1
|
Sims A, Weir DJ, Cole SJ, Hutchinson E. SARS-CoV-2 cellular coinfection is limited by superinfection exclusion. J Virol 2025; 99:e0207724. [PMID: 40116503 PMCID: PMC11998510 DOI: 10.1128/jvi.02077-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/23/2025] Open
Abstract
The coinfection of individual cells is a requirement for exchange between two or more virus genomes, which is a major mechanism driving virus evolution. Coinfection is restricted by a mechanism known as superinfection exclusion (SIE), which prohibits the infection of a previously infected cell by a related virus after a period of time. SIE regulates coinfection for many different viruses, but its relevance to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was unknown. In this study, we investigated this using a pair of SARS-CoV-2 variant viruses encoding distinct fluorescent reporter proteins. We show for the first time that SARS-CoV-2 coinfection of individual cells is limited temporally by SIE. We defined the kinetics of the onset of SIE for SARS-CoV-2 in this system, showing that the potential for coinfection starts to diminish within the first hour of primary infection and then falls exponentially as the time between the two infection events is increased. We then asked how these kinetics would affect the potential for coinfection with viruses during a spreading infection. We used plaque assays to model the localized spread of SARS-CoV-2 observed in infected tissue and showed that the kinetics of SIE restrict coinfection-and therefore sites of possible genetic exchange-to a small interface of infected cells between spreading viral infections. This indicates that SIE, by reducing the likelihood of coinfection of cells, likely reduces the opportunities for genetic exchange between different strains of SARS-CoV-2 and therefore is an underappreciated factor in shaping SARS-CoV-2 evolution. IMPORTANCE Since SARS-CoV-2 first emerged in 2019, it has continued to evolve, occasionally generating variants of concern. One of the ways that SARS-CoV-2 can evolve is through recombination, where genetic information is swapped between different genomes. Recombination requires the coinfection of cells; therefore, factors impacting coinfection are likely to influence SARS-CoV-2 evolution. Coinfection is restricted by SIE, a phenomenon whereby a previously infected cell becomes increasingly resistant to subsequent infection. Here we report that SIE is activated following SARS-CoV-2 infection and reduces the likelihood of coinfection exponentially following primary infection. Furthermore, we show that SIE prevents coinfection of cells at the boundary between two expanding areas of infection, the scenario most likely to lead to recombination between different SARS-CoV-2 lineages. Our work suggests that SIE reduces the likelihood of recombination between SARS-CoV-2 genomes and therefore likely shapes SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Anna Sims
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Daniel J. Weir
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Sarah J. Cole
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom
| |
Collapse
|
2
|
Smallridge MW, Aktepe TE, Coppo MJC, Vaz PK, Diaz-Méndez A, Murray CM, Segal G, Devlin JM, Hartley CA. Three-dimensional exploration of the chicken embryo, a comparative study of light sheet and histological visualisation. PLoS One 2025; 20:e0320483. [PMID: 40168291 PMCID: PMC11960958 DOI: 10.1371/journal.pone.0320483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
Ultramicroscopy has offered new avenues into the visualisation of tissues within animal models, providing three-dimensional visualisation through the use of light sheet fluorescence microscopy. This study aimed to develop and apply an optical tissue clearing method to investigate the application of light sheet fluorescence microscopy to image late-stage chicken embryos, and compare anatomical visualisation to traditional histological staining. Seventeen-day old specific pathogen free embryos were collected, fixed, and sectioned. Haematoxylin and eosin stained sections were prepared for histology, while light sheet imaging required the tissues to be optically clear. For this, an ethyl cinnamate-based method was utilised, allowing for acquisition of clear, unobstructed three-dimensional images of significant organ structures and systems using only autofluorescence. The use of established histological techniques provided anatomical mapping of structures between familiar histology images and the three-dimensional light sheet images. Rendering of organs using light sheet imaging provided contextual insights into the surrounding tissues and physiological architecture of major organ structures and systems. This was most apparent through the identification of the pulmonary vein and rendering of a volumetric projection of the vasculature branching within the lung and the subsequent merging of vasculature into the left side of the heart. Overall, the visualisation of the chicken embryo was enhanced by combining traditional histology with the information gained by three-dimensional light sheet fluorescence microscopy.
