abundance ratios for product ions between BMAA and SIL-BMAA. Interestingly, BMAA was not identified in the free protein fraction but only detected after protein hydrolysis which suggests that BMAA is tightly bound by and/or incorporated into proteins. Graphical abstract Utilization of novel 13C3,15N2-BMAA and chip-based CE-MS/MS for detection and quantification of BMAA in environmental samples.
Collapse
Affiliation(s)
- Joshua Beri
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael S Bereman
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
38
|
Genotoxic and Cytotoxic Effects on the Immune Cells of the Freshwater Bivalve Dreissena polymorpha Exposed to the Environmental Neurotoxin BMAA. Toxins (Basel) 2018; 10:toxins10030106. [PMID: 29494483 PMCID: PMC5869394 DOI: 10.3390/toxins10030106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 01/13/2023] Open
Abstract
The environmental neurotoxin β-N-Methylamino-l-alanine (BMAA) has been pointed out to be involved in human neurodegenerative diseases. This molecule is known to be bioaccumulated by bivalves. However, little data about its toxic effects on freshwater mussels is available, particularly on the hemolymphatic compartment and its hemocyte cells involved in various physiological processes such as immune defenses, digestion and excretion, tissue repair, and shell production. Here we exposed Dreissena polymorpha to dissolved BMAA, at the environmental concentration of 7.5 µg of /mussel/3 days, during 21 days followed by 14 days of depuration in clear water, with the objective of assessing the BMAA presence in the hemolymphatic compartment, as well as the impact of the hemocyte cells in terms of potential cytotoxicity, immunotoxicity, and genotoxiciy. Data showed that hemocytes were in contact with BMAA. The presence of BMAA in hemolymph did not induce significant effect on hemocytes phagocytosis activity. However, significant DNA damage on hemocytes occurred during the first week (days 3 and 8) of BMAA exposure, followed by an increase of hemocyte mortality after 2 weeks of exposure. Those effects might be an indirect consequence of the BMAA-induced oxidative stress in cells. However, DNA strand breaks and mortality did not persist during the entire exposure, despite the BMAA persistence in the hemolymph, suggesting potential induction of some DNA-repair mechanisms.
Collapse
|
39
|
Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans. Toxins (Basel) 2018; 10:toxins10020083. [PMID: 29443939 PMCID: PMC5848184 DOI: 10.3390/toxins10020083] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino-N-methyl-alanine (BAMA) and N-(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.
Collapse
|
40
|
Contardo-Jara V, Schwanemann T, Esterhuizen-Londt M, Pflugmacher S. Protein association of β-N-methylamino-L-alanine in Triticum aestivum via irrigation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:731-739. [DOI: 10.1080/19440049.2018.1427283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Valeska Contardo-Jara
- Chair of Ecological Impact Research and Ecotoxicology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Torsten Schwanemann
- Chair of Ecological Impact Research and Ecotoxicology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Maranda Esterhuizen-Londt
- Chair of Ecological Impact Research and Ecotoxicology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Stephan Pflugmacher
- Chair of Ecological Impact Research and Ecotoxicology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe (KIST), Saarbrücken, Germany
| |
Collapse
|
41
|
Beach DG, Kerrin ES, Giddings SD, Quilliam MA, McCarron P. Differential Mobility-Mass Spectrometry Double Spike Isotope Dilution Study of Release of β-Methylaminoalanine and Proteinogenic Amino Acids during Biological Sample Hydrolysis. Sci Rep 2018; 8:117. [PMID: 29311581 PMCID: PMC5758758 DOI: 10.1038/s41598-017-18392-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
The non-protein amino acid β-methylamino-L-alanine (BMAA) has been linked to neurodegenerative disease and reported throughout the environment. Proposed mechanisms of bioaccumulation, trophic transfer and chronic toxicity of BMAA rely on the hypothesis of protein misincorporation. Poorly selective methods for BMAA analysis have led to controversy. Here, a recently reported highly selective method for BMAA quantitation using hydrophilic interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS) is expanded to include proteinogenic amino acids from hydrolyzed biological samples. For BMAA quantitation, we present a double spiking isotope dilution approach using D3-BMAA and 13C15N2-BMAA. These methods were applied to study release of BMAA during acid hydrolysis under a variety of conditions, revealing that the majority of BMAA can be extracted along with only a small proportion of protein. A time course hydrolysis of BMAA from mussel tissue was carried out to assess the recovery of BMAA during sample preparation. The majority of BMAA measured by typical methods was released before a significant proportion of protein was hydrolyzed. Little change was observed in protein hydrolysis beyond typical hydrolysis times but the concentration of BMAA increased linearly. These findings demonstrate protein misincorporation is not the predominant form of BMAA in cycad and shellfish.
