1
|
Ran Y, Chen Z, Sacramento CQ, Fan L, Cui Q, Rong L, Du R. Scutellaria barbata D. Don extracts alleviate SARS-CoV-2 induced acute lung injury by inhibiting virus replication and bi-directional immune modulation. Virol Sin 2025:S1995-820X(25)00039-2. [PMID: 40228743 DOI: 10.1016/j.virs.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
The emergence of SARS-CoV-2 variants and drug-resistant mutants emphasizes the urgent need to develop novel antiviral agents. In the present study, we examined the therapeutic effect of the Chinese medicinal herb, Scutellaria barbata D. Don (SBD), against SARS-CoV-2 infection both in vitro and in vivo. Using a viral replicon particle (VRP)-based mouse model of SARS-CoV-2 infection, our study revealed that SBD extracts can reduce viral load in mouse lungs and alleviate the viral induced pneumonia. In vitro antiviral determination further validated the direct acting antiviral efficacy of SBD extracts against SARS-CoV-2 replication. Mechanistic studies demonstrated that SBD can act against SARS-CoV-2 replication by targeting both 3-chymotrypsin-like and papain-like cysteine proteases, via a combination of multiple active constituents. Moreover, SBD can modulate the host inflammation response in a bi-directional manner, which also contribute to the mitigation of viral induced acute lung injury. In summary, our study provides SBD as a promising therapeutic agent to combat SARS-CoV-2 infections that merit further development.
Collapse
Affiliation(s)
- Yan Ran
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Zinuo Chen
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Carolina Q Sacramento
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lingyuan Fan
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Qinghua Cui
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ruikun Du
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| |
Collapse
|
2
|
Gomes BA, Fernandes DA, Mendonça SC, Campos MF, da Fonseca TS, Constant LEC, de Sousa NF, Priscila Barros de Menezes R, de Oliveira BAC, da Silva Costa S, Frensel GB, Rosa AS, Oliveira TKF, Tucci AR, Lima JNH, Ferreira VNS, Miranda MD, Allonso D, Scotti MT, Leitão SG, Leitão GG. Predicting the Anti-SARS-CoV-2 Potential of Isoquinoline Alkaloids from Brazilian Siparunaceae Species Using Chemometric Tools. Int J Mol Sci 2025; 26:633. [PMID: 39859347 PMCID: PMC11765762 DOI: 10.3390/ijms26020633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The COVID-19 pandemic has caused over 7 million deaths globally in the past four years. Siparuna spp. (Siparunaceae), which is used in Brazilian folk medicine, is considered a genus with potential antiviral alternatives. This study explored the correlation between phytochemicals in Siparuna leaf extracts (S. ficoides, S. decipiens, S. glycycarpa, S. reginae, and S. cymosa) and their potential against various SARS-CoV-2 targets. In vitro assays examined interactions between the spike protein and the ACE2 receptor, protease activity, and viral replication inhibition in Calu-3 cell models. UHPLC-MS/MS analysis, processed with MZmine and evaluated chemometrically, revealed isoquinoline alkaloids with bulbocapnine, showing promising therapeutic potential. Predictions regarding absorption, distribution, metabolism, excretion, and toxicity were conducted, along with molecular docking and dynamics simulations, to evaluate protein-ligand interaction stability. The results confirmed the antiviral activity of the Siparuna genus against SARS-CoV-2 targets, with 92% of the extracts maintaining over 70% cellular viability at 200 μg·mL-1 and 80% achieving more than 50% viral activity suppression at 50 μg·mL-1. These findings highlight the potential of isoquinoline alkaloids as novel anti-coronavirus agents and support the need for further exploration, isolation, and testing of Siparuna compounds in the fight against COVID-19.
Collapse
Affiliation(s)
- Brendo Araujo Gomes
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (B.A.G.); (M.F.C.)
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (T.S.d.F.)
| | - Diégina Araújo Fernandes
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Simony Carvalho Mendonça
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (T.S.d.F.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mariana Freire Campos
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (B.A.G.); (M.F.C.)
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (T.S.d.F.)
| | - Thamirys Silva da Fonseca
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (T.S.d.F.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Larissa Esteves Carvalho Constant
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (D.A.)
| | - Natalia Ferreira de Sousa
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa 58015-970, PB, Brazil; (N.F.d.S.); (R.P.B.d.M.); (M.T.S.)
| | - Renata Priscila Barros de Menezes
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa 58015-970, PB, Brazil; (N.F.d.S.); (R.P.B.d.M.); (M.T.S.)
| | - Beatriz Albuquerque Custódio de Oliveira
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Rio de Janeiro 21941-902, RJ, Brazil; (B.A.C.d.O.); (S.d.S.C.); (G.B.F.)
| | - Stephany da Silva Costa
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Rio de Janeiro 21941-902, RJ, Brazil; (B.A.C.d.O.); (S.d.S.C.); (G.B.F.)
| | - Giovanna Barbosa Frensel
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Rio de Janeiro 21941-902, RJ, Brazil; (B.A.C.d.O.); (S.d.S.C.); (G.B.F.)