Collapse
Affiliation(s)
- M. W. Smallridge
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia,
| | - T. E. Aktepe
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia,
| | - M. J. C. Coppo
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia,
- Facultad de Ciencias de la Vida, Escuela de Medicina Veterinaria, Universidad Andres Bello, Concepcion, Biobio, Chile
| | - P. K. Vaz
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia,
| | - A. Diaz-Méndez
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia,
| | - C. M. Murray
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia,
| | - G. Segal
- Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. M. Devlin
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia,
| | - C. A. Hartley
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia,
| |
Collapse
|
3
|
Hellman U, Rosendal E, Lehrstrand J, Henriksson J, Björsell T, Wennemo A, Hahn M, Österberg B, Dorofte L, Nilsson E, Forsell MNE, Smed-Sörensen A, Lange A, Karlsson MG, Ahlm C, Blomberg A, Cajander S, Ahlgren U, Lind A, Normark J, Överby AK, Lenman A. SARS-CoV-2 infection induces hyaluronan production in vitro and hyaluronan levels in COVID-19 patients relate to morbidity and long-term lung impairment: a prospective cohort study. mBio 2024; 15:e0130324. [PMID: 39302125 PMCID: PMC11492986 DOI: 10.1128/mbio.01303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
We previously demonstrated that the lungs of deceased COVID-19 patients were filled with a clear hydrogel consisting of hyaluronan (HA). In this translational study, we investigated the role of HA at all stages of COVID-19 disease to map the consequences of elevated HA on morbidity and identify the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced HA production. A reduced alveolar surface area was observed in the lungs of deceased COVID-19 patients compared to healthy controls, as visualized by a 3D rendering of lung morphology using light-sheet fluorescence microscopy. We confirmed the presence of HA in lung biopsies and found large quantities of proinflammatory fragmented HA. The association of systemic HA in blood plasma and disease severity was assessed in patients with mild (WHO Clinical Progression Scale, WHO-CPS, 1-5) and severe COVID-19 (WHO-CPS, 6-9) during the acute and convalescent phases and related to lung function. We found that systemic levels of HA were high during acute COVID-19 disease, remained elevated during convalescence, and were associated with a reduced diffusion capacity. In vitro 3D-lung models, differentiated from primary human bronchial epithelial cells, were used to study the effects of SARS-CoV-2 infection on HA metabolism, and transcriptomic analyses revealed a dysregulation of HA synthases and hyaluronidases, both contributing to increased HA in apical secretions. Furthermore, corticosteroid treatment reduced the inflammation and downregulated HA synthases. Our findings demonstrate that HA plays a role in COVID-19 morbidity and that sustained elevated HA concentrations may contribute to long-term respiratory impairment.IMPORTANCEThis study provides insights into the role of hyaluronan (HA) in the severity and long-term impact of COVID-19 on lung function. Through extensive morphological examination of lung tissues and a multicenter study, we identified that HA levels are significantly elevated in COVID-19 patients, correlating with a reduced lung diffusion capacity during convalescence. Using a 3D-lung model, we further uncovered how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 infection causes a dysregulated HA metabolism, leading to increased HA production. Our findings provide valuable insights into the pathogenesis of SARS-CoV-2 and suggest that targeting HA metabolism could offer new therapeutic avenues for managing COVID-19, particularly to prevent long-term lung impairment. Additionally, HA holds potential as a biomarker for predicting disease severity, which could guide personalized treatment strategies.
