1
|
Yang X, Cea‐Medina P, Gopalswamy M, Vaidya A, Schavier S, Oltzen S, Moßner S, Huang A, Qi J, Hölken JM, Teusch N, Floss DM, Uhrberg M, Gohlke H, Scheu S. The mycotoxin Beauvericin is an uncompetitive inhibitor of Cathepsin B. Protein Sci 2025; 34:e70173. [PMID: 40411408 PMCID: PMC12102733 DOI: 10.1002/pro.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/26/2025]
Abstract
Beauvericin (BEA), a cyclic depsipeptide, is a mycotoxin of the enniatin family and the secondary metabolite of various toxigenic fungi. Multiple biological functions of BEA have been well investigated, such as anti-cancer, anti-inflammatory, anti-microbial, and immune-activating functions. In a recent study, we showed that BEA can target Toll-like receptor 4 (TLR4) to induce dendritic cell (DC) activation. In an in silico screen, we identified Cathepsin B (CTSB) as a potential additional interaction partner for BEA, which has been verified recently in a study showing inhibition of human CTSB activity by BEA in cell-free assays. The underlying molecular mechanism of BEA-mediated CTSB inhibition remains unknown, as do the cellular entities where this inhibition takes place. In this study, we determine the effects of BEA on CTSB within granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow-derived dendritic cells (BMDCs) and human leukemia monocytic cell line THP-1 induced immature dendritic cells (iDCs). BEA significantly suppresses CTSB activity in both mouse BMDCs and human iDCs. NMR analyses indicate that BEA directly interacts with CTSB. Enzyme kinetics show that BEA can directly inhibit CTSB activity and acts as an uncompetitive inhibitor. Molecular docking analysis revealed a putative binding site for BEA in human CTSB. Collectively, our study is the first to describe the molecular mechanisms underlying the biological activity of BEA against human CTSB, suggesting that CTSB may be a candidate target for tumor therapy.
Collapse
Affiliation(s)
- Xiaoli Yang
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Pablo Cea‐Medina
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Mohanraj Gopalswamy
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Aparna Vaidya
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sonja Schavier
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Shixin Oltzen
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sofie Moßner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Anfei Huang
- Würzburg Institute of Systems ImmunologyUniversity of WürzburgWürzburgGermany
| | - Jing Qi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Johanna Maria Hölken
- Institute of Pharmaceutical Biology and BiotechnologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and BiotechnologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Doreen M. Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Bio‐ and Geosciences (IBG‐4: Bioinformatics)Forschungszentrum JülichJülichGermany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of ImmunologyRostock University Medical CenterRostockGermany
| |
Collapse
|
2
|
Wang G, Qiao Y, Zhao Y, Li M, Song Y, Jin M, Yang D, Shi D, Li H, Chen T, Zhou S, Yang Z, Li J, Liu W. Beaveria bassiana (Balsamo) Vuillemin combined with cinnamaldehyde enhances anti-hepatocellular carcinoma effects of T cells by the PGC-1α/DRP1-regulated mitochondrial biogenesis and fission. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119216. [PMID: 39643019 DOI: 10.1016/j.jep.2024.119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Beaveria bassiana (Balsamo) Vuillemin (BEA) and cinnamaldehyde (CA), primarily derived from traditional Chinese medicine (TCM) named Bombyx batryticatus and Cinnamomum cassia, play an immunomodulatory role in different disease. AIM OF THE STUDY Hepatocellular carcinoma (HCC) is a prevalent malignant tumor characterized by immune dysfunction. In this study, we investigated BEA and CA's regulate ability on T cell mitochondrial metabolism and anti-HCC effect. MATERIALS AND METHODS We used RT-qPCR, Western blot, Enzyme-linked immune sorbent assay (ELISA), Flow CytoMetry (FCM) methods to examine BEA and CA's regulation of T cell mitochondrial function and anti-HCC ability. Furthermore, the mechanism of PGC-1α/DRP1 pathway on the morphology and function of T cell mitochondria was investigated. RESULTS Our data demonstrated that the administration of BEA and CA, either alone or in combination, effectively suppressed HCC growth and mitigated T cell apoptosis and mitochondrial dysfunction, assessed by mitochondrial reactive oxygen species (mitoROS), mitochondrial membrane potential (MMP) and ATP level. Moreover, BEA and CA could enhance the release of tumor-killing factors (Perforin (PF) and Granzyme B (Gzm B)) from T cells, inducing H22 cell apoptosis. Additionally, BEA and CA-treated T cell reinfusion into BALB/c nude HCC mice could significantly inhibited HCC growth by promoting T cell infiltration into tumor tissue. T cell mitochondrial biogenesis/fission balance and apoptosis in tumor mice were regulated by PGC-1α/DRP1 pathway. CONCLUSIONS Our findings reveal that BEA and CA enhance anti-HCC effects of T cells by regulating mitochondrial biogenesis and fission through the PGC-1α/DRP1 pathway.
Collapse
Affiliation(s)
- Gui Wang
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Yamei Qiao
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Yunyan Zhao
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Mengyang Li
- Military Medical Sciences Acadamy, Tianjin, China; School of Public Health and Management, Binzhou Medical University, Yantai, Shandong China, China.
| | | | - Min Jin
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Dong Yang
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Danyang Shi
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Haibei Li
- Military Medical Sciences Acadamy, Tianjin, China.
| | | | - Shuqing Zhou
- Military Medical Sciences Acadamy, Tianjin, China.
| | | | - Junwen Li
- Military Medical Sciences Acadamy, Tianjin, China.
| | - Weili Liu
- Military Medical Sciences Acadamy, Tianjin, China.