Collapse
Affiliation(s)
- Daniel G Beach
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada.
| | - Elliott S Kerrin
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Sabrina D Giddings
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Michael A Quilliam
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| |
Collapse
|
42
|
Lugliè A, Giacobbe MG, Riccardi E, Bruno M, Pigozzi S, Mariani MA, Satta CT, Stacca D, Bazzoni AM, Caddeo T, Farina P, Padedda BM, Pulina S, Sechi N, Milandri A. Paralytic Shellfish Toxins and Cyanotoxins in the Mediterranean: New Data from Sardinia and Sicily (Italy). Microorganisms 2017; 5:microorganisms5040072. [PMID: 29144421 PMCID: PMC5748581 DOI: 10.3390/microorganisms5040072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Harmful algal blooms represent a severe issue worldwide. They affect ecosystem functions and related services and goods, with consequences on human health and socio-economic activities. This study reports new data on paralytic shellfish toxins (PSTs) from Sardinia and Sicily (Italy), the largest Mediterranean islands where toxic events, mainly caused by Alexandrium species (Dinophyceae), have been ascertained in mussel farms since the 2000s. The toxicity of the A. minutum, A. tamarense and A. pacificum strains, established from the isolation of vegetative cells and resting cysts, was determined by high performance liquid chromatography (HPLC). The analyses indicated the highest toxicity for A. pacificum strains (total PSTs up to 17.811 fmol cell-1). The PSTs were also assessed in a strain of A. tamarense. The results encourage further investigation to increase the knowledge of toxic species still debated in the Mediterranean. This study also reports new data on microcystins (MCs) and β-N-methylamino-L-alanine (BMAA) from a Sardinian artificial lake (Lake Bidighinzu). The presence of MCs and BMAA was assessed in natural samples and in cell cultures by enzyme-linked immunosorbent assay (ELISA). BMAA positives were found in all the analysed samples with a maximum of 17.84 µg L-1. The obtained results added further information on cyanotoxins in Mediterranean reservoirs, particularly BMAA, which have not yet been thoroughly investigated.
Collapse
Affiliation(s)
- Antonella Lugliè
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Maria Grazia Giacobbe
- Istituto per l'Ambiente Marino Costiero, CNR, Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Elena Riccardi
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, Viale A. Vespucci 2, 47042 Cesenatico (FC), Italy.
| | - Milena Bruno
- Environmental Quality and Fish Farming, Environment and Primary Prevention, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy.
| | - Silvia Pigozzi
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, Viale A. Vespucci 2, 47042 Cesenatico (FC), Italy.
| | - Maria Antonietta Mariani
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Cecilia Teodora Satta
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
- Agenzia Regionale per la Ricerca in Agricoltura (AGRIS), Servizio Ittico, S.S. Sassari-Fertilia Km 18,600, Bonassai, 07040 Olmedo, Italy.
| | - Daniela Stacca
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Anna Maria Bazzoni
- Dipartimento di Ispezione degli Alimenti, Istituto Zooprofilattico Sperimentale della Sardegna G. Pegreffi, Via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | - Tiziana Caddeo
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Pasqualina Farina
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Bachisio Mario Padedda
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Silvia Pulina
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy.
| | - Nicola Sechi
- Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Anna Milandri
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, Viale A. Vespucci 2, 47042 Cesenatico (FC), Italy.