Collapse
Affiliation(s)
- Urban Hellman
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- Department of Public
Health and Clinical Medicine, Umeå
University, Umeå,
Sweden
| | - Ebba Rosendal
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | - Joakim Lehrstrand
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Johan Henriksson
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
- Department of
Molecular Biology, Umeå Centre for Microbial Research (UCMR),
Umeå University,
Umeå, Sweden
- IceLab, Umeå
University, Umeå,
Sweden
| | - Tove Björsell
- Centre for Clinical
Research and Education, Region
Värmland, Karlstad,
Sweden
| | - Alfred Wennemo
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| | - Max Hahn
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Björn Österberg
- Division of Immunology
and Allergy, Department of Medicine Solna, Karolinska Institutet,
Karolinska University Hospital,
Stockholm, Sweden
| | - Luiza Dorofte
- Department of
Laboratory Medicine, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Emma Nilsson
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | | | - Anna Smed-Sörensen
- Division of Immunology
and Allergy, Department of Medicine Solna, Karolinska Institutet,
Karolinska University Hospital,
Stockholm, Sweden
| | - Anna Lange
- Department of
Infectious Diseases, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Mats G. Karlsson
- Department of
Laboratory Medicine, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Clas Ahlm
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| | - Anders Blomberg
- Department of Public
Health and Clinical Medicine, Umeå
University, Umeå,
Sweden
| | - Sara Cajander
- Department of
Infectious Diseases, Faculty of Medicine and Health, Örebro
University, Örebro,
Sweden
| | - Ulf Ahlgren
- Umeå Centre for
Molecular Medicine (UCMM), Umeå
University, Umeå,
Sweden
| | - Alicia Lind
- Department of
Surgical and Perioperative Sciences, Umeå
University, Umeå,
Sweden
| | - Johan Normark
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- Wallenberg Centre
for Molecular Medicine, Umeå
University, Umeå,
Sweden
| | - Anna K. Överby
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
- The Laboratory for
Molecular Infection Medicine Sweden (MIMS), Umeå
University, Umeå,
Sweden
| | - Annasara Lenman
- Department of Clinical
Microbiology, Umeå University,
Umeå, Sweden
| |
Collapse
|
4
|
Bagato O, Balkema-Buschmann A, Todt D, Weber S, Gömer A, Qu B, Miskey C, Ivics Z, Mettenleiter TC, Finke S, Brown RJP, Breithaupt A, Ushakov DS. Spatiotemporal analysis of SARS-CoV-2 infection reveals an expansive wave of monocyte-derived macrophages associated with vascular damage and virus clearance in hamster lungs. Microbiol Spectr 2024; 12:e0246923. [PMID: 38009950 PMCID: PMC10782978 DOI: 10.1128/spectrum.02469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue. An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs.
Collapse
Affiliation(s)
- Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Water Pollution Research Department, Dokki, Giza, Egypt
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Bingqian Qu
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Richard J. P. Brown
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Dmitry S. Ushakov
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
5
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
7
|
Ushakov DS, Finke S. Tissue optical clearing and 3D imaging of virus infections. Adv Virus Res 2023; 116:89-121. [PMID: 37524483 DOI: 10.1016/bs.aivir.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.
Collapse
Affiliation(s)
- Dmitry S Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Stefan Finke
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Kane Y, Wong G, Gao GF. Animal Models, Zoonotic Reservoirs, and Cross-Species Transmission of Emerging Human-Infecting Coronaviruses. Annu Rev Anim Biosci 2023; 11:1-31. [PMID: 36790890 DOI: 10.1146/annurev-animal-020420-025011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Over the past three decades, coronavirus (CoV) diseases have impacted humans more than any other emerging infectious disease. The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease 2019), has resulted in huge economic disruptions and loss of human lives. The SARS-CoV-2 genome was found to mutate more rapidly due to sustained transmission in humans and potentially animals, resulting in variants of concern (VOCs) that threaten global human health. However, the primary difficulties are filling in the current knowledge gaps in terms of the origin and modalities of emergence for these viruses. Because many CoVs threatening human health are suspected to have a zoonotic origin, identifying the animal hosts implicated in the spillover or spillback events would be beneficial for current pandemic management and to prevent future outbreaks. In this review, wesummarize the animal models, zoonotic reservoirs, and cross-species transmission of the emerging human CoVs. Finally, we comment on potential sources of SARS-CoV-2 Omicron VOCs and the new SARS-CoV-2 recombinants currently under investigation.