| |
Collapse
|
3
|
de Oliveira Filho VA, Gubiani JR, Borgonovi VD, Hilário F, de Amorim MR, Minori K, Bertolini VKS, Ferreira AG, Biz AR, Soares MA, Teles HL, Gadelha FR, Berlinck RGS, Miguel DC. In Vitro and In Vivo Leishmanicidal Activity of Beauvericin. JOURNAL OF NATURAL PRODUCTS 2024; 87:2829-2838. [PMID: 39626110 DOI: 10.1021/acs.jnatprod.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Leishmaniasis is a worldwide disease caused by more than 20 species of Leishmania parasites. Leishmania amazonensis and L. braziliensis are among the main causative agents of cutaneous leishmaniasis, presenting a broad spectrum of clinical forms. As these pathologies lead to unsatisfactory treatment outcomes, the discovery of alternative chemotherapeutic options is urgently required. In this investigation, a leishmanicidal bioassay-guided fractionation of the growth media extract produced by Aspergillus terreus P63 led to the isolation of the cyclic depsipeptide beauvericin (1). The viability of L. amazonensis, L. braziliensis and mammalian cells (macrophages and L929 fibroblasts) was assessed in 1 incubated cultures. Leishmania promastigotes were sensitive to 1, with EC50 values ranging from 0.7 to 1.3 μM. Microscopy analysis indicated that Leishmania spp. parasites showed morphological abnormalities in a dose-dependent manner in the presence of 1. L. amazonensis intracellular amastigotes were more sensitive to 1 than promastigotes (EC50 = 0.8 ± 0.1 μM), with a good selectivity index (22-30). 1 reduced the infectivity index at very low concentrations, maintaining the integrity of the primary murine host cell for up to the highest concentration tested for 1. In vivo assays of 1 conducted using BALB/c mice infected with stationary-phase promastigotes of L. amazonensis in the tail base presented a significant reduction in the lesion parasite load. A second round of in vivo assays was performed to assess the efficacy of the topical use of 1. The results demonstrated a significant decrease in the total ulcerated area of mice treated with 1 when compared with untreated animals. Our results present promising in vitro and in vivo leishmanicidal effects of beauvericin, emphasizing that systemic inoculation of 1 led to a decrease in the parasite load at the lesion site, whereas topical administration of 1 delayed the progression of leishmaniasis ulcers, a cure criterion established for cutaneous leishmaniasis management.
Collapse
Affiliation(s)
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Vitória D Borgonovi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Felipe Hilário
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Marcelo R de Amorim
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Karen Minori
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Vitor K S Bertolini
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Andressa R Biz
- Departamento de Botânica e Ecologia. Universidade Federal de Mato Grosso - UFMT, Cuiabá 78060-900, MT, Brazil
| | - Marcos A Soares
- Departamento de Botânica e Ecologia. Universidade Federal de Mato Grosso - UFMT, Cuiabá 78060-900, MT, Brazil
| | - Helder L Teles
- Instituto de Ciências Exatas e Naturais, Universidade Federal de Rondonópolis, Campus de Rondonópolis, 78736-900 Rondonópolis, MT, Brazil
| | - Fernanda R Gadelha
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Danilo C Miguel
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
4
|
Liu R, Ouyang J, Li L. Anti-tumor activity of beauvericin: focus on intracellular signaling pathways. Mycotoxin Res 2024; 40:535-546. [PMID: 39289326 DOI: 10.1007/s12550-024-00561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Beauvericin, a Fusarium mycotoxin commonly found in feeds, particularly cereals worldwide, exhibits a wide array of biofunction. It exhibits anticancer characteristics in addition to its antiviral, antifungal and antibacterial capabilities against gram-positive and gram-negative microorganisms. The mechanism underlying most of beauvericin's properties lies in its ionophoric activity. By facilitating calcium (Ca2+) flow from the extracellular space as well as its release from intracellular reservoirs, beauvericin increases intracellular free Ca2+. This elevation in Ca2+ levels leads to detrimental effects on mitochondria and oxidative stress, ultimately resulting in apoptosis and cell death. Studies on various cancer cell lines have shown that beauvericin induces apoptosis upon exposure. Moreover, besides its cytotoxic effects, beauvericin also inhibits cancer growth and progression by exerting anti-angiogenic and anti-migratory effects on cancer cells. Additionally, beauvericin possesses immunomodulatory properties, albeit less explored. Recent research indicates its potential to enhance the maturation and activation of dendritic cells (DCs) and T cells, both directly through its interaction with Toll-like receptor 4 (TLR4) and indirectly by increasing intracellular Ca2+ levels. Hence, beauvericin could serve as an adjuvant in chemoimmunotherapy regimens to enhance treatment outcomes. Given these diverse properties, beauvericin emerges as an intriguing candidate for developing effective cancer treatments. This review explores the cellular signaling pathways involved in its anticancer effects.
Collapse
Affiliation(s)
- Ruoxuan Liu
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jie Ouyang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liming Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Al Khoury C, Thoumi S, Tokajian S, Sinno A, Nemer G, El Beyrouthy M, Rahy K. ABC transporter inhibition by beauvericin partially overcomes drug resistance in Leishmania tropica. Antimicrob Agents Chemother 2024; 68:e0136823. [PMID: 38572959 PMCID: PMC11064568 DOI: 10.1128/aac.01368-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease infecting the world's poorest populations. Miltefosine (ML) remains the primary oral drug against the cutaneous form of leishmaniasis. The ATP-binding cassette (ABC) transporters are key players in the xenobiotic efflux, and their inhibition could enhance the therapeutic index. In this study, the ability of beauvericin (BEA) to overcome ABC transporter-mediated resistance of Leishmania tropica to ML was assessed. In addition, the transcription profile of genes involved in resistance acquisition to ML was inspected. Finally, we explored the efflux mechanism of the drug and inhibitor. The efficacy of ML against all developmental stages of L. tropica in the presence or absence of BEA was evaluated using an absolute quantification assay. The expression of resistance genes was evaluated, comparing susceptible and resistant strains. Finally, the mechanisms governing the interaction between the ABC transporter and its ligands were elucidated using molecular docking and dynamic simulation. Relative quantification showed that the expression of the ABCG sub-family is mostly modulated by ML. In this study, we used BEA to impede resistance of Leishmania tropica. The IC50 values, following BEA treatment, were significantly reduced from 30.83, 48.17, and 16.83 µM using ML to 8.14, 11.1, and 7.18 µM when using a combinatorial treatment (ML + BEA) against promastigotes, axenic amastigotes, and intracellular amastigotes, respectively. We also demonstrated a favorable BEA-binding enthalpy to L. tropica ABC transporter compared to ML. Our study revealed that BEA partially reverses the resistance development of L. tropica to ML by blocking the alternate ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Charbel Al Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sergio Thoumi
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Aia Sinno
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Mark El Beyrouthy
- Department of Agriculture and Food Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Kelven Rahy
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
6
|
Hasuda AL, Bracarense APFRL. Toxicity of the emerging mycotoxins beauvericin and enniatins: A mini-review. Toxicon 2024; 239:107534. [PMID: 38013058 DOI: 10.1016/j.toxicon.2023.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Beauvericin and enniatins, emerging mycotoxins produced mainly by Fusarium species, are natural contaminants of cereals and cereal products. These mycotoxins are cyclic hexadepsipeptides with ionophore properties and their toxicity mechanism is related to their ability to transport cations across the cell membrane. Beauvericin and enniatins are cytotoxic, as they decrease cell viability, promote cell cycle arrest, and increase apoptosis and the generation of reactive oxygen species in several cell lines. They also cause changes at the transcriptomic level and have immunomodulatory effects in vitro and in vivo. Toxicokinetic results are scarce, and, despite its proven toxic effects in vitro, no regulation or risk assessment has yet been performed due to a lack of in vivo data. This mini-review aims to report the information available in the literature on studies of in vitro and in vivo toxic effects with beauvericin and enniatins, which are mycotoxins of increasing interest to animal and human health.