| |
Collapse
|
43
|
Regueiro J, Negreira N, Carreira-Casais A, Pérez-Lamela C, Simal-Gándara J. Dietary exposure and neurotoxicity of the environmental free and bound toxin β- N -methylamino- l -alanine. Food Res Int 2017; 100:1-13. [DOI: 10.1016/j.foodres.2017.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
44
|
Yan B, Liu Z, Huang R, Xu Y, Liu D, Lin TF, Cui F. Optimization of the Determination Method for Dissolved Cyanobacterial Toxin BMAA in Natural Water. Anal Chem 2017; 89:10991-10998. [DOI: 10.1021/acs.analchem.7b02867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Boyin Yan
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiquan Liu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Huang
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongpeng Xu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tsair-Fuh Lin
- Department
of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Fuyi Cui
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
45
|
Braga AC, Lage S, Pacheco M, Rydberg S, Costa PR. Native (Ruditapes decussatus) and non-indigenous (R. philippinarum) shellfish species living in sympatry: Comparison of regulated and non-regulated biotoxins accumulation. MARINE ENVIRONMENTAL RESEARCH 2017; 129:147-155. [PMID: 28527836 DOI: 10.1016/j.marenvres.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The native Ruditapes decussatus and the non-indigenous Ruditapes philippinarum are an important target of shellfish industries. The aim of this study was to compare an invader with a native species living in sympatry in the view of marine biotoxins accumulation. Samples were analysed for regulated and non-regulated biotoxins. The consistently occurrence of okadaic acid-group toxins and BMAA, may cause human health problems and economical losses. A strong positive relationship was observed between species, with significantly higher DSP toxicity in R. decussatus. Similar toxin profiles dominated by DTX3 in both species suggests similar metabolic pathways. Lower DSP toxicity in R. philippinarum may favour their cultivation, but a tendency for higher levels of the non-regulated BMAA was observed, indicating risks for consumers that are not monitored. This study highlights the need to better understand the physiological responses and adaptations allowing similar species exposed to the same conditions to present different toxicity levels.
Collapse
Affiliation(s)
- Ana C Braga
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Mário Pacheco
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Pedro R Costa
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
46
|
Cirés S, Casero MC, Quesada A. Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments. Mar Drugs 2017; 15:md15070233. [PMID: 28737704 PMCID: PMC5532675 DOI: 10.3390/md15070233] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 01/06/2023] Open
Abstract
Cyanotoxins are secondary metabolites produced by cyanobacteria, of varied chemical nature and toxic effects. Although cyanobacteria thrive in all kinds of ecosystems on Earth even under very harsh conditions, current knowledge on cyanotoxin distribution is almost restricted to freshwaters from temperate latitudes. In this review, we bring to the forefront the presence of cyanotoxins in extreme environments. Cyanotoxins have been reported especially in polar deserts (both from the Arctic and Antarctica) and alkaline lakes, but also in hot deserts, hypersaline environments, and hot springs. Cyanotoxins detected in these ecosystems include neurotoxins-anatoxin-a, anatoxin-a (S), paralytic shellfish toxins, β-methylaminopropionic acid, N-(2-aminoethyl) glycine and 2,4-diaminobutyric acid- and hepatotoxins -cylindrospermopsins, microcystins and nodularins-with microcystins being the most frequently reported. Toxin production there has been linked to at least eleven cyanobacterial genera yet only three of these (Arthrospira, Synechococcus and Oscillatoria) have been confirmed as producers in culture. Beyond a comprehensive analysis of cyanotoxin presence in each of the extreme environments, this review also identifies the main knowledge gaps to overcome (e.g., scarcity of isolates and -omics data, among others) toward an initial assessment of ecological and human health risks in these amazing ecosystems developing at the very edge of life.
Collapse
Affiliation(s)
- Samuel Cirés
- Departamento de Biología, Darwin, 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - María Cristina Casero
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, Calle Serrano 115, 28006 Madrid, Spain.
