1
|
Zehr JD, Kosakovsky Pond SL, Shank SD, McQueary H, Grenier JK, Whittaker GR, Stanhope MJ, Goodman LB. Positive selection, genetic recombination, and intra-host evolution in novel equine coronavirus genomes and other members of the Embecovirus subgenus. Microbiol Spectr 2024:e0086724. [PMID: 39373506 DOI: 10.1128/spectrum.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
There are several examples of coronaviruses in the Betacoronavirus subgenus Embecovirus that have jumped from an animal to the human host. Studying how evolutionary factors shape coronaviruses in non-human hosts may provide insight into the coronavirus host-switching potential. Equids, such as horses and donkeys, are susceptible to equine coronaviruses (ECoVs). With increased testing prevalence, several ECoV genome sequences have become available for molecular evolutionary analyses, especially those from the United States of America (USA). To date, no analyses have been performed to characterize evolution within coding regions of the ECoV genome. Here, we obtain and describe four new ECoV genome sequences from infected equines from across the USA presenting clinical symptoms of ECoV, and infer ECoV-specific and Embecovirus-wide patterns of molecular evolution. Within two of the four data sets analyzed, we find evidence of intra-host evolution within the nucleocapsid (N) gene, suggestive of quasispecies development. We also identify 12 putative genetic recombination events within the ECoV genome, 11 of which fall in ORF1ab. Finally, we infer and compare sites subject to positive selection on the ancestral branch of each major Embecovirus member clade. Specifically, for the two currently identified human coronavirus (HCoV) embecoviruses that have spilled from animals to humans (HCoV-OC43 and HCoV-HKU1), we find that there are 42 and 2 such sites, respectively, perhaps reflective of the more complex ancestral evolutionary history of HCoV-OC43, which involves several different animal hosts.IMPORTANCEThe Betacoronavirus subgenus Embecovirus contains coronaviruses that not only pose a health threat to animals and humans, but also have jumped from animal to human host. Equids, such as horses and donkeys are susceptible to equine coronavirus (ECoV) infections. No studies have systematically examined evolutionary patterns within ECoV genomes. Our study addresses this gap and provides insight into intra-host ECoV evolution from infected horses. Further, we identify and report natural selection pattern differences between two embecoviruses that have jumped from animals to humans [human coronavirus OC43 and HKU1 (HCoV-OC43 and HCoV-HKU1, respectively)], and hypothesize that the differences observed may be due to the different animal host(s) that each virus circulated in prior to its jump into humans. Finally, we contribute four novel, high-quality ECoV genomes to the scientific community.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Stephen D Shank
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Holly McQueary
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer K Grenier
- Cornell Institute of Biotechnology, Transcriptional Regulation and Expression Facility, Ithaca, New York, USA
| | - Gary R Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Kuhn J, Marti I, Ryser-Degiorgis MP, Wernike K, Jones S, Tyson G, Delalay G, Scherrer P, Borel S, Hosie MJ, Kipar A, Kuhlmeier E, Chan T, Hofmann-Lehmann R, Meli ML. Investigations on the Potential Role of Free-Ranging Wildlife as a Reservoir of SARS-CoV-2 in Switzerland. Viruses 2024; 16:1407. [PMID: 39339883 PMCID: PMC11437421 DOI: 10.3390/v16091407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Amid the SARS-CoV-2 pandemic, concerns surfaced regarding the spread of the virus to wildlife. Switzerland lacked data concerning the exposure of free-ranging animals to SARS-CoV-2 during this period. This study aimed to investigate the potential exposure of Swiss free-ranging wildlife to SARS-CoV-2. From 2020 to 2023, opportunistically collected samples from 712 shot or found dead wild mustelids (64 European stone and pine martens, 13 European badgers, 10 European polecats), canids (449 red foxes, 41 gray wolves, one golden jackal) and felids (56 Eurasian lynx, 18 European wildcats), as well as from 45 captured animals (39 Eurasian lynx, 6 European wildcats) were tested. A multi-step serological approach detecting antibodies to the spike protein receptor binding domain (RBD) and N-terminal S1 subunit followed by surrogate virus neutralization (sVNT) and pseudotype-based virus neutralization assays against different SARS-CoV-2 variants was performed. Additionally, viral RNA loads were quantified in lung tissues and in oronasal, oropharyngeal, and rectal swabs by reverse transcription polymerase chain reactions (RT-qPCRs). Serologically, SARS-CoV-2 exposure was confirmed in 14 free-ranging Swiss red foxes (prevalence 3.1%, 95% CI: 1.9-5.2%), two Eurasian lynx (2.2%, 95% CI: 0.6-7.7%), and one European wildcat (4.2%, 95% CI: 0.2-20.2%). Two positive foxes exhibited neutralization activity against the BA.2 and BA.1 Omicron variants. No active infection (viral RNA) was detected in any animal tested. This is the first report of SARS-CoV-2 antibodies in free-ranging red foxes, Eurasian lynx, and European wildcats worldwide. It confirms the spread of SARS-CoV-2 to free-ranging wildlife in Switzerland but does not provide evidence of reservoir formation. Our results underscore the susceptibility of wildlife populations to SARS-CoV-2 and the importance of understanding diseases in a One Health Concept.