Collapse
Affiliation(s)
- Amanda Lopes Hasuda
- Laboratory of Animal Pathology, Londrina State University, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Londrina State University, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
7
|
Hu L, Sui X, Dong X, Li Z, Lun S, Wang S. Low beauvericin concentrations promote PC-12 cell survival under oxidative stress by regulating lipid metabolism and PI3K/AKT/mTOR signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115786. [PMID: 38061083 DOI: 10.1016/j.ecoenv.2023.115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024]
Abstract
Beauvericin (BEA), a naturally occurring cyclic peptide with good pharmacological activity, has been widely explored in anticancer research. Although BEA is toxic, studies have demonstrated its antioxidant activity. However, to date, the antioxidant mechanisms of BEA remain unclear. Herein, we conducted a comprehensive and detailed study of the antioxidant mechanism of BEA using an untargeted metabolomics approach, subsequently validating the results. BEA concentrations of 0.5 and 1 μM significantly inhibited H2O2-induced oxidative stress (OS), decreased reactive oxygen species levels in PC-12 cells, and restored the mitochondrial membrane potential. Untargeted metabolomics indicated that BEA was primarily involved in lipid-related metabolism, suggesting its role in resisting OS in PC-12 cells by participating in lipid metabolism. BEA combated OS damage by increasing phosphatidylcholine, phosphatidylethanolamine, and sphingolipid levels. In the current study, BEA upregulated proteins related to the PI3K/AKT/mTOR pathway, thereby promoting cell survival. These findings support the antioxidant activity of BEA at low concentrations, warranting further research into its pharmacological effects.
Collapse
Affiliation(s)
- Liming Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Xintong Sui
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Xin Dong
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Zhimeng Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Shiyi Lun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Shumin Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
8
|
Wang G, Qiao Y, Zhao Y, Song Y, Li M, Jin M, Yang D, Yin J, Li J, Liu W. Beauvericin exerts an anti-tumor effect on hepatocellular carcinoma by inducing PI3K/AKT-mediated apoptosis. Arch Biochem Biophys 2023; 745:109720. [PMID: 37611353 DOI: 10.1016/j.abb.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Beauvericin is a world-spread mycotoxin isolated from the traditional Chinese medicine, Bombyx batryticatus (BB), which has been widely used to treat various neoplastic diseases. This study investigated the anti-hepatocellular carcinoma (HCC) activity of beauvericin and its potential mechanism. In this study, H22-bearing mice were intraperitoneally injected with 3, 5, 7 mg/kg of beauvericin once per-week over a three-week period. TUNEL staining determined the extent of tumor apoptosis induced by beauvericin. ELISA kits detected the level of IL-2, Perforin, and TNF-α, IFN-γ level in the serum. H22 hepatoma cells were exposed to beauvericin (5, 10, and 20 μmol/L) to investigate the underlying pathway. CCK-8 assay was used to observe the influence of beauvericin on the growth of H22 cells. Flow cytometry was used to detect the cell apoptosis and ROS level. Western blotting was performed to detect apoptotic and PI3K/AKT pathway protein production. The results showed that beauvericin could remarkably inhibit the growth of HCC in mice, combined with elevated TNF-α and IL-2. In vitro, beauvericin significantly promoted the generation of ROS, up-regulated Bax/Bcl-2 ratio and cleaved caspase-9, cleaved caspase-3 levels, down-regulated p-PI3K/PI3K ratio, p-AKT/AKT ratio, promoted the apoptosis of H22 cells, and inhibited the growth of H22 cells. Remarkably, treatment with PI3K/AKT activator (740Y-P and SC79) could prevent beauvericin-induced H22 cell apoptosis. These findings collectively indicate that beauvericin inhibits HCC growth by inducing apoptosis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Gui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yamei Qiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yunyan Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yuanyuan Song
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Mengyang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Jing Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
9
|
Depsipeptides Targeting Tumor Cells: Milestones from In Vitro to Clinical Trials. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020670. [PMID: 36677728 PMCID: PMC9864405 DOI: 10.3390/molecules28020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Cancer is currently considered one of the most threatening diseases worldwide. Diet could be one of the factors that can be enhanced to comprehensively address a cancer patient's condition. Unfortunately, most molecules capable of targeting cancer cells are found in uncommon food sources. Among them, depsipeptides have emerged as one of the most reliable choices for cancer treatment. These cyclic amino acid oligomers, with one or more subunits replaced by a hydroxylated carboxylic acid resulting in one lactone bond in a core ring, have broadly proven their cancer-targeting efficacy, some even reaching clinical trials and being commercialized as "anticancer" drugs. This review aimed to describe these depsipeptides, their reported amino acid sequences, determined structure, and the specific mechanism by which they target tumor cells including apoptosis, oncosis, and elastase inhibition, among others. Furthermore, we have delved into state-of-the-art in vivo and clinical trials, current methods for purification and synthesis, and the recognized disadvantages of these molecules. The information collated in this review can help researchers decide whether these molecules should be incorporated into functional foods in the near future.