| | - Antonio Quesada
- Departamento de Biología, Darwin, 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
47
|
Baker TC, Tymm FJM, Murch SJ. Assessing Environmental Exposure to β-N-Methylamino-L-Alanine (BMAA) in Complex Sample Matrices: a Comparison of the Three Most Popular LC-MS/MS Methods. Neurotox Res 2017. [PMID: 28643233 DOI: 10.1007/s12640-017-9764-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid produced by cyanobacteria, accumulated through natural food webs, found in mammalian brain tissues. Recent evidence indicates an association between BMAA and neurological disease. The accurate detection and quantification of BMAA in food and environmental samples are critical to understanding BMAA metabolism and limiting human exposure. To date, there have been more than 78 reports on BMAA in cyanobacteria and human samples, but different methods give conflicting data and divergent interpretations in the literature. The current work was designed to determine whether orthogonal chromatography and mass spectrometry methods give consistent data interpretation from a single sample matrix using the three most common analytical methods. The methods were recreated as precisely as possible from the literature with optimization of the mass spectrometry parameters specific to the instrument. Four sample matrices, cyanobacteria, human brain, blue crab, and Spirulina, were analyzed as 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives, propyl chloroformate (PCF) derivatives separated by reverse phase chromatography, or underivatized extracts separated by HILIC chromatography. The three methods agreed on positive detection of BMAA in cyanobacteria and no detected BMAA in the sample of human brain matrix. Interpretation was less clear for a sample of blue crab which was strongly positive for BMAA by AQC and PCF but negative by HILIC and for four spirulina raw materials that were negative by PCF but positive by AQC and HILIC. Together, these data demonstrate that the methods gave different results and that the choices in interpretation of the methods determined whether BMAA was detected. Failure to detect BMAA cannot be considered proof of absence.
Collapse
Affiliation(s)
- Teesha C Baker
- Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Fiona J M Tymm
- Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Susan J Murch
- Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
48
|
Chernoff N, Hill DJ, Diggs DL, Faison BD, Francis BM, Lang JR, Larue MM, Le TT, Loftin KA, Lugo JN, Schmid JE, Winnik WM. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:1-47. [PMID: 28598725 PMCID: PMC6503681 DOI: 10.1080/10937404.2017.1297592] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer's disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.
Collapse
Affiliation(s)
- N. Chernoff
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. J. Hill
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. L. Diggs
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - B. D. Faison
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC, USA
| | - B. M. Francis
- Department of Entomology, University of Illinois, Champaign-Urbana, IL, USA
| | - J. R Lang
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - M. M. Larue
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - T.-T. Le
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | | | - J. N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - J. E. Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - W. M. Winnik
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| |
Collapse
|
49
|
Rzymski P, Poniedziałek B, Mankiewicz-Boczek J, Faassen EJ, Jurczak T, Gągała-Borowska I, Ballot A, Lürling M, Kokociński M. Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Bláhová L, Kohoutek J, Kadlecová E, Kozáková L, Bláha L. Assessment of non-derivatized β-N-methylamino-l-alanine (BMAA) neurotoxin in free form in urine of patients with nonspecific neurological symptoms. Toxicon 2017; 133:48-57. [PMID: 28428069 DOI: 10.1016/j.toxicon.2017.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
The beta-N-methylamino-l-alanine (BMAA) is a non-proteinogenic amino acid discussed to be produced by cyanobacteria forming harmful blooms. Since BMAA is suspected etiological agent in neurodegenerative diseases, there is a need to study and validate whether and in what concentrations can BMAA be present in human tissues. The aim of the present study was to validate analytical and extraction procedures for quantification of non-derivatized BMAA in the urine using liquid chromatography and commercial ELISA Kit. The study was focused on BMAA in different forms - dissolved, protein associated and total. The validated protocol included SPE followed by HILIC MS/MS for analyses of non-derivatized free form of BMAA with a limit of quantification 20 ng/mL. The methods for other BMAA forms (i.e. protein-associated and total) were also assessed but high matrix interferences did not allow their implementation. The method was used for analyses of free BMAA in 23 urine samples from healthy volunteers and psychiatric patients suffering from nonspecific neurological symptoms. Traces of BMAA were suspectedly detected in a single urine sample but they were not unequivocally proved according to all conservative analytical criteria. BMAA was also not confirmed in a repeatedly collected sample from the same person. The evaluated commercial BMAA ELISA Kit (Abraxis) was not suitable for determination of BMAA in extracted urine samples because of systematically highly false positive results. In agreement with recent findings, analyses of BMAA appear to methodologically challenging, and further research on BMAA in human tissues (or its precursors with potency to form BMAA under natural conditions or - eventually - during sample processing) is needed to clarify its potential ethiological role in neurodegenerative diseases.
Collapse
Affiliation(s)
- L Bláhová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | - J Kohoutek
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | - E Kadlecová
- Psychiatric Hospital Písek, Vladislavova 490, CZ39701 Písek, Czech Republic
| | - L Kozáková
- Psychiatric Hospital Písek, Vladislavova 490, CZ39701 Písek, Czech Republic
| | - L Bláha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic.
| |
Collapse
|