| | - Alice Santos Rosa
- Laboratório de Morfologia e Morfogênese Viral, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (T.K.F.O.); (A.R.T.); (J.N.H.L.); (V.N.S.F.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Thamara Kelcya Fonseca Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (T.K.F.O.); (A.R.T.); (J.N.H.L.); (V.N.S.F.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Amanda Resende Tucci
- Laboratório de Morfologia e Morfogênese Viral, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (T.K.F.O.); (A.R.T.); (J.N.H.L.); (V.N.S.F.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Júlia Nilo Henrique Lima
- Laboratório de Morfologia e Morfogênese Viral, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (T.K.F.O.); (A.R.T.); (J.N.H.L.); (V.N.S.F.); (M.D.M.)
| | - Vivian Neuza Santos Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (T.K.F.O.); (A.R.T.); (J.N.H.L.); (V.N.S.F.); (M.D.M.)
| | - Milene Dias Miranda
- Laboratório de Morfologia e Morfogênese Viral, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.S.R.); (T.K.F.O.); (A.R.T.); (J.N.H.L.); (V.N.S.F.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Diego Allonso
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (D.A.)
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Rio de Janeiro 21941-902, RJ, Brazil; (B.A.C.d.O.); (S.d.S.C.); (G.B.F.)
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marcus Tullius Scotti
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa 58015-970, PB, Brazil; (N.F.d.S.); (R.P.B.d.M.); (M.T.S.)
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Suzana Guimarães Leitão
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (B.A.G.); (M.F.C.)
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (T.S.d.F.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
3
|
Shi YH, Shen JX, Tao Y, Xia YL, Zhang ZB, Fu YX, Zhang KQ, Liu SQ. Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study. Int J Mol Sci 2025; 26:587. [PMID: 39859303 PMCID: PMC11766390 DOI: 10.3390/ijms26020587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition. Of the remaining compounds, five charged ones exhibited reduced binding stability due to competing electrostatic interactions and increased solvent exposure, while seven neutral compounds showed stronger binding affinity driven by van der Waals (vdW) interactions compensating for unfavorable electrostatic effects (including electrostatic interactions and desolvation penalties). Positive and negative hotspot residues were identified as uncharged and charged, respectively, both lining the SBC. Despite forming diverse interactions with compounds, the burial of positive hotspots led to strong vdW interactions that overcompensated for unfavorable electrostatic effects, whereas negative hotspots incurred high desolvation penalties, negating any favorable contributions. Charged residues at the SBC's outer rim can reduce binding affinity significantly when forming hydrogen bonds or salt bridges. These findings underscore the importance of enhancing vdW interactions with uncharged residues and minimizing the unfavorable electrostatic effects of charged residues, providing valuable insights for designing effective TMPRSS2 inhibitors.
Collapse
Affiliation(s)
- Yue-Hui Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Jian-Xin Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Yan Tao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Zhi-Bi Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China;
| | - Yun-Xin Fu
- Human Genetics Center and Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.-H.S.); (J.-X.S.); (Y.T.); (Y.-L.X.); (K.-Q.Z.)
| |
Collapse
|
4
|
Wang WJ, Tang HT, Ou SC, Shen WJ, Chen CY, Li YC, Chang SY, Chang WC, Hsueh PR, Huang ST, Hung MC. Novel SARS-CoV-2 inhibition properties of the anti-cancer Kang Guan Recipe herbal formula. Cancer Lett 2024; 604:217198. [PMID: 39197583 DOI: 10.1016/j.canlet.2024.217198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
The ongoing COVID-19 pandemic is a persistent challenge, with continued breakthrough infections despite vaccination efforts. This has spurred interest in alternative preventive measures, including dietary and herbal interventions. Previous research has demonstrated that herbal medicines can not only inhibit cancer progression but also combat viral infections, including COVID-19 by targeting SARS-CoV-2, indicating a multifaceted potential to address both viruses and cancer. Here, we found that the Kang Guan Recipe (KGR), a novel herbal medicine formula, associates with potent inhibition activity against the SARS-CoV-2 viral infection. We demonstrate that KGR exhibits inhibitory activity against several SARS-CoV-2 variants of concern (VOCs). Mechanistically, we found that KGR can block the interaction of the viral spike and human angiotensin-converting enzyme 2 (ACE2). Furthermore, we assessed the inhibitory effect of KGR on SARS-CoV-2 viral entry in vivo, observing that serum samples from healthy human subjects having taken KGR exhibited suppressive activity against SARS-CoV-2 variants. Our investigation provides valuable insights into the potential of KGR as a novel herbal-based preventive and therapeutic strategy against COVID-19.