Collapse
Affiliation(s)
- Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; , .,University of Chinese Academy of Sciences, Beijing, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; ,
| | - George F Gao
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; .,Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Gabrielson K, Myers S, Yi J, Gabrielson E, Jimenez IA. Comparison of Cardiovascular Pathology In Animal Models of SARS-CoV-2 Infection: Recommendations Regarding Standardization of Research Methods. Comp Med 2023; 73:58-71. [PMID: 36731878 PMCID: PMC9948900 DOI: 10.30802/aalas-cm-22-000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the viral pathogen that led to the global COVID-19 pandemic that began in late 2019. Because SARS-CoV-2 primarily causes a respiratory disease, much research conducted to date has focused on the respiratory system. However, SARS-CoV-2 infection also affects other organ systems, including the cardiovascular system. In this critical analysis of published data, we evaluate the evidence of cardiovascular pathology in human patients and animals. Overall, we find that the presence or absence of cardiovascular pathology is reported infrequently in both human autopsy studies and animal models of SARS-CoV-2 infection. Moreover, in those studies that have reported cardiovascular pathology, we identified issues in their design and execution that reduce confidence in the conclusions regarding SARS-CoV-2 infection as a cause of significant cardiovascular pathology. Throughout this overview, we expand on these limitations and provide recommendations to ensure a high level of scientific rigor and reproducibility.
Collapse
Affiliation(s)
- Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephanie Myers
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas; and
| | - Jena Yi
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward Gabrielson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Deroubaix A, Kramvis A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022; 12:794264. [PMID: 35937687 PMCID: PMC9355083 DOI: 10.3389/fcimb.2022.794264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
The world has seen the emergence of a new virus in 2019, SARS-CoV-2, causing the COVID-19 pandemic and millions of deaths worldwide. Microscopy can be much more informative than conventional detection methods such as RT-PCR. This review aims to present the up-to-date microscopy observations in patients, the in vitro studies of the virus and viral proteins and their interaction with their host, discuss the microscopy techniques for detection and study of SARS-CoV-2, and summarize the reagents used for SARS-CoV-2 detection. From basic fluorescence microscopy to high resolution techniques and combined technologies, this article shows the power and the potential of microscopy techniques, especially in the field of virology.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Life Sciences Imaging Facility, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Ciurkiewicz M, Armando F, Schreiner T, de Buhr N, Pilchová V, Krupp-Buzimikic V, Gabriel G, von Köckritz-Blickwede M, Baumgärtner W, Schulz C, Gerhauser I. Ferrets are valuable models for SARS-CoV-2 research. Vet Pathol 2022; 59:661-672. [PMID: 35001763 PMCID: PMC9207987 DOI: 10.1177/03009858211071012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in an ongoing pandemic with millions of deaths worldwide. Infection of humans can be asymptomatic or result in fever, fatigue, dry cough, dyspnea, and acute respiratory distress syndrome with multiorgan failure in severe cases. The pathogenesis of COVID-19 is not fully understood, and various models employing different species are currently applied. Ferrets can be infected with SARS-CoV-2 and efficiently transmit the virus to contact animals. In contrast to hamsters, ferrets usually show mild disease and viral replication restricted to the upper airways. Most reports have used the intranasal inoculation route, while the intratracheal infection model is not well characterized. Herein, we present clinical, virological, and pathological data from young ferrets intratracheally inoculated with SARS-CoV-2. Infected animals showed no significant clinical signs, and had transient infection with peak viral RNA loads at 4 days postinfection, mild to moderate rhinitis, and pulmonary endothelialitis/vasculitis. Viral antigen was exclusively found in the respiratory epithelium of the nasal cavity, indicating a particular tropism for cells in this location. Viral antigen was associated with epithelial damage and influx of inflammatory cells, including activated neutrophils releasing neutrophil extracellular traps. Scanning electron microscopy of the nasal respiratory mucosa revealed loss of cilia, shedding, and rupture of epithelial cells. The currently established ferret SARS-CoV-2 infection models are comparatively discussed with SARS-CoV-2 pathogenesis in mink, and the advantages and disadvantages of both species as research models for zoonotic betacoronaviruses are highlighted.
