1
|
Hoffmann C, Krasemann S, Wurr S, Hartmann K, Adam E, Bockholt S, Müller J, Günther S, Oestereich L. Lassa virus persistence with high viral titers following experimental infection in its natural reservoir host, Mastomys natalensis. Nat Commun 2024; 15:9319. [PMID: 39472431 PMCID: PMC11522386 DOI: 10.1038/s41467-024-53616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Lassa virus (LASV) outbreaks in West Africa pose a significant public health threat. We investigated the infection phenotype and transmission (horizontal and vertical) of LASV strain Ba366 in its natural host, Mastomys natalensis. Here we analyze viral RNA levels in body fluids, virus titers in organs and antibody presence in blood. In adults and 2-week-old animals, LASV causes transient infections with subsequent seroconversion. However, mice younger than two weeks exhibit persistent infections lasting up to 16 months despite antibody presence. LASV can be detected in various body fluids, organs, and cell types, primarily in lung, kidney, and gonadal epithelial cells. Despite the systemic virus presence, no pathological alterations in organs are observed. Infected animals efficiently transmit the virus throughout their lives. Our findings underscore the crucial role of persistently infected individuals, particularly infected females and their progeny, in LASV dissemination within the host population.
Collapse
Affiliation(s)
- Chris Hoffmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisa Adam
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jonas Müller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
2
|
Port JR, Riopelle JC, Smith SG, Myers L, Kaiser FK, Lewis MC, Gallogly S, Okumura A, Bushmaker T, Schulz JE, Rosenke R, Prado-Smith J, Carmody A, Bane S, Smith BJ, Saturday G, Feldmann H, Rosenke K, Munster VJ. Infection with mpox virus via the genital mucosae increases shedding and transmission in the multimammate rat (Mastomys natalensis). Nat Microbiol 2024; 9:1231-1243. [PMID: 38649413 DOI: 10.1038/s41564-024-01666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
The 2022 mpox virus (MPXV) outbreak was sustained by human-to-human transmission; however, it is currently unclear which factors lead to sustained transmission of MPXV. Here we present Mastomys natalensis as a model for MPXV transmission after intraperitoneal, rectal, vaginal, aerosol and transdermal inoculation with an early 2022 human outbreak isolate (Clade IIb). Virus shedding and tissue replication were route dependent and occurred in the presence of self-resolving localized skin, lung, reproductive tract or rectal lesions. Mucosal inoculation via the rectal, vaginal and aerosol routes led to increased shedding, replication and a pro-inflammatory T cell profile compared with skin inoculation. Contact transmission was higher from rectally inoculated animals. This suggests that transmission might be sustained by increased susceptibility of the anal and genital mucosae for infection and subsequent virus release.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Samuel G Smith
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lara Myers
- Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Franziska K Kaiser
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Matthew C Lewis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shane Gallogly
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Trent Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jessica Prado-Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Aaron Carmody
- Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sidy Bane
- International Center of Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
3
|
Olayemi A, Schmid DW, Fleischer R, Wilhelm K, Heni AC, Mueller-Klein N, Haikukutu L, Fichet-Calvet E, Günther S, Sommer S. MHC-I alleles mediate clearance and antibody response to the zoonotic Lassa virus in Mastomys rodent reservoirs. PLoS Negl Trop Dis 2024; 18:e0011984. [PMID: 38421939 PMCID: PMC10903922 DOI: 10.1371/journal.pntd.0011984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
West African Mastomys rodents are the primary reservoir of the zoonotic Lassa virus (LASV). The virus causes haemorrhagic Lassa fever and considerable mortality in humans. To date, the role of Mastomys immunogenetics in resistance to, and persistence of, LASV infections is largely unknown. Here, we investigated the role of Major Histocompatibility Complex class I (MHC-I) on LASV infection status (i.e., active vs. cleared infection, determined via PCR and an immunofluorescence assay on IgG antibodies, respectively) in Mastomys natalensis and M. erythroleucus sampled within southwestern Nigeria. We identified more than 190 and 90 MHC-I alleles by Illumina high throughput-sequencing in M. natalensis and M. erythroleucus, respectively, with different MHC allele compositions and frequencies between LASV endemic and non-endemic sites. In M. natalensis, the MHC allele ManaMHC-I*006 was negatively associated with active infections (PCR-positive) and positively associated with cleared infections (IgG-positive) simultaneously, suggesting efficient immune responses that facilitate LASV clearance in animals carrying this allele. Contrarily, alleles ManaMHC-I*008 and ManaMHC-I*021 in M. natalensis, and MaerMHC-I*008 in M. erythroleucus, were positively associated with active infection, implying susceptibility. Alleles associated with susceptibility shared a glutamic acid at the positively selected codon 57, while ManaMHC-I*006 featured an arginine. There was no link between number of MHC alleles per Mastomys individual and LASV prevalence. Thus, specific alleles, but not MHC diversity per se, seem to mediate antibody responses to viremia. We conclude that co-evolution with LASV likely shaped the MHC-I diversity of the main LASV reservoirs in southwestern Nigeria, and that information on reservoir immunogenetics may hold insights into transmission dynamics and zoonotic spillover risks.