Collapse
Affiliation(s)
- Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsuan-Ting Tang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Sui-Yuan Chang
- Dept of Clinical Laboratory Sciences and Medical Biotchnology, National Taiwan University College of Medicine, Taipei, Taiwan; Dept of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Micucci M, Gioacchini S, Baggieri M, Fioravanti R, Bucci P, Giuseppetti R, Saleem SS, Maulud SQ, Abdullah FO, Ismael BQ, Ahmed JQ, D'Ugo E, Marchi A, Okeke UJ, Magurano F. Review from host and guest approach to new frontiers nutraceuticals in the era of COVID-19. FUTURE FOODS 2024; 9:100303. [DOI: 10.1016/j.fufo.2024.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
6
|
Chen CY, Wang WJ, Wu CS, Wang SC, Chang WC, Hung MC. Tannic acids and proanthocyanidins in tea inhibit SARS-CoV-2 variants infection. Am J Cancer Res 2024; 14:2555-2569. [PMID: 38859869 PMCID: PMC11162682 DOI: 10.62347/qjbg3026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
The COVID-19 pandemic has caused hundreds million cases and millions death as well as continues to infect human life in the world since late of 2019. The breakthrough infection caused from mutation of SARS-CoV-2 is rising even the vaccinated population has been increasing. Currently, the severe threat posed by SARS-CoV-2 has been alleviated worldwide, and the situation has transitioned to coexisting with the virus. The dietary food with antiviral activities may improve to prevent virus infection for living with COVID-19 pandemic. Teas containing enriched phenolic ingredients such as tannins have been reported to be antitumor agents as well as be good inhibitors for coronavirus. This study developed a highly sensitive and selective ultra-high performance liquid chromatography-high resolution mass spectrometric method for quantification of tannic acids, a hydrolysable tannin, and proanthocyanidins, a condense tannin, in teas with different levels of fermentation. The in vitro pseudoviral particles (Vpp) infection assay was used to evaluate the inhibition activities of various teas. The results of current research demonstrate that the tannins in teas are effective inhibitors against infection of SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical UniversityTaichung 406040, Taiwan
| | - Chen-Shiou Wu
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
| | - Shao-Chun Wang
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University Hospital, China Medical UniversityTaichung 406040, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413305, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 406040, Taiwan
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University Hospital, China Medical UniversityTaichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University Hospital, China Medical UniversityTaichung 406040, Taiwan
| |
Collapse
|
7
|
Mendonça SC, Gomes BA, Campos MF, da Fonseca TS, Esteves MEA, Andriolo BV, Cheohen CFDAR, Constant LEC, da Silva Costa S, Calil PT, Tucci AR, de Oliveira TKF, Rosa ADS, Ferreira VNDS, Lima JNH, Miranda MD, da Costa LJ, da Silva ML, Scotti MT, Allonso D, Leitão GG, Leitão SG. Myrtucommulones and Related Acylphloroglucinols from Myrtaceae as a Promising Source of Multitarget SARS-CoV-2 Cycle Inhibitors. Pharmaceuticals (Basel) 2024; 17:436. [PMID: 38675398 PMCID: PMC11054083 DOI: 10.3390/ph17040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The LABEXTRACT plant extract bank, featuring diverse members of the Myrtaceae family from Brazilian hot spot regions, provides a promising avenue for bioprospection. Given the pivotal roles of the Spike protein and 3CLpro and PLpro proteases in SARS-CoV-2 infection, this study delves into the correlations between the Myrtaceae species from the Atlantic Forest and these targets, as well as an antiviral activity through both in vitro and in silico analyses. The results uncovered notable inhibitory effects, with Eugenia prasina and E. mosenii standing out, while E. mosenii proved to be multitarget, presenting inhibition values above 72% in the three targets analyzed. All extracts inhibited viral replication in Calu-3 cells (EC50 was lower than 8.3 µg·mL-1). Chemometric analyses, through LC-MS/MS, encompassing prediction models and molecular networking, identified potential active compounds, such as myrtucommulones, described in the literature for their antiviral activity. Docking analyses showed that one undescribed myrtucommulone (m/z 841 [M - H]-) had a higher fitness score when interacting with the targets of this study, including ACE2, Spike, PLpro and 3CLpro of SARS-CoV-2. Also, the study concludes that Myrtaceae extracts, particularly from E. mosenii and E. prasina, exhibit promising inhibitory effects against crucial stages in SARS-CoV-2 infection. Compounds like myrtucommulones emerge as potential anti-SARS-CoV-2 agents, warranting further exploration.
Collapse
Affiliation(s)
- Simony Carvalho Mendonça
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
| | - Brendo Araujo Gomes
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mariana Freire Campos
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Thamirys Silva da Fonseca
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Maria Eduarda Alves Esteves
- Programa de Pós-Graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.A.E.); (M.L.d.S.)
| | - Bruce Veiga Andriolo
- Programa de Pós-Graduação em Biotecnologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias 25250-020, RJ, Brazil;
| | - Caio Felipe de Araujo Ribas Cheohen
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé 27965-045, RJ, Brazil;
| | - Larissa Esteves Carvalho Constant
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
| | - Stephany da Silva Costa
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
| | - Pedro Telles Calil
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (P.T.C.); (L.J.d.C.)
| | - Amanda Resende Tucci
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Thamara Kelcya Fonseca de Oliveira
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Alice dos Santos Rosa
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Vivian Neuza dos Santos Ferreira
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
| | - Julia Nilo Henrique Lima
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
| | - Milene Dias Miranda
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil; (A.R.T.); (T.K.F.d.O.); (A.d.S.R.); (V.N.d.S.F.); (J.N.H.L.); (M.D.M.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Luciana Jesus da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (P.T.C.); (L.J.d.C.)
| | - Manuela Leal da Silva
- Programa de Pós-Graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.A.E.); (M.L.d.S.)
- Programa de Pós-Graduação em Biotecnologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias 25250-020, RJ, Brazil;
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé 27965-045, RJ, Brazil;
| | - Marcus Tullius Scotti
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa 58033-455, PB, Brazil;
| | - Diego Allonso
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (L.E.C.C.); (S.d.S.C.); (D.A.)
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (B.A.G.); (M.F.C.)