Collapse
Affiliation(s)
- Juliette Kuhn
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Iris Marti
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Marie-Pierre Ryser-Degiorgis
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sarah Jones
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Gary Delalay
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Patrick Scherrer
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Stéphanie Borel
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Gomez DE, Arroyo LG, Schoster A, Renaud DL, Kopper JJ, Dunkel B, Byrne D, Toribio RE. Diagnostic approaches, aetiological agents and their associations with short-term survival and laminitis in horses with acute diarrhoea admitted to referral institutions. Equine Vet J 2024; 56:959-969. [PMID: 37984355 DOI: 10.1111/evj.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND An international description of the diagnostic approaches used in different institutions to diagnose acute equine diarrhoea and the pathogens detected is lacking. OBJECTIVES To describe the diagnostic approach, aetiological agents, outcome, and development of laminitis for diarrhoeic horses worldwide. STUDY DESIGN Multicentre retrospective case series. METHODS Information from horses with acute diarrhoea presenting to participating institutions between 2016 and 2020, including diagnostic approaches, pathogens detected and their associations with outcomes, were compared between institutions or geographic regions. RESULTS One thousand four hundred and thirty-eight horses from 26 participating institutions from 4 continents were included. Overall, aetiological testing was limited (44% for Salmonella spp., 42% for Neorickettsia risticii [only North America], 40% for Clostridiodes difficile, and 29% for ECoV); however, 13% (81/633) of horses tested positive for Salmonella, 13% (35/262) for N. risticii, 9% (37/422) for ECoV, and 5% (27/578) for C. difficile. C. difficile positive cases had greater odds of non-survival than horses negative for C. difficile (OR: 2.69, 95%CI: 1.23-5.91). In addition, horses that were positive for N. risticii had greater odds of developing laminitis than negative horses (OR: 2.76, 95%CI: 1.12-6.81; p = 0.029). MAIN LIMITATIONS Due to the study's retrospective nature, there are missing data. CONCLUSIONS This study highlighted limited diagnostic investigations in cases of acute equine diarrhoea. Detection rates of pathogens are similar to previous reports. Non-survival and development of laminitis are related to certain detected pathogens.
Collapse
Affiliation(s)
- Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Angelika Schoster
- Vetsuisse Faculty, Equine Department University of Zurich, Zurich, Switzerland
- Ludwig-Maximilians-University Munich, Equine Clinic, Oberschleissheim, Germany
| | - David L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jamie J Kopper
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Bettina Dunkel
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, UK
| | - David Byrne
- College of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Ramiro E Toribio
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Pusterla N. Equine Coronaviruses. Vet Clin North Am Equine Pract 2023; 39:55-71. [PMID: 36737293 DOI: 10.1016/j.cveq.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In equids, equine coronavirus has been associated with diarrhea in foals and lethargy, fever, anorexia, and occasional gastrointestinal signs in adult horses. Although horses seem to be susceptible to the human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) based on the high homology to the ACE-2 receptor, they seem to be incidental hosts because of occasional SARS-CoV-2 spillover from humans. However, until more clinical and seroepidemiological data are available, it remains important to monitor equids for possible transmission from humans with clinical or asymptomatic COVID-19.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Qi PF, Gao XY, Ji JK, Zhang Y, Yang SH, Cheng KH, Cui N, Zhu ML, Hu T, Dong X, Yan B, Wang CF, Yang HJ, Shi WF, Zhang W. Identification of a recombinant equine coronavirus in donkey, China. Emerg Microbes Infect 2022; 11:1010-1013. [PMID: 35311478 PMCID: PMC8986280 DOI: 10.1080/22221751.2022.2056522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Equine coronavirus (ECoV) was first identified in the USA and has been previously described in several countries. In order to test the presence of ECoV in China, we collected 51 small intestinal samples from donkey foals with diarrhoea from a donkey farm in Shandong Province, China between August 2020 and April 2021. Two samples tested positive for ECoV and full-length genome sequences were successfully obtained using next-generation sequencing, one of which was further confirmed by Sanger sequencing. The two strains shared 100% sequence identity at the scale of whole genome. Bioinformatics analyses further showed that the two Chinese strains represent a novel genetic variant of ECoV and shared the highest sequence identity of 97.05% with the first identified ECoV strain - NC99. In addition, it may be a recombinant, with the recombination region around the NS2 gene. To our knowledge, this is the first documented report of ECoV in China, highlighting its risk to horse/donkey breeding. In addition, its potential risk to public health also warrants further investigation.