Collapse
|
10
|
Luque C, Cepero A, Perazzoli G, Mesas C, Quiñonero F, Cabeza L, Prados J, Melguizo C. In Vitro Efficacy of Extracts and Isolated Bioactive Compounds from Ascomycota Fungi in the Treatment of Colorectal Cancer: A Systematic Review. Pharmaceuticals (Basel) 2022; 16:22. [PMID: 36678519 PMCID: PMC9864996 DOI: 10.3390/ph16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Despite the advances and success of current treatments (e.g., chemotherapy), there are multiple serious side effects which require the development of new treatment strategies. In recent years, fungi have gained considerable attention as a source of extracts and bioactive compounds with antitumor capabilities because of their antimicrobial and antioxidant properties and even their anti-inflammatory and antiviral activities. In the present review, a systematic search of the existing literature in four electronic databases was carried out in which the antitumor activity against CRC cells of Ascomycota fungi extracts or compounds was tested. The systematical research in the four databases resulted in a total of 883 articles. After applying exclusion and inclusion criteria, a total of 75 articles were finally studied. The order Eurotiales was the most studied (46% of the articles), and the ethyl acetate extraction was the most used method (49% of the papers). Penicillium extracts and gliotoxin and acetylgliotoxin G bioactive compounds showed the highest cytotoxic activity. This review also focuses on the action mechanisms of the extracts and bioactive compounds of fungi against CRC, which were mediated by apoptosis induction and the arrest of the cell cycle, which induces a notable reduction in the CRC cell proliferation capacity, and by the reduction in cell migration that limits their ability to produce metastasis. Thus, the ability of fungi to induce the death of cancer cells through different mechanisms may be the basis for the development of new therapies that improve the current results, especially in the more advanced stages of the CCR.
Collapse
Affiliation(s)
- Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
11
|
Vo KX, Hirata K, Lisy JM, Ishiuchi SI, Fujii M. Na + Selective Binding by Beauvericin and Its Mechanism Studied by Mass-Coupled Cold Ion Trap Infrared Spectroscopy. J Phys Chem Lett 2022; 13:11330-11334. [PMID: 36454047 DOI: 10.1021/acs.jpclett.2c02814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Beauvericin (Bv) is a cyclic hexadepsipeptide mycotoxin that selectively transports ions across cell membranes. Characterization of its intrinsic ion affinity has been complicated by different previous results in condensed phases and biological membranes. We report the marked specificity between alkali metal ions by Bv using experimental and computational methods. Mass spectrometry shows Bv readily binds all five alkali ions; however, the complex with Na+ is the most abundant species, indicating a strong binding preference. Gas phase infrared spectroscopy and theoretical calculations show that Li+, K+, Rb+, and Cs+ are coordinated by three amide carbonyl oxygens on the N-methylamino-l-phenylalanyl face. Selectivity for Na+ is achieved as Bv sequesters Na+ in the center of its cavity formed by three amide carbonyl and three ester carbonyl groups, a configuration unique among alkali metal ions. This finding provides insight into the correlation between selectivity and conformation of Bv, essential for development of this mycotoxin.
Collapse
Affiliation(s)
- Kien X Vo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - James M Lisy
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
12
|
Gheorghita D, Grosu E, Robu A, Ditu LM, Deleanu IM, Gradisteanu Pircalabioru G, Raiciu AD, Bita AI, Antoniac A, Antoniac VI. Essential Oils as Antimicrobial Active Substances in Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196923. [PMID: 36234263 PMCID: PMC9570933 DOI: 10.3390/ma15196923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/13/2023]
Abstract
Wound dressings for skin lesions, such as bedsores or pressure ulcers, are widely used for many patients, both during hospitalization and in subsequent treatment at home. To improve the treatment and shorten the healing time and, therefore, the cost, numerous types of wound dressings have been developed by manufacturers. Considering certain inconveniences related to the intolerance of some patients to antibiotics and the antimicrobial, antioxidant, and curative properties of certain essential oils, we conducted research by incorporating these oils, based on polyvinyl alcohol/ polyvinyl pyrrolidone (PVA/PVP) biopolymers, into dressings. The objective of this study was to study the potential of a polymeric matrix for wound healing, with polyvinyl alcohol as the main material and polyvinyl pyrrolidone and hydroxypropyl methylcellulose (HPMC) as secondary materials, together with additives (plasticizers poly(ethylene glycol) (PEG) and glycerol), stabilizers (Zn stearate), antioxidants (vitamin A and vitamin E), and four types of essential oils (fennel, peppermint, pine, and thyme essential oils). For all the studied samples, the combining compatibility, antimicrobial, and cytotoxicity properties were investigated. The obtained results demonstrated a uniform morphology for almost all the samples and adequate barrier properties for contact with suppurating wounds. The results show that the obtained samples containing essential oils have a good inhibitory effect on, or antimicrobial properties against, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The MTT assay showed that the tested samples were not toxic and did not lead to cell death. The results showed that the essential oils used provide an effective solution as active substances in wound dressings.