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| |
Collapse
|
8
|
Liu L, Kapralov M, Ashton M. Plant-derived compounds as potential leads for new drug development targeting COVID-19. Phytother Res 2024; 38:1522-1554. [PMID: 38281731 DOI: 10.1002/ptr.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
COVID-19, which was first identified in 2019 in Wuhan, China, is a respiratory illness caused by a virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some patients infected with COVID-19 can remain asymptomatic, most experience a range of symptoms that can be mild to severe. Common symptoms include fever, cough, shortness of breath, fatigue, loss of taste or smell and muscle aches. In severe cases, complications can arise including pneumonia, acute respiratory distress syndrome, organ failure and even death, particularly in older adults or individuals with underlying health conditions. Treatments for COVID-19 include remdesivir, which has been authorised for emergency use in some countries, and dexamethasone, a corticosteroid used to reduce inflammation in severe cases. Biological drugs including monoclonal antibodies, such as casirivimab and imdevimab, have also been authorised for emergency use in certain situations. While these treatments have improved the outcome for many patients, there is still an urgent need for new treatments. Medicinal plants have long served as a valuable source of new drug leads and may serve as a valuable resource in the development of COVID-19 treatments due to their broad-spectrum antiviral activity. To date, various medicinal plant extracts have been studied for their cellular and molecular interactions, with some demonstrating anti-SARS-CoV-2 activity in vitro. This review explores the evaluation and potential therapeutic applications of these plants against SARS-CoV-2. This review summarises the latest evidence on the activity of different plant extracts and their isolated bioactive compounds against SARS-CoV-2, with a focus on the application of plant-derived compounds in animal models and in human studies.
Collapse
Affiliation(s)
- Lingxiu Liu
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Maxim Kapralov
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Mark Ashton
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
9
|
Wilczańska A, Sparzak-Stefanowska B, Kokotkiewicz A, Jesionek A, Królicka A, Łuczkiewicz M, Krauze-Baranowska M. Biotechnological strategies for controlled accumulation of flavones in hairy root culture of Scutellaria lateriflora L. Sci Rep 2023; 13:20422. [PMID: 37990031 PMCID: PMC10663461 DOI: 10.1038/s41598-023-47757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Accumulation of medicinally important flavones and acteoside was evaluated in Scutellaria lateriflora hairy root cultures subjected to different experimental strategies - feeding with precursors of phenolics biosynthesis (phenylalanine, cinnamic acid, and sodium cinnamate), addition of elicitors (chitosan, jasmonic acid) and Amberlite XAD-4 and XAD-7 resins and permeabilization with dimethyl sulfoxide (DMSO) and methanol. The production profile of S. lateriflora cultures changed under the influence of the applied strategies. Hairy roots of S. lateriflora were found to be a rich source of wogonoside or wogonin, depending on the treatment used. The addition of sodium cinnamate (1.0 mg/L) was the most effective approach to provide high production of flavonoids, especially wogonoside (4.41% dry weight /DW/; 566.78 mg/L). Permeabilization with DMSO (2 µg/ml for 12 h) or methanol (30% for 12 h) resulted in high biosynthesis of wogonin (299.77 mg/L and 274.03 mg/L, respectively). The obtained results provide new insight into the selection of the optimal growth conditions for the production of in vitro biomass with a significant level of flavone accumulation. The data may be valuable for designing large-scale cultivation systems of hairy roots of S. lateriflora with high productivity of bioactive compounds - wogonin or wogonoside.
Collapse
Affiliation(s)
- Agata Wilczańska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Barbara Sparzak-Stefanowska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Adam Kokotkiewicz
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Anna Jesionek
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Aleksandra Królicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Maria Łuczkiewicz
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Mirosława Krauze-Baranowska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
10
|
Wu CS, Li YC, Peng SL, Chen CY, Chen HF, Hsueh PR, Wang WJ, Liu YY, Jiang CL, Chang WC, Wang SC, Hung MC. Coffee as a dietary strategy to prevent SARS-CoV-2 infection. Cell Biosci 2023; 13:210. [PMID: 37964389 PMCID: PMC10644613 DOI: 10.1186/s13578-023-01154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND To date, most countries lifted the restriction requirement and coexisted with SARS-CoV-2. Thus, dietary behavior for preventing SARS-CoV-2 infection becomes an interesting issue on a daily basis. Coffee consumption is connected with reduced COVID-19 risk and correlated to COVID-19 severity. However, the mechanisms of coffee for the reduction of COVID-19 risk are still unclear. RESULTS Here, we identified that coffee can inhibit multiple variants of the SARS-CoV-2 infection by restraining the binding of the SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (ACE2), and reducing transmembrane serine protease 2 (TMPRSS2) and cathepsin L (CTSL) activity. Then, we used the method of "Here" (HRMS-exploring-recombination-examining) and found that isochlorogenic acid A, B, and C of coffee ingredients showed their potential to inhibit SARS-CoV-2 infection (inhibitory efficiency 43-54%). In addition, decaffeinated coffee still preserves inhibitory activity against SARS-CoV-2. Finally, in a human trial of 64 subjects, we identified that coffee consumption (approximately 1-2 cups/day) is sufficient to inhibit infection of multiple variants of SARS-CoV-2 entry, suggesting coffee could be a dietary strategy to prevent SARS-CoV2 infection. CONCLUSIONS This study verified moderate coffee consumption, including decaffeination, can provide a new guideline for the prevention of SARS-CoV-2. Based on the results, we also suggest a coffee-drinking plan for people to prevent infection in the post-COVID-19 era.