Collapse
Affiliation(s)
| | - Federico Armando
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tom Schreiner
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nicole de Buhr
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Veronika Pilchová
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Vanessa Krupp-Buzimikic
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gülşah Gabriel
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | | - Claudia Schulz
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ingo Gerhauser
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
12
|
Färber I, Krüger J, Rocha C, Armando F, von Köckritz-Blickwede M, Pöhlmann S, Braun A, Baumgärtner W, Runft S, Krüger N. Investigations on SARS-CoV-2 Susceptibility of Domestic and Wild Animals Using Primary Cell Culture Models Derived from the Upper and Lower Respiratory Tract. Viruses 2022; 14:v14040828. [PMID: 35458558 PMCID: PMC9032458 DOI: 10.3390/v14040828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Several animal species are susceptible to SARS-CoV-2 infection, as documented by case reports and serological and in vivo infection studies. However, the susceptibility of many animal species remains unknown. Furthermore, the expression patterns of SARS-CoV-2 entry factors, such as the receptor angiotensin-converting enzyme 2 (ACE2), as well as transmembrane protease serine subtype 2 (TMPRSS2) and cathepsin L (CTSL), cellular proteases involved in SARS-CoV-2 spike protein activation, are largely unexplored in most species. Here, we generated primary cell cultures from the respiratory tract of domestic and wildlife animals to assess their susceptibility to SARS-CoV-2 infection. Additionally, the presence of ACE2, TMPRSS2 and CTSL within respiratory tract compartments was investigated in a range of animals, some with unknown susceptibility to SARS-CoV-2. Productive viral replication was observed in the nasal mucosa explants and precision-cut lung slices from dogs and hamsters, whereas culture models from ferrets and multiple ungulate species were non-permissive to infection. Overall, whereas TMPRSS2 and CTSL were equally expressed in the respiratory tract, the expression levels of ACE2 were more variable, suggesting that a restricted availability of ACE2 may contribute to reduced susceptibility. Summarized, the experimental infection of primary respiratory tract cell cultures, as well as an analysis of entry-factor distribution, enable screening for SARS-CoV-2 animal reservoirs.
Collapse
Affiliation(s)
- Iris Färber
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
| | - Johannes Krüger
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.R.); (S.P.); (N.K.)
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.R.); (S.P.); (N.K.)
- Faculty of Biology and Psychology, Georg-August-University, 37073 Göttingen, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
- Correspondence: ; Tel.: +49-511-953-8620; Fax: +49-511-953-8675
| | - Sandra Runft
- Department of Pathology, University of Veterinary Medicine, Foundation, 30559 Hannover, Germany; (I.F.); (J.K.); (F.A.); (S.R.)
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.R.); (S.P.); (N.K.)
| |
Collapse
|
13
|
Tomris I, Bouwman KM, Adolfs Y, Noack D, van der Woude R, Kerster G, Herfst S, Sanders RW, van Gils MJ, Boons GJ, Haagmans BL, Pasterkamp RJ, Rockx B, de Vries RP. Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathog 2022; 18:e1010340. [PMID: 35255100 PMCID: PMC8930000 DOI: 10.1371/journal.ppat.1010340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/17/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRSS2) to facilitate viral-host membrane fusion. ACE2 and TMPRSS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq levels. However, transcriptomic data and actual protein validation convey conflicting information regarding the distribution of the biologically relevant protein receptor in whole tissues. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRSS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals was stained using antibodies against ACE2 and TMPRSS2, combined with SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize their expression and related infection patterns. The data demonstrate that infection is restricted to sites containing both ACE2 and TMPRSS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the bronchioles and alveoli. Conversely, infection completely overlaps where ACE2 and TMPRSS2 co-localize in the tertiary bronchi, bronchioles, and alveoli.