Collapse
Affiliation(s)
- Daniela Gheorghita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Lia Mara Ditu
- Faculty of Biology, University of Bucharest, 1-3 Intr. Portocalelor Street, 060101 Bucharest, Romania
| | - Iuliana Mihaela Deleanu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| | - Anca-Daniela Raiciu
- Faculty of Pharmacy, Titu Maiorescu University, 22 Dambovnicului Street, 040441 Bucharest, Romania
- S.C. Hofigal Import Export S.A., 2 Intrarea Serelor Street, 042124 Bucharest, Romania
| | - Ana-Iulia Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Correspondence:
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Vasile Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| |
Collapse
|
13
|
In silico evidence of beauvericin antiviral activity against SARS-CoV-2. Comput Biol Med 2021; 141:105171. [PMID: 34968860 PMCID: PMC8709726 DOI: 10.1016/j.compbiomed.2021.105171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022]
Abstract
Background Scientists are still battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus 2019 (COVID-19) pandemic so human lives can be saved worldwide. Secondary fungal metabolites are of intense interest due to their broad range of pharmaceutical properties. Beauvericin (BEA) is a secondary metabolite produced by the fungus Beauveria bassiana. Although promising anti-viral activity has previously been reported for BEA, studies investigating its therapeutic potential are limited. Methods The objective of this study was to assess the potential usage of BEA as an anti-viral molecule via protein–protein docking approaches using MolSoft. Results In-silico results revealed relatively favorable binding energies for BEA to different viral proteins implicated in the vital life stages of this virus. Of particular interest is the capability of BEA to dock to both the main coronavirus protease (Pockets A and B) and spike proteins. These results were validated by molecular dynamic simulation (Gromacs). Several parameters, such as root-mean-square deviation/fluctuation, the radius of gyration, H-bonding, and free binding energy were analyzed. Computational analyses revealed that interaction of BEA with the main protease pockets in addition to the spike glycoprotein remained stable. Conclusion Altogether, our results suggest that BEA might be considered as a potential competitive and allosteric agonist inhibitor with therapeutic options for treating COVID-19 pending in vitro and in vivo validation.
Collapse
|
14
|
Al Khoury C, Nemer N, Nemer G. Beauvericin potentiates the activity of pesticides by neutralizing the ATP-binding cassette transporters in arthropods. Sci Rep 2021; 11:10865. [PMID: 34035330 PMCID: PMC8149815 DOI: 10.1038/s41598-021-89622-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 02/04/2023] Open
Abstract
Multi-drug resistance is posing major challenges in suppressing the population of pests. Many herbivores develop resistance, causing a prolonged survival after exposure to a previously effective pesticide. Consequently, resistant pests reduce the yield of agricultural production, causing significant economic losses and reducing food security. Therefore, overpowering resistance acquisition of crop pests is a must. The ATP binding cassette transporters (ABC transporters) are considered as the main participants to the pesticide efflux and their neutralization will greatly contribute to potentiate failed treatments. Real-Time PCR analysis of 19 ABC transporter genes belonging to the ABCB, ABCC, ABCG, and ABCH revealed that a broad range of efflux pumps is activated in response to the exposure to pesticides. In this study, we used beauvericin (BEA), a known ABC transporters modulator, to resensitize different strains of Tetranychus urticae after artificial selection for resistance to cyflumetofen, bifenazate, and abamectin. Our results showed that the combinatorial treatment of pesticide (manufacturer's recommended doses) + BEA (sublethal doses: 0.15 mg/L) significantly suppressed the resistant populations of T. urticae when compared to single-drug treatments. Moreover, after selective pressure for 40 generations, the LC50 values were significantly reduced from 36.5, 44.7, and 94.5 (pesticide) to 8.3, 12.5, and 23.4 (pesticide + BEA) for cyflumetofen, bifenazate, and abamectin, respectively. While the downstream targets for BEA are still elusive, we demonstrated hereby that it synergizes with sub-lethal doses of different pesticides and increases their effect by inhibiting ABC transporters. This is the first report to document such combinatorial activity of BEA against higher invertebrates paving the way for its usage in treating refractory cases of resistance to pesticides. Moreover, we demonstrated, for the first time, using in silico techniques, the higher affinity of BEA to ABC transformers subfamilies when compared to xenobiotics; thus, elucidating the pathway of the mycotoxin.
Collapse
Affiliation(s)
- Charbel Al Khoury
- grid.411323.60000 0001 2324 5973Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos Campus, P.O. Box 36, Byblos, Lebanon
| | - Nabil Nemer
- grid.444434.70000 0001 2106 3658Department of Agriculture and Food Engineering, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Georges Nemer
- grid.22903.3a0000 0004 1936 9801Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 110236, Beirut, Lebanon ,grid.452146.00000 0004 1789 3191Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
15
|
The Anti-Cancer Effect of Linusorb B3 from Flaxseed Oil through the Promotion of Apoptosis, Inhibition of Actin Polymerization, and Suppression of Src Activity in Glioblastoma Cells. Molecules 2020; 25:molecules25245881. [PMID: 33322712 PMCID: PMC7764463 DOI: 10.3390/molecules25245881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Linusorbs (LOs) are natural peptides found in flaxseed oil that exert various biological activities. Of LOs, LOB3 ([1–9-NαC]-linusorb B3) was reported to have antioxidative and anti-inflammatory activities; however, its anti-cancer activity has been poorly understood. Therefore, this study investigated the anti-cancer effect of LOB3 and its underlying mechanism in glioblastoma cells. LOB3 induced apoptosis and suppressed the proliferation of C6 cells by inhibiting the expression of anti-apoptotic genes, B cell lymphoma 2 (Bcl-2) and p53, as well as promoting the activation of pro-apoptotic caspases, caspase-3 and -9. LOB3 also retarded the migration of C6 cells, which was achieved by suppressing the formation of the actin cytoskeleton critical for the progression, invasion, and metastasis of cancer. Moreover, LOB3 inhibited the activation of the proto-oncogene, Src, and the downstream effector, signal transducer and activator of transcription 3 (STAT3), in C6 cells. Taken together, these results suggest that LOB3 plays an anti-cancer role by inducing apoptosis and inhibiting the migration of C6 cells through the regulation of apoptosis-related molecules, actin polymerization, and proto-oncogenes.
Collapse
|
16
|
Beauvericin and Enniatins: In Vitro Intestinal Effects. Toxins (Basel) 2020; 12:toxins12110686. [PMID: 33138307 PMCID: PMC7693699 DOI: 10.3390/toxins12110686] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Food and feed contamination by emerging mycotoxins beauvericin and enniatins is a worldwide health problem and a matter of great concern nowadays, and data on their toxicological behavior are still scarce. As ingestion is the major route of exposure to mycotoxins in food and feed, the gastrointestinal tract represents the first barrier encountered by these natural contaminants and the first structure that could be affected by their potential detrimental effects. In order to perform a complete and reliable toxicological evaluation, this fundamental site cannot be disregarded. Several in vitro intestinal models able to recreate the different traits of the intestinal environment have been applied to investigate the various aspects related to the intestinal toxicity of emerging mycotoxins. This review aims to depict an overall and comprehensive representation of the in vitro intestinal effects of beauvericin and enniatins in humans from a species-specific perspective. Moreover, information on the occurrence in food and feed and notions on the regulatory aspects will be provided.