Collapse
Affiliation(s)
- Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, School of Medicine, China Medical University Hospital, China Medical University Taichung, Taichung, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yen-Yi Liu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Ciao-Ling Jiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Ahuja R, Kaur A, Kumari G, Kumar A, Kumar S, Roy AK, Majumdar T. Enhanced expression and solubility of main protease (Mpro) of SARS-CoV-2 from E. coli. Protein Expr Purif 2023; 211:106337. [PMID: 37453569 DOI: 10.1016/j.pep.2023.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is a essential enzyme that facilitates viral transcription and replication. Furthermore, the conservation of Mpro across different variants and its non-overlapping nature with human proteases make it an appealing target for therapeutic interventions against SARS-CoV-2. Multiple inhibitors specifically target Mpro to mitigate the infection caused by SARS-CoV-2. In the current study, successful cloning and expression of SARS-CoV-2 Mpro were achieved using two E. coli hosts, namely BL21-DE3 and BL21-DE3-RIL. By optimizing the conditions for induction, the expression of Mpro in the soluble fraction of E. coli was improved. Subsequently, Mpro was purified using affinity chromatography, yielding significantly higher quantities from the BL21-DE3-RIL strain compared to the BL21-DE3 strain, with the former producing nearly twice as much as the latter. The purified Mpro was further characterized by mass spectrometry, fluorescence spectroscopy and circular dichroism (CD). Through fluorescence quenching studies, it was discovered that both GC376 and chitosan, which are inhibitors of Mpro, induced structural changes in the purified Mpro protein. This indicates that the protein retained its functional activity even after being expressed in a bacterial host. Further, FRET-based assay highlighted that the enzymatic activity of Mpro was significantly reduced in presence of both GC376 and chitosan. Consequently, the utilization of optimal conditions and the BL21-DE3-RIL bacterial host facilitates the cost-effective production of Mpro on a large scale, enabling high yields. This production approach can be applied for the screening of potent therapeutic drugs, making it a valuable resource for drug development endeavors.
Collapse
Affiliation(s)
- Rahul Ahuja
- National Institute of Immunology, New Delhi, 110067, India.
| | | | - Geetika Kumari
- National Institute of Immunology, New Delhi, 110067, India
| | - Amit Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - Santosh Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - Atul Kumar Roy
- National Institute of Immunology, New Delhi, 110067, India
| | | |
Collapse
|
12
|
Sapountzaki E, Rova U, Christakopoulos P, Antonopoulou I. Renewable Hydrogen Production and Storage Via Enzymatic Interconversion of CO 2 and Formate with Electrochemical Cofactor Regeneration. CHEMSUSCHEM 2023; 16:e202202312. [PMID: 37165995 DOI: 10.1002/cssc.202202312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
The urgent need to reduce CO2 emissions has motivated the development of CO2 capture and utilization technologies. An emerging application is CO2 transformation into storage chemicals for clean energy carriers. Formic acid (FA), a valuable product of CO2 reduction, is an excellent hydrogen carrier. CO2 conversion to FA, followed by H2 release from FA, are conventionally chemically catalyzed. Biocatalysts offer a highly specific and less energy-intensive alternative. CO2 conversion to formate is catalyzed by formate dehydrogenase (FDH), which usually requires a cofactor to function. Several FDHs have been incorporated in bioelectrochemical systems where formate is produced by the biocathode and the cofactor is electrochemically regenerated. H2 production from formate is also catalyzed by several microorganisms possessing either formate hydrogenlyase or hydrogen-dependent CO2 reductase complexes. Combination of these two processes can lead to a CO2 -recycling cycle for H2 production, storage, and release with potentially lower environmental impact than conventional methods.
Collapse
Affiliation(s)
- Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| |
Collapse
|
13
|
Farkaš B, Minneci M, Misevicius M, Rozas I. A Tale of Two Proteases: M Pro and TMPRSS2 as Targets for COVID-19 Therapies. Pharmaceuticals (Basel) 2023; 16:834. [PMID: 37375781 PMCID: PMC10301481 DOI: 10.3390/ph16060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the importance of the 2019 outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulting in the coronavirus disease 2019 (COVID-19) pandemic, an overview of two proteases that play an important role in the infection by SARS-CoV-2, the main protease of SARS-CoV-2 (MPro) and the host transmembrane protease serine 2 (TMPRSS2), is presented in this review. After summarising the viral replication cycle to identify the relevance of these proteases, the therapeutic agents already approved are presented. Then, this review discusses some of the most recently reported inhibitors first for the viral MPro and next for the host TMPRSS2 explaining the mechanism of action of each protease. Afterward, some computational approaches to design novel MPro and TMPRSS2 inhibitors are presented, also describing the corresponding crystallographic structures reported so far. Finally, a brief discussion on a few reports found some dual-action inhibitors for both proteases is given. This review provides an overview of two proteases of different origins (viral and human host) that have become important targets for the development of antiviral agents to treat COVID-19.