Collapse
Affiliation(s)
- Ilhan Tomris
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kim M. Bouwman
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Danny Noack
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gius Kerster
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, Ney York City, New York, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
- Department of Chemistry, University of Georgia, Athens, Georgia, United States of America
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Klein A, Eggerbauer E, Potratz M, Zaeck LM, Calvelage S, Finke S, Müller T, Freuling CM. Comparative pathogenesis of different phylogroup I bat lyssaviruses in a standardized mouse model. PLoS Negl Trop Dis 2022; 16:e0009845. [PMID: 35041652 PMCID: PMC8797209 DOI: 10.1371/journal.pntd.0009845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
A plethora of bat-associated lyssaviruses potentially capable of causing the fatal disease rabies are known today. Transmitted via infectious saliva, occasionally-reported spillover infections from bats to other mammals demonstrate the permeability of the species-barrier and highlight the zoonotic potential of bat-related lyssaviruses. However, it is still unknown whether and, if so, to what extent, viruses from different lyssavirus species vary in their pathogenic potential. In order to characterize and systematically compare a broader group of lyssavirus isolates for their viral replication kinetics, pathogenicity, and virus release through saliva-associated virus shedding, we used a mouse infection model comprising a low (102 TCID50) and a high (105 TCID50) inoculation dose as well as three different inoculation routes (intramuscular, intranasal, intracranial). Clinical signs, incubation periods, and survival were investigated. Based on the latter two parameters, a novel pathogenicity matrix was introduced to classify lyssavirus isolates. Using a total of 13 isolates from ten different virus species, this pathogenicity index varied within and between virus species. Interestingly, Irkut virus (IRKV) and Bokeloh bat lyssavirus (BBLV) obtained higher pathogenicity scores (1.14 for IRKV and 1.06 for BBLV) compared to rabies virus (RABV) isolates ranging between 0.19 and 0.85. Also, clinical signs differed significantly between RABV and other bat lyssaviruses. Altogether, our findings suggest a high diversity among lyssavirus isolates concerning survival, incubation period, and clinical signs. Virus shedding significantly differed between RABVs and other lyssaviruses. Our results demonstrated that active shedding of infectious virus was exclusively associated with two RABV isolates (92% for RABV-DogA and 67% for RABV-Insectbat), thus providing a potential explanation as to why sustained spillovers are solely attributed to RABVs. Interestingly, 3D imaging of a selected panel of brain samples from bat-associated lyssaviruses demonstrated a significantly increased percentage of infected astrocytes in mice inoculated with IRKV (10.03%; SD±7.39) compared to RABV-Vampbat (2.23%; SD±2.4), and BBLV (0.78%; SD±1.51), while only individual infected cells were identified in mice infected with Duvenhage virus (DUVV). These results corroborate previous studies on RABV that suggest a role of astrocyte infection in the pathogenicity of lyssaviruses. Globally, there are at present 17 different officially recognized lyssavirus species posing a potential threat for human and animal health. Bats have been identified as carriers for the vast majority of those zoonotic viruses, which cause the fatal disease rabies and are transmitted through infectious saliva. The occurrence of sporadic spillover events where lyssaviruses are spread from bats to other mammalian species highlights the importance of studying pathogenicity and virus shedding in regard to a potentially sustained onward cross-species transmission. Therefore, as part of this study, we compared 13 different isolates from ten lyssavirus species in a standardized mouse infection model, focusing on clinical signs, incubation periods, and survival. Based on the latter two, a novel pathogenicity index to classify different lyssavirus species was established. This pathogenicity index varied within and between different lyssavirus species and revealed a higher ranking of other bat-related lyssaviruses in comparison to the tested Rabies virus (RABV) isolates. Altogether, our results demonstrate a high diversity among the investigated isolates concerning pathogenicity and clinical picture. Furthermore, we comparatively analyzed virus shedding via saliva and while there was no indication towards a reduced pathogenicity of bat-associated lyssaviruses as opposed to RABV, shedding was increased in RABV isolates. Additionally, we investigated neuronal cell tropism and revealed that bat lyssaviruses are not only capable of infecting neurons but also astrocytes.
Collapse
Affiliation(s)
- Antonia Klein
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Madlin Potratz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sten Calvelage
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad M. Freuling
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
15
|
Herder V, Dee K, Wojtus JK, Epifano I, Goldfarb D, Rozario C, Gu Q, Da Silva Filipe A, Nomikou K, Nichols J, Jarrett RF, Stevenson A, McFarlane S, Stewart ME, Szemiel AM, Pinto RM, Masdefiol Garriga A, Davis C, Allan J, Graham SV, Murcia PR, Boutell C. Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses. PLoS Biol 2021; 19:e3001065. [PMID: 34932557 PMCID: PMC8765667 DOI: 10.1371/journal.pbio.3001065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/18/2022] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.