Collapse
|
17
|
Silva TL, Toffano L, Fernandes JB, das Graças Fernandes da Silva MF, de Sousa LRF, Vieira PC. Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases. Braz J Microbiol 2020; 51:1169-1175. [PMID: 32189177 PMCID: PMC7455666 DOI: 10.1007/s42770-020-00256-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
Papain-like cysteine proteases (PLCPs) in plants are essential to prevent phytopathogen invasion. In order to search for cysteine protease inhibitors and to investigate compounds that could be associated to pineapple Fusarium disease, a chemistry investigation was performed on Fusarium proliferatum isolated from Ananas comosus (pineapple) and cultivated in Czapek medium. From F. proliferatum extracts, nine secondary metabolites were isolated and characterized by nuclear magnetic resonance spectroscopy and mass spectrometry experiments: beauvericin (1), fusaric acid (2), N-ethyl-3-phenylacetamide (3), N-acetyltryptamine (4), cyclo(L-Val-L-Pro) cyclodipeptide (5), cyclo(L-Leu-L-Pro) cyclodipeptide (6), cyclo(L-Leu-L-Pro) diketopiperazine (7), 2,4-dihydroxypyrimidine (8), and 1H-indole-3-carbaldehyde (9). Compounds 1, 3, and 6 showed significant inhibition of papain, with IC50 values of 25.3 ± 1.9, 39.4 ± 2.5, and 7.4 ± 0.5 μM, respectively. Compound 1 also showed significant inhibition against human cathepsins V and B with IC50 of 46.0 ± 3.0 and 6.8 ± 0.7 μM, respectively. The inhibition of papain by mycotoxins (fusaric acid and beauvericin) may indicate a mechanism of Fusarium in the roles of infection process.
Collapse
Affiliation(s)
- Taynara Lopes Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Leonardo Toffano
- Department of Agronomy, Brasil University, Campus Descalvado, Descalvado, SP, 13565-905, Brazil
| | - João Batista Fernandes
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | - Paulo Cezar Vieira
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
18
|
In Vitro Activity of Beauvericin against All Developmental Stages of Sarcoptes scabiei. Antimicrob Agents Chemother 2020; 64:AAC.02118-19. [PMID: 32122897 DOI: 10.1128/aac.02118-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
Scabies is a frequent cutaneous infection caused by the mite Sarcoptes scabiei in a large number of mammals, including humans. As the resistance of S. scabiei against several chemical acaricides has been previously documented, the establishment of alternative and effective control molecules is required. In this study, the potential acaricidal activity of beauvericin was assessed against different life stages of S. scabiei var. suis and in comparison with dimpylate and ivermectin, two commercially available molecules used for the treatment of S. scabiei infection in animals and/or humans. The toxicity of beauvericin against cultured human fibroblast skin cells was evaluated using an MTT proliferation assay. In our in vitro model, developmental stages of S. scabiei were placed in petri dishes filled with Columbia agar supplemented with pig serum and different concentrations of the drugs. Cell sensitivity assays demonstrated low toxicity of beauvericin against primary human fibroblast skin cells. At 0.5 and 5 mM, beauvericin showed higher activity against adults and eggs of S. scabiei compared to dimpylate and ivermectin. These results revealed that the use of beauvericin is promising and might be considered for the treatment of S. scabiei infection.
Collapse
|
19
|
Caloni F, Fossati P, Anadón A, Bertero A. Beauvericin: The beauty and the beast. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103349. [PMID: 32028178 DOI: 10.1016/j.etap.2020.103349] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 05/21/2023]
Abstract
Beauvericin (BEA) is a natural bioactive compound, with a dual nature. On the one hand, the peculiar characteristics of its molecule confer to BEA interesting properties, such as antibacterial, antiviral, antifungal, antiparasitic, insecticidal and anticarcinogenic activities. On the other hand, it is a natural contaminant of food and feed commodities, and an emerging mycotoxin, but lacks a toxicological risk assessment evaluation for long term exposure. This review aims to provide a global and comprehensive overview on BEA from its biological activities, to its in vivo and in vitro toxicological effects covering the multifaceted nature of this substance.
Collapse
Affiliation(s)
- Francesca Caloni
- Università degli Studi di Milano, Department of Environmental Science and Policy (ESP), Milan, Italy.
| | - Paola Fossati
- Università degli Studi di Milano, Department of Health, Animal Science and Food Safety "Carlo Cantoni" (VESPA), Milan, Italy
| | - Arturo Anadón
- Universidad Complutense de Madrid, Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, 28040, Madrid, Spain
| | - Alessia Bertero
- Università degli Studi di Milano, Department of Environmental Science and Policy (ESP), Milan, Italy
| |
Collapse
|
20
|
Sotnichenko A, Pantsov E, Shinkarev D, Okhanov V. Hydrophobized Reversed-Phase Adsorbent for Protection of Dairy Cattle against Lipophilic Toxins from Diet. Efficiensy in Vitro and in Vivo. Toxins (Basel) 2019; 11:toxins11050256. [PMID: 31067794 PMCID: PMC6563209 DOI: 10.3390/toxins11050256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023] Open
Abstract
The steady growth of inflammatory diseases of the udder in dairy cattle forces us to look for the causes of this phenomenon in the context of growing chemical pollution of the environment and feeds. Within the framework of this concept, an analysis was made of the polarity level of the three toxic impurity groups, which are commonly present in dairy cattle feeds. These impurities are presented by mycotoxins, polyaromatic hydrocarbons (PAH) and persistent organic pollutants (POP). It has been determined that 46% of studied mycotoxins (n = 1500) and 100% of studied polyaromatic hydrocarbons (n = 45) and persistent organic pollutants (n = 55) are lipophilic compounds, prone to bioaccumulation. A comparative evaluation of the sorption capacity of four adsorbents of a different nature and polarity with respect to the simplest PAH, naphthalene and lipophilic estrogenic mycotoxin, zearalenone in vitro has been carried out. The highest efficiency in these experiments was demonstrated by the reversed-phase polyoctylated polysilicate hydrogel (POPSH). The use of POPSH in a herd of lactating cows significantly reduced the transfer of aldrin, dieldrin and heptachlor, typical POPs from the “dirty dozen”, to the milk. The relevance of protecting the main functional systems of animals from the damaging effects of lipophilic toxins from feeds using non-polar adsorbents, and the concept of evaluating the effectiveness of various feed adsorbents for dairy cattle by their influence on the somatic cell count in the collected milk are discussed.