Collapse
Affiliation(s)
| | | | | | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590 Dublin, Ireland; (B.F.); (M.M.); (M.M.)
| |
Collapse
|
14
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Tang TT, Li SM, Pan BW, Xiao JW, Pang YX, Xie SX, Zhou Y, Yang J, Wei Y. Identification of Flavonoids from Scutellaria barbata D. Don as Inhibitors of HIV-1 and Cathepsin L Proteases and Their Structure-Activity Relationships. Molecules 2023; 28:molecules28114476. [PMID: 37298951 DOI: 10.3390/molecules28114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Scutellaria barbata D. Don (SB, Chinese: Ban Zhi Lian), a well-known medicinal plant used in traditional Chinese medicine, is rich in flavonoids. It possesses antitumor, anti-inflammatory, and antiviral activities. In this study, we evaluated the inhibitory activities of SB extracts and its active components against HIV-1 protease (HIV-1 PR) and SARS-CoV2 viral cathepsin L protease (Cat L PR). UPLC/HRMS was used to identify and quantify the major active flavonoids in different SB extracts, and fluorescence resonance energy transfer (FRET) assays were used to determine HIV-1 PR and Cat L PR inhibitions and identify structure-activity relationships. Molecular docking was also performed, to explore the diversification in bonding patterns of the active flavonoids upon binding to the two PRs. Three SB extracts (SBW, SB30, and SB60) and nine flavonoids inhibited HIV-1 PR with an IC50 range from 0.006 to 0.83 mg/mL. Six of the flavonoids showed 10~37.6% inhibition of Cat L PR at a concentration of 0.1 mg/mL. The results showed that the introduction of the 4'-hydroxyl and 6-hydroxyl/methoxy groups was essential in the 5,6,7-trihydroxyl and 5,7,4'-trihydroxyl flavones, respectively, to enhance their dual anti-PR activities. Hence, the 5,6,7,4'-tetrahydroxyl flavone scutellarein (HIV-1 PR, IC50 = 0.068 mg/mL; Cat L PR, IC50 = 0.43 mg/mL) may serve as a lead compound to develop more effective dual protease inhibitors. The 5,7,3',4'-tetrahydroxyl flavone luteolin also showed a potent and selective inhibition of HIV-1 PR (IC50 = 0.039 mg/mL).
Collapse
Affiliation(s)
- Ting-Ting Tang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Su-Mei Li
- Department of Pharmacology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun-Wei Xiao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yu-Xin Pang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shou-Xia Xie
- Department of Pharmacology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Ying Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
16
|
Hung SW, Liao YC, Chi IC, Lin TY, Lin YC, Lin HJ, Huang ST. Integrated Chinese herbal medicine and Western medicine successfully resolves spontaneous subcutaneous emphysema and pneumomediastinum in a patient with severe COVID-19 in Taiwan: A case report. Explore (NY) 2023; 19:147-152. [PMID: 34955379 PMCID: PMC8667518 DOI: 10.1016/j.explore.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/11/2021] [Indexed: 01/25/2023]
Abstract
CASE Serious complications of severe coronavirus disease 2019 (COVID-19) include subcutaneous emphysema (SE) and pneumomediastinum, which are complicated to treat with conventional Western medicine. We report how combining Chinese herbal medicine (CHM) with Western medicine quickly resolved a patient's COVID-19-associated pulmonary complications, shortened hospital stay and improved quality of life. CLINICAL FEATURES AND OUTCOME A 59-year-old male with a history of smoking and tumors was diagnosed with COVID-19 in May 2021. At hospitalization, his oxygen saturation (SpO2) was 80%, he had a continuous severe cough, rapid shallow breathing, spontaneous SE and pneumomediastinum. By Day 4 of hospitalization, his condition was worsening despite standard care, so CHM was added. After 3-5 days, his coughing had lessened and supplementary oxygen therapy was de-escalated. Nine days after starting CHM, the SE had completely resolved and the patient avoided intubation. His WHO OS 10-point Scale score had fallen from 6 to 3 points and the modified Medical Research Council Dyspnea Scale score from 4 to 2 points. He was hospitalized for 19 days. At 1 week post-discharge, the patient could handle most of his daily activities and experienced minor shortness of breath only when performing labor-intensive tasks. At 1 month, his work output was restored to pre-COVID-19 levels. CONCLUSION CHM combined with standard Western medicine improved pulmonary function, respiratory rate, blood oxygen saturation and shortened the hospital stay of a patient with severe COVID-19 complicated by SE and pneumomediastinum.
Collapse
Affiliation(s)
- Shuo-Wen Hung
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan
| | - Yuan-Ching Liao
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan; Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, North District, Taichung City 40402, Taiwan
| | - I-Chang Chi
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan
| | - Ting-Yen Lin
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan
| | - Yu-Chuan Lin
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan; Department of Chinese Medicine, School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, North District, Taichung City 40402, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan; Department of Chinese Medicine, School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, North District, Taichung City 40402, Taiwan; Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan; An-Nan Hospital, China Medical University, No. 66, Section 2, Zhanghe Road, Annan District, Tainan City 709, Taiwan.