Collapse
Affiliation(s)
- Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Kieran Dee
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Joanna K. Wojtus
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Ilaria Epifano
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Daniel Goldfarb
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Christoforos Rozario
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Ruth F. Jarrett
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Andrew Stevenson
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Meredith E. Stewart
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Agnieszka M. Szemiel
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Rute M. Pinto
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Andreu Masdefiol Garriga
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
- University of Glasgow School of Veterinary Medicine, Glasgow, Scotland United Kingdom
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
| | - Sheila V. Graham
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
- * E-mail: (SVG); (PRM); (CB)
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
- * E-mail: (SVG); (PRM); (CB)
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland United Kingdom
- * E-mail: (SVG); (PRM); (CB)
| |
Collapse
|
16
|
Wang ZG, Liu SL, Pang DW. Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking. Acc Chem Res 2021; 54:2991-3002. [PMID: 34180662 DOI: 10.1021/acs.accounts.1c00276] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent research has highlighted the immense potential of the quantum dot (QD)-based single-virus tracking (SVT) technique in virology. In these experiments, the infection behaviors of single viruses or viral components, labeled with QDs, could be tracked on time scales of milliseconds to hours in host cells. The trajectories of individual viruses are reconstructed with nanometer accuracy, and the underlying dynamic information on virus infection can be extracted to uncover the infection mechanisms of viruses. Therefore, QD-based single-virus tracking (QSVT) is an exquisitely selective and powerful approach to investigating how viruses are internalized in host cells dynamically to release their genome for viral replication and assembly that ensure the completion of viral life cycles.QDs are better candidates than organic dyes and fluorescent proteins for virus labeling and subsequent SVT due to the following considerations: (i) the high brightness of QDs makes it possible to label a virus with sufficient brightness using very few QDs or even just one QD; (ii) the extraordinary photostability of QDs allows one to track the infection process long term and quantify low probability events; (iii) the color-tunable emission property of QDs ensures multicolor labeling of various components of a virus simultaneously; and (iv) the abundant surface ligands of QDs facilitate the conjugation of a virus with a variety of labeling strategies. Therefore, the photoproperties of QDs make it possible to perform multicolor long-term SVT experiments quantitatively. Nowadays, the QD-based SVT (QSVT) technique has made prodigious achievements in unraveling the entry, trafficking, and uncoating mechanisms of viruses. This fascinating technique can provide spatiotemporal dynamic information on the viral journey in unprecedented detail and has revolutionized our understanding of virus infection.In this Account, we first introduce the advantages and the limitations of conventional SVT in virological research and the unique features of QDs as labels in the SVT field. We subsequently focus on the principles and related methods of QSVT and the current state of QD chemistry and QD-based virus labeling that resolves many issues associated with the tracking of individual viruses in live cells. Then we emphasize some new findings by this technique in the study of infection mechanisms. Finally, we will provide our insights into future challenges on this topic. With this Account, we hope to further stimulate the development of QSVT with a combined effort from different disciplines and, more importantly, to accelerate the applications of QSVT in virological research.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
17
|
Putlyaeva LV, Lukyanov KA. Studying SARS-CoV-2 with Fluorescence Microscopy. Int J Mol Sci 2021; 22:6558. [PMID: 34207305 PMCID: PMC8234815 DOI: 10.3390/ijms22126558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 coronavirus deeply affected the world community. It gave a strong impetus to the development of not only approaches to diagnostics and therapy, but also fundamental research of the molecular biology of this virus. Fluorescence microscopy is a powerful technology enabling detailed investigation of virus-cell interactions in fixed and live samples with high specificity. While spatial resolution of conventional fluorescence microscopy is not sufficient to resolve all virus-related structures, super-resolution fluorescence microscopy can solve this problem. In this paper, we review the use of fluorescence microscopy to study SARS-CoV-2 and related viruses. The prospects for the application of the recently developed advanced methods of fluorescence labeling and microscopy-which in our opinion can provide important information about the molecular biology of SARS-CoV-2-are discussed.
Collapse
Affiliation(s)
| | - Konstantin A. Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| |
Collapse
|