Collapse
Affiliation(s)
- Peng-Fei Qi
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Xing-Yi Gao
- School of Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, People's Republic of China
| | - Jing-Kai Ji
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Yan Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Shao-Hua Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Kai-Hui Cheng
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Ning Cui
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Man-Ling Zhu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Tao Hu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Bin Yan
- School of Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, People's Republic of China
| | - Chang-Fa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, People's Republic of China
| | - Hong-Jun Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Wei-Feng Shi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, and Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| |
Collapse
|
6
|
Hogerwerf L, Post PM, Bom B, van der Hoek W, van de Kassteele J, Stemerding AM, de Vries W, Houthuijs D. Proximity to livestock farms and COVID-19 in the Netherlands, 2020-2021. Int J Hyg Environ Health 2022; 245:114022. [PMID: 35987164 PMCID: PMC9376334 DOI: 10.1016/j.ijheh.2022.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022]
Abstract
Objectives In the Netherlands, during the first phase of the COVID-19 epidemic, the hotspot of COVID-19 overlapped with the country's main livestock area, while in subsequent phases this distinct spatial pattern disappeared. Previous studies show that living near livestock farms influence human respiratory health and immunological responses. This study aimed to explore whether proximity to livestock was associated with SARS-CoV-2 infection. Methods The study population was the population of the Netherlands excluding the very strongly urbanised areas and border areas, on January 1, 2019 (12, 628, 244 individuals). The cases are the individuals reported with a laboratory-confirmed positive SARS-CoV-2 test with onset before January 1, 2022 (2, 223, 692 individuals). For each individual, we calculated distance to nearest livestock farm (cattle, goat, sheep, pig, poultry, horse, rabbit, mink). The associations between residential (6-digit postal-code) distance to the nearest livestock farm and individuals' SARS-CoV-2 status was studied with multilevel logistic regression models. Models were adjusted for individuals' age categories, the social status of the postal code area, particulate matter (PM10)- and nitrogen dioxide (NO2)-concentrations. We analysed data for the entire period and population as well as separately for eight time periods (Jan–Mar, Apr–Jun, Jul–Sep and Oct–Dec in 2020 and 2021), four geographic areas of the Netherlands (north, east, west and south), and for five age categories (0–14, 15–24, 25–44, 45–64 and > 65 years). Results Over the period 2020–2021, individuals' SARS-CoV-2 status was associated with living closer to livestock farms. This association increased from an Odds Ratio (OR) of 1.01 (95% Confidence Interval [CI] 1.01–1.02) for patients living at a distance of 751–1000 m to a farm to an OR of 1.04 (95% CI 1.04–1.04), 1.07 (95% CI 1.06–1.07) and 1.11 (95% CI 1.10–1.12) for patients living in the more proximate 501–750 m, 251–500m and 0–250 m zones around farms, all relative to patients living further than 1000 m around farms. This association was observed in three out of four quarters of the year in both 2020 and 2021, and in all studied geographic areas and age groups. Conclusions In this exploratory study with individual SARS-CoV-2 notification data and high-resolution spatial data associations were found between living near livestock farms and individuals' SARS-CoV-2 status in the Netherlands. Verification of the results in other countries is warranted, as well as investigations into possible underlying exposures and mechanisms.