| |
Collapse
|
17
|
Wu CS, Chiang HM, Chen Y, Chen CY, Chen HF, Su WC, Wang WJ, Chou YC, Chang WC, Wang SC, Hung MC. Prospects of Coffee Leaf against SARS-CoV-2 Infection. Int J Biol Sci 2022; 18:4677-4689. [PMID: 35874948 PMCID: PMC9305275 DOI: 10.7150/ijbs.76058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In the current climate, many countries are in dire need of effective preventive methods to curb the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) pandemic. The purpose of this research is to screen and explore natural plant extracts that have the potential to against SARS-CoV-2 and provide alternative options for SARS-CoV-2 prevention and hand sanitizer or spray-like disinfectants. We first used Spike-ACE2 ELISA and TMPRSS2 fluorescence resonance energy transfer (FRET) assays to screen extracts from agricultural by-products from Taiwan with the potential to impede SARS-CoV-2 infection. Next, the SARS-CoV-2 pseudo-particles (Vpp) infection assay was tested to validate the effectiveness. We identified an extract from coffee leaf (Coffea Arabica), a natural plant that effectively inhibited wild-type SARS-CoV-2, and five Variants of Concern (Alpha, Beta, Gamma, Delta, and Omicron strain) from entering host cells. In an attempt to apply coffee leaf extract for hand sanitizer or spray-like disinfectants, we designed a skin-like gelatin membrane experiment. We showed that the high concentration of coffee leaf extract on the skin surface could block SARS-CoV-2 into cells more potently than 75% Ethanol, a standard disinfectant to inactivate SARS-CoV-2. Finally, LC-HRMS analysis was used to identify compounds such as caffeine, chlorogenic acid (CGA), quinic acid, and mangiferin that are associated with an anti-SARS-CoV-2 activity. Our results demonstrated that coffee leaf extract, an agricultural by-product effectively inhibits SARS-CoV-2 Vpp infection through an ACE2-dependent mechanism and may be utilized to develop products against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan
| | - Yeh Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- International Master's Program of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 115024, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| |
Collapse
|
18
|
Darwish RS, El-Banna AA, Ghareeb DA, El-Hosseny MF, Seadawy MG, Dawood HM. Chemical profiling and unraveling of anti-COVID-19 biomarkers of red sage (Lantana camara L.) cultivars using UPLC-MS/MS coupled to chemometric analysis, in vitro study and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115038. [PMID: 35151836 PMCID: PMC8830149 DOI: 10.1016/j.jep.2022.115038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Red sage (Lantana camara L.) (Verbenaceae) is a widely spread plant that was traditionally used in Brazil, India, Kenya, Thailand, Mexico, Nigeria, Australia and Southeast Asia for treating several ailments including rheumatism and leprosy. Despite its historical role in relieving respiratory diseases, limited studies progressed to the plant's probable inhibition to respiratory viruses especially after the striking spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. AIM OF THE STUDY This study aimed to investigate the inhibitory activity of different L. camara cultivars to SARS-CoV-2, that was not previously inspected, and clarify their mechanisms of action in the metabolomics viewpoint, and to determine the biomarkers that are related to such activity using UPLC-MS/MS coupled to in vitro-studies and chemometric analysis. MATERIALS AND METHODS Chemical profiling of different cultivars was accomplished via UPLC-MS/MS. Principle component analysis (PCA) and orthogonal projection to latent structures (OPLS) models were built using SIMCA® (multivariate data analysis software). Cytotoxicity and COVID-19 inhibitory activity testing were done followed by TaqMan Real-time RT-PCR (Reverse transcription polymerase chain reaction) assay that aimed to study extracts' effects on RNA-dependent RNA polymerase (RdRp) and E-genes expression levels. Detected biomarkers from OPLS analysis were docked into potential targets pockets to investigate their possible interaction patterns using Schrodinger® suite. RESULTS UPLC-MS/MS analysis of different cultivars yielded 47 metabolites, most of them are triterpenoids and flavonoids. PCA plots revealed that inter-cultivar factor has no pronounced effect on the chemical profiles of extracts except for L. camara, cultivar Drap d'or flowers and leaves extracts as well as for L. camara cv Chelsea gem leaves extract. Among the tested extracts, flowers and leaves extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or showed the highest selectivity indices scoring 12.3, 10.1, 8.6 and 7.8, respectively, indicating their relative high safety and efficacy. Leaves and flowers extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or were the most promising inhibitors to viral plaques exhibiting IC50 values of 3.18, 3.67, 4.18 and 5.01 μg/mL, respectively. This was incremented by OPLS analysis that related their promising COVID-19 inhibitory activities to the presence of twelve biomarkers. Inhibiting the expression of RdRp gene is the major mechanism behind the antiviral activity of most extracts at almost all concentration levels. Molecular docking of the active biomarkers against RdRp revealed that isoverbascoside, luteolin-7,4'-O-diglucoside, camarolic acid and lantoic acid exhibited higher docking scores of -11.378, -10.64, -6.72 and -6.07 kcal/mol, respectively, when compared to remdesivir (-5.75 kcal/mol), thus these four compounds can serve as promising anti-COVID-19 candidates. CONCLUSION Flowers and leaves extracts of four L. camara cultivars were recognized as rich sources of phytoconstituents possessing anti-COVID-19 activity. Combination of UPLC-MS/MS and chemometrics is a promising approach to detect chemical composition differences among the cultivars and correlate them to COVID-19 inhibitory activities allowing to pinpoint possible biomarkers. Further in-vitro and in-vivo studies are required to verify their activity.