Collapse
Affiliation(s)
- Alexander Sotnichenko
- Research and Production Center "Fox & Co" Ltd., 117149, Simferopol Boulevard, 8, 117149 Moscow, Russia.
| | - Evgeny Pantsov
- Research and Production Center "Fox & Co" Ltd., 117149, Simferopol Boulevard, 8, 117149 Moscow, Russia.
| | - Dmitry Shinkarev
- Research and Production Center "Fox & Co" Ltd., 117149, Simferopol Boulevard, 8, 117149 Moscow, Russia.
| | - Victor Okhanov
- Research and Production Center "Fox & Co" Ltd., 117149, Simferopol Boulevard, 8, 117149 Moscow, Russia.
| |
Collapse
|
21
|
Wu Q, Patocka J, Kuca K. Beauvericin, A Fusarium Mycotoxin: Anticancer Activity, Mechanisms, and Human Exposure Risk Assessment. Mini Rev Med Chem 2019; 19:206-214. [DOI: 10.2174/1389557518666180928161808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022]
Abstract
Beauvericin (BEA) is a cyclic hexadepsipeptide, which derives from Cordyceps cicadae. It is also produced by Fusarium species, which are parasitic to maize, wheat, rice and other important commodities. BEA increases ion permeability in biological membranes by forming a complex with essential cations, which may affect ionic homeostasis. Its ion-complexing capability allows BEA to transport alkaline earth metal and alkali metal ions across cell membranes. Importantly, increasing lines of evidence show that BEA has an anticancer effect and can be potentially used in cancer therapeutics. Normally, BEA performs the anticancer effect due to the induced cancer cell apoptosis via a reactive oxygen species-dependent pathway. Moreover, BEA increases the intracellular Ca2+ levels and subsequently regulates the activity of a series of signalling pathways including MAPK, JAK/STAT, and NF-κB, and finally causes cancer cell apoptosis. In vivo studies further show that BEA reduces tumour volumes and weights. BEA especially targets differentiated and invasive cancer types. Currently, the anticancer activity of BEA is a hot topic; however, there is no review article to discuss the anticancer activity of BEA. Therefore, in this review, we have mainly summarized the anticancer activity of BEA and thoroughly discussed its underlying mechanisms. In addition, the human exposure risk assessment of BEA is also discussed. We hope that this review will provide further information for understanding the anticancer mechanisms of BEA.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Jiri Patocka
- Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
22
|
Wu Q, Patocka J, Nepovimova E, Kuca K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front Pharmacol 2018; 9:1338. [PMID: 30515098 PMCID: PMC6256083 DOI: 10.3389/fphar.2018.01338] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Abstract
Beauvericin (BEA) is an emerging Fusarium mycotoxin that contaminates food and feeds globally. BEA biosynthesis is rapidly catalyzed by BEA synthetase through a nonribosomal, thiol-templated mechanism. This mycotoxin has cytotoxicity and is capable of increasing oxidative stress to induce cell apoptosis. Recently, large evidence further shows that this mycotoxin has a variety of biological activities and is being considered a potential candidate for medicinal and pesticide research. It is noteworthy that BEA is a potential anticancer agent since it can increase the intracellular Ca2+ levels and induce the cancer cell death through oxidative stress and apoptosis. BEA has exhibited effective antibacterial activities against both pathogenic Gram-positive and Gram-negative bacteria. Importantly, BEA exhibits an effective capacity to inhibit the human immunodeficiency virus type-1 integrase. Moreover, BEA can simultaneously target drug resistance and morphogenesis which provides a promising strategy to combat life-threatening fungal infections. Thus, in this review, the synthesis and the biological activities of BEA, as well as, the underlying mechanisms, are fully analyzed. The risk assessment of BEA in food and feed are also discussed. We hope this review will help to further understand the biological activities of BEA and cast some new light on drug discovery.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Jiri Patocka
- Toxicology and Civil Protection, Faculty of Health and Social Studies, Institute of Radiology, University of South Bohemia České Budějovice, České Budějovice, Czechia.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
23
|
Bertero A, Moretti A, Spicer LJ, Caloni F. Fusarium Molds and Mycotoxins: Potential Species-Specific Effects. Toxins (Basel) 2018; 10:E244. [PMID: 29914090 PMCID: PMC6024576 DOI: 10.3390/toxins10060244] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the information on biochemical and biological activity of the main Fusarium mycotoxins, focusing on toxicological aspects in terms of species-specific effects. Both in vitro and in vivo studies have centered on the peculiarity of the responses to mycotoxins, demonstrating that toxicokinetics, bioavailability and the mechanisms of action of these substances vary depending on the species involved, but additional studies are needed to better understand the specific responses. The aim of this review is to summarize the toxicological responses of the main species affected by Fusarium mycotoxins.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/O, 70126 Bari, Italy.