Collapse
Affiliation(s)
- Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Pim M Post
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands; Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O Box 217, Enschede, 7500 AE, the Netherlands.
| | - Ben Bom
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Wim van der Hoek
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Jan van de Kassteele
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | | | - Wilco de Vries
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Danny Houthuijs
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| |
Collapse
|
7
|
Seroprevalence and Risk Factors for Exposure to Equine Coronavirus in Apparently Healthy Horses in Israel. Animals (Basel) 2021; 11:ani11030894. [PMID: 33800990 PMCID: PMC8004030 DOI: 10.3390/ani11030894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Equine coronavirus (ECoV) is a β-coronavirus that, together with other coronaviruses, are pathogenic to both human and animals, as seen in the recent COVID-19 pandemic. ECoV is considered as a diarrheic pathogen in foals and is included in the list of viral causes of enteritis. During the last decade, outbreaks of ECoV were reported in adult horses in the USA, EU and Japan. In Israel, other coronaviruses were reported in cattle, camels and in humans; however, coronaviruses have not been reported in horses. In this study, we aimed to determine the exposure of healthy horses to ECoV and determine the selected risk factors for infection. For this purpose, serum samples were collected from 333 healthy horses, 41 (12.3%) of which had anti-ECoV antibodies. Seropositive horses were found in more than half (58.6%) of the farms and horses located in central Israel were more likely to be positive. ECoV should be included in the differential diagnosis list of pathogens in cases of adult horses with acute onset of anorexia, lethargy, fever and gastrointestinal signs in Israel. Abstract Equine coronavirus (ECoV) infection is the cause of an emerging enteric disease of adult horses. Outbreaks have been reported in the USA, EU and Japan, as well as sporadic cases in the UK and Saudi Arabia. Infection of ECoV in horses in Israel has never been reported, and the risk of exposure is unknown. Importation and exportation of horses from and into Israel may have increased the exposure of horses in Israel to ECoV. While the disease is mostly self-limiting, with or without supportive treatment, severe complications may occur in some animals, and healthy carriers may pose a risk of infection to other horses. This study was set to evaluate the risk of exposure to ECoV of horses in Israel by using a previously validated, S1-based enzyme-linked immunosorbent assay (ELISA). A total of 41 out of 333 horses (12.3%) were seropositive. Exposure to ECoV was detected in 17 of 29 farms (58.6%) and the seroprevalence varied between 0 and 37.5% amongst farms. The only factor found to be significantly associated with ECoV exposure in the multivariable model was the geographical area (p < 0.001). ECoV should be included in the differential diagnosis list of pathogens in cases of adult horses with anorexia, lethargy, fever and gastrointestinal signs in Israel.
Collapse
|
8
|
Wang R, Luo X, Liu F, Luo S. Confronting the threat of SARS-CoV-2: Realities, challenges and therapeutic strategies (Review). Exp Ther Med 2021; 21:155. [PMID: 33456522 PMCID: PMC7807638 DOI: 10.3892/etm.2020.9587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus (SARS-CoV-2) appeared in2019 in Wuhan, China, and rapidly developed into a global pandemic. The disease has affected not only health care systems and economies worldwide but has also changed the lifestyles and habits of the majority of the world's population. Among the potential targets for SARS-CoV-2 therapy, the viral spike glycoprotein has been studied most intensely, due to its key role in mediating viral entry into target cells and inducing a protective antibody response in infected individuals. In the present manuscript the molecular mechanisms that are responsible for SARS-CoV-2 infection are described and a progress report on the status of SARS-CoV-2 research is provided. A brief review of the clinical symptoms of the condition and current diagnostic methods and treatment plans for SARS-CoV-2 are also presented and the progress of preclinical research into medical intervention against SARS-CoV-2 infection are discussed.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| | - Xiaoshan Luo
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| | - Shuhong Luo
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
9
|
陈 咏, 邱 峰. [Spike protein in the detection and treatment of novel coronavirus]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:246-250. [PMID: 32329276 PMCID: PMC9927605 DOI: 10.7507/1001-5515.202002050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 02/05/2023]
Abstract
Recently a COVID-19 pneumonia pandemic caused by a novel coronavirus 2019-nCoV has broken out over the world. In order to better control the spread of the pandemic, there's an urgent need to extensively study the virus' origin and the mechanisms for its infectivity and pathogenicity. Spike protein is a special structural protein on the surface of coronavirus. It contains important information about the evolution of the virus and plays critical roles in the processes of cellular recognition and entry. In the past decades, spike protein has always been one of the most important objects in research works on coronaviruses closely related to human life. In this review we introduce these research works related to spike proteins, hoping it will provide reasonable ideas for the control of the current pandemic, as well as for the diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- 咏竹 陈
- 四川大学华西医院 期刊社(成都 610041)Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 峰 邱
- 四川大学华西医院 期刊社(成都 610041)Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| |
Collapse
|
10
|
Special Issue "Equine Viruses": Old "Friends" and New Foes? Viruses 2020; 12:v12020153. [PMID: 32013127 PMCID: PMC7077308 DOI: 10.3390/v12020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
|