Collapse
Affiliation(s)
- Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt; Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | | | | | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
19
|
Ono R, Arita R, Takayama S, Kikuchi A, Ohsawa M, Saito N, Suzuki S, Ishii T. Kampo Medicine Promotes Early Recovery From Coronavirus Disease 2019-Related Olfactory Dysfunction: A Retrospective Observational Study. Front Pharmacol 2022; 13:844072. [PMID: 35431935 PMCID: PMC9006147 DOI: 10.3389/fphar.2022.844072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Olfactory dysfunction is a common symptom in patients with coronavirus disease 2019, and it significantly deteriorates patients’ quality of life. Effective treatments remain unknown. Purpose: To assess the effect of Japanese traditional (Kampo) medicine on coronavirus disease 2019-related olfactory dysfunction. Study Design: Retrospective observational study. Methods: In total, 87 patients aged ≥18 years with coronavirus disease 2019 and severe dysosmia or anosmia (Numeric Rating Scale, ≥7) at isolation facilities in Miyagi Prefecture, Japan, were enrolled from October 2020 to March 2021. Patients were divided into the Kampo group (N = 52) and the control group (N = 35) based on the treatment received. Changes in Numeric Rating Scale scores were evaluated at the first visit and 2 weeks after. Results: The median reduction in the olfactory dysfunction score at both 1 and 2 weeks after the first visit was significantly greater in the Kampo group (6 and 8, respectively; p = 0.03) than in the control group (3 and 7, respectively; p = 0.04). We defined improvement in olfactory dysfunction as a median reduction in the olfactory dysfunction score of ≥5. Multiple logistic regression analysis demonstrated that only Kampo treatment was significantly associated with improvement in olfactory dysfunction. Conclusion: This study suggests that Kampo medication promotes early recovery from coronavirus disease 2019-related olfactory dysfunction.
Collapse
Affiliation(s)
- Rie Ono
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Anesthesiology and Perioperative Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryutaro Arita
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shin Takayama
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Kikuchi
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Minoru Ohsawa
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai, Japan
| | - Natsumi Saito
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Satoko Suzuki
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tadashi Ishii
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, Japan.,Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
20
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Vere G, Alam MR, Farrar S, Kealy R, Kessler BM, O’Brien DP, Pinto-Fernández A. Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules 2022; 12:biom12020300. [PMID: 35204803 PMCID: PMC8869442 DOI: 10.3390/biom12020300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ubiquitylation and ISGylation are protein post-translational modifications (PTMs) and two of the main events involved in the activation of pattern recognition receptor (PRRs) signals allowing the host defense response to viruses. As with similar viruses, SARS-CoV-2, the virus causing COVID-19, hijacks these pathways by removing ubiquitin and/or ISG15 from proteins using a protease called PLpro, but also by interacting with enzymes involved in ubiquitin/ISG15 machinery. These enable viral replication and avoidance of the host immune system. In this review, we highlight potential points of therapeutic intervention in ubiquitin/ISG15 pathways involved in key host-pathogen interactions, such as PLpro, USP18, TRIM25, CYLD, A20, and others that could be targeted for the treatment of COVID-19, and which may prove effective in combatting current and future vaccine-resistant variants of the disease.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Md Rashadul Alam
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Sam Farrar
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Rachel Kealy
- Environmental Futures & Big Data Impact Lab, University of Exeter, Stocker Rd., Exeter EX4 4PY, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Darragh P. O’Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Correspondence: (D.P.O.); (A.P.-F.)
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
- Correspondence: (D.P.O.); (A.P.-F.)
| |
Collapse
|
22
|
Olajide OA, Iwuanyanwu VU, Lepiarz-Raba I, Al-Hindawi AA, Aderogba MA, Sharp HL, Nash RJ. Garcinia kola and garcinoic acid suppress SARS-CoV-2 spike glycoprotein S1-induced hyper-inflammation in human PBMCs through inhibition of NF-κB activation. Phytother Res 2021; 35:6963-6973. [PMID: 34697842 PMCID: PMC8661957 DOI: 10.1002/ptr.7315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Symptoms and complications associated with severe SARS-CoV-2 infection such as acute respiratory distress syndrome (ARDS) and organ damage have been linked to SARS-CoV-2 spike protein S1-induced increased production of pro-inflammatory cytokines by immune cells. In this study, the effects of an extract of Garcinia kola seeds and garcinoic acid were investigated in SARS-CoV-2 spike protein S1-stimulated human PBMCs. Results of ELISA experiments revealed that Garcinia kola extract (6.25, 12.5, and 25 μg/ml) and garcinoic acid (1.25, 2.5, and 5 μM) significantly reduced SARS-CoV-2 spike protein S1-induced secretion of TNFα, IL-6, IL-1β, and IL-8 in PBMCs. In-cell western assays showed that pre-treatment with Garcinia kola extract and garcinoic acid reduced expressions of both phospho-p65 and phospho-IκBα proteins, as well as NF-κB DNA binding capacity and NF-κB-driven luciferase expression following stimulation of PBMCs with spike protein S1. Furthermore, pre-treatment of PBMCs with Garcinia kola extract prior to stimulation with SARS-CoV-2 spike protein S1 resulted in reduced damage to adjacent A549 lung epithelial cells. These results suggest that the seed of Garcinia kola and garcinoic acid are natural products which may possess pharmacological/therapeutic benefits in reducing cytokine storm in severe SARS-CoV-2 and other coronavirus infections.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Victoria U Iwuanyanwu
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Izabela Lepiarz-Raba
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Alaa A Al-Hindawi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Mutalib A Aderogba
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | |
Collapse
|