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
24
|
Heilos D, Röhrl C, Pirker C, Englinger B, Baier D, Mohr T, Schwaiger M, Iqbal SM, van Schoonhoven S, Klavins K, Eberhart T, Windberger U, Taibon J, Sturm S, Stuppner H, Koellensperger G, Dornetshuber-Fleiss R, Jäger W, Lemmens-Gruber R, Berger W. Altered membrane rigidity via enhanced endogenous cholesterol synthesis drives cancer cell resistance to destruxins. Oncotarget 2018; 9:25661-25680. [PMID: 29876015 PMCID: PMC5986646 DOI: 10.18632/oncotarget.25432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Destruxins, secondary metabolites of entomopathogenic fungi, exert a wide variety of interesting characteristics ranging from antiviral to anticancer effects. Although their mode of action was evaluated previously, the molecular mechanisms of resistance development are unknown. Hence, we have established destruxin-resistant sublines of HCT116 colon carcinoma cells by selection with the most prevalent derivatives, destruxin (dtx)A, dtxB and dtxE. Various cell biological and molecular techniques were applied to elucidate the regulatory mechanisms underlying these acquired and highly stable destruxin resistance phenotypes. Interestingly, well-known chemoresistance-mediating ABC efflux transporters were not the major players. Instead, in dtxA- and dtxB-resistant cells a hyper-activated mevalonate pathway was uncovered resulting in increased de-novo cholesterol synthesis rates and elevated levels of lanosterol, cholesterol as well as several oxysterol metabolites. Accordingly, inhibition of the mevalonate pathway at two different steps, using either statins or zoledronic acid, significantly reduced acquired but also intrinsic destruxin resistance. Vice versa, cholesterol supplementation protected destruxin-sensitive cells against their cytotoxic activity. Additionally, an increased cell membrane adhesiveness of dtxA-resistant as compared to parental cells was detected by atomic force microscopy. This was paralleled by a dramatically reduced ionophoric capacity of dtxA in resistant cells when cultured in absence but not in presence of statins. Summarizing, our results suggest a reduced ionophoric activity of destruxins due to cholesterol-mediated plasma membrane re-organization as molecular mechanism underlying acquired destruxin resistance in human colon cancer cells. Whether this mechanism might be valid also in other cell types and organisms exposed to destruxins e.g. as bio-insecticides needs to be evaluated.
Collapse
Affiliation(s)
- Daniela Heilos
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Bernhard Englinger
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Dina Baier
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Decentralized Biomedical Facilities of the Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Michaela Schwaiger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Sushilla van Schoonhoven
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | | | - Tanja Eberhart
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Ursula Windberger
- Decentralized Biomedical Facilities of the Medical University of Vienna, Vienna, Austria
| | - Judith Taibon
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Sonja Sturm
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Rita Dornetshuber-Fleiss
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Boecker S, Grätz S, Kerwat D, Adam L, Schirmer D, Richter L, Schütze T, Petras D, Süssmuth RD, Meyer V. Aspergillus niger is a superior expression host for the production of bioactive fungal cyclodepsipeptides. Fungal Biol Biotechnol 2018; 5:4. [PMID: 29507740 PMCID: PMC5833056 DOI: 10.1186/s40694-018-0048-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background Fungal cyclodepsipeptides (CDPs) are non-ribosomally synthesized peptides produced by a variety of filamentous fungi and are of interest to the pharmaceutical industry due to their anticancer, antimicrobial and anthelmintic bioactivities. However, both chemical synthesis and isolation of CDPs from their natural producers are limited due to high costs and comparatively low yields. These challenges might be overcome by heterologous expression of the respective CDP-synthesizing genes in a suitable fungal host. The well-established industrial fungus Aspergillus niger was recently genetically reprogrammed to overproduce the cyclodepsipeptide enniatin B in g/L scale, suggesting that it can generally serve as a high production strain for natural products such as CDPs. In this study, we thus aimed to determine whether other CDPs such as beauvericin and bassianolide can be produced with high titres in A. niger, and whether the generated expression strains can be used to synthesize new-to-nature CDP derivatives. Results The beauvericin and bassianolide synthetases were expressed under control of the tuneable Tet-on promoter, and titres of about 350–600 mg/L for bassianolide and beauvericin were achieved when using optimized feeding conditions, respectively. These are the highest concentrations ever reported for both compounds, whether isolated from natural or heterologous expression systems. We also show that the newly established Tet-on based expression strains can be used to produce new-to-nature beauvericin derivatives by precursor directed biosynthesis, including the compounds 12-hydroxyvalerate-beauvericin and bromo-beauvericin. By feeding deuterated variants of one of the necessary precursors (d-hydroxyisovalerate), we were able to purify deuterated analogues of beauvericin and bassianolide from the respective A. niger expression strains. These deuterated compounds could potentially be used as internal standards in stable isotope dilution analyses to evaluate and quantify fungal spoilage of food and feed products. Conclusion In this study, we show that the product portfolio of A. niger can be expanded from enniatin to other CDPs such as beauvericin and bassianolide, as well as derivatives thereof. This illustrates the capability of A. niger to produce a range of different peptide natural products in titres high enough to become industrially relevant. Electronic supplementary material The online version of this article (10.1186/s40694-018-0048-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Boecker
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.,2Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Stefan Grätz
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Dennis Kerwat
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Lutz Adam
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - David Schirmer
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Lennart Richter
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Tabea Schütze
- 2Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Daniel Petras
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich D Süssmuth
- 1Department Biological Chemistry, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Vera Meyer
- 2Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
26
|
In vitro mechanisms of Beauvericin toxicity: A review. Food Chem Toxicol 2017; 111:537-545. [PMID: 29154952 DOI: 10.1016/j.fct.2017.11.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 11/21/2022]
Abstract
Beauvericin (BEA) is a mycotoxin produced by many species of fungus Fusarium and by Beauveria bassiana; BEA is a natural contaminant of cereals and cereals based products and possesses a wide variety of biological properties. The mechanism of action seems to be related to its ionophoric activity, that increases ion permeability in biological membranes. As a consequence, BEA causes cytotoxicity in several cell lines and is capable to produce oxidative stress at molecular level. Moreover, BEA is genotoxic (produces DNA fragmentation, chromosomal aberrations and micronucleus) and causes apoptosis with the involvement of mitochondrial pathway. However, several antioxidant mechanisms protect cells against oxidative stress produced by BEA. Despite its strong cytotoxicity, no risk assessment have been still carried out by authorities due to a lack of toxicity data, so research on BEA toxicological impact is still going on. This review reports information available regarding BEA mechanistic toxicology with the aim of updating information regarding last researches on this mycotoxin.
Collapse
|