Collapse
Affiliation(s)
- Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Dominik Werner Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | | | - Nadine Mueller-Klein
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Lavinia Haikukutu
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Elisabeth Fichet-Calvet
- Department of Zoonoses Control, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
4
|
Smither AR, Koninga J, Kanneh FB, Foday M, Boisen ML, Bond NG, Momoh M, Sandi JD, Kanneh L, Alhasan F, Kanneh IM, Yillah MS, Grant DS, Bush DJ, Nelson DKS, Cruz KM, Klitting R, Pauthner M, Andersen KG, Shaffer JG, Cross RW, Schieffelin JS, Garry RF. Novel Tools for Lassa Virus Surveillance in Peri-domestic Rodents. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.17.23287380. [PMID: 36993465 PMCID: PMC10055574 DOI: 10.1101/2023.03.17.23287380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Lassa fever (LF) is a rodent-borne disease endemic to West Africa. In the absence of licensed therapeutics or vaccines, rodent exclusion from living spaces remains the primary method of preventing LF. Zoonotic surveillance of Lassa virus (LASV), the etiologic agent of LF, can assess the burden of LASV in a region and guide public health measures against LF. Methods In this study, we adapted commercially available LASV human diagnostics to assess the prevalence of LASV in peri-domestic rodents in Eastern Sierra Leone. Small mammal trapping was conducted in Kenema district, Sierra Leone between November 2018-July 2019. LASV antigen was detected using a commercially available LASV NP antigen rapid diagnostic test. LASV IgG antibodies against LASV nucleoprotein (NP) and glycoprotein (GP) were tested by adapting a commercially available semi-quantitative enzyme linked immunosorbent assay (ELISA) for detection of mouse-related and rat-related species IgG. Findings Of the 373 tested specimens, 74 (20%) tested positive for LASV antigen. 40 (11%) specimens tested positive for LASV NP IgG, while an additional 12 (3%) specimens only tested positive for LASV GP IgG. Simultaneous antigen presence and IgG antibody presence was linked in Mastomys sp. specimens (p < 0.01), but not Rattus sp. specimens (p = 1). Despite the link between antigen presence and IgG antibody presence in Mastomys sp., the strength of antigen response did not correlate with the strength of IgG response to either GP IgG or NP IgG. Interpretation The tools developed in this study can aid in the generation of valuable public health data for rapid field assessment of LASV burden during outbreak investigations and general LASV surveillance. Funding Funding for this work was supported by the National Institute of Allergy and Infectious Diseases National Institute of Health, Department of Health and Human Services under the following grants: International Collaboration in Infectious Disease Research on Lassa fever and Ebola - ICIDR - U19 AI115589, Consortium for Viral Systems Biology - CViSB - 5U19AI135995, West African Emerging Infectious Disease Research Center - WARN-ID - U01AI151812, West African Center for Emerging Infectious Diseases: U01AI151801.
Collapse
Affiliation(s)
- Allison R. Smither
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, LA, USA
- University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX, USA
| | - James Koninga
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Franklyn B. Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Momoh Foday
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | | | - Nell G. Bond
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, LA, USA
| | - Mambu Momoh
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, LA, USA
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - John Demby Sandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Foday Alhasan
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Ibrahim Mustapha Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Mohamed S. Yillah
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Donald S. Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone
| | | | | | - Kaitlin M. Cruz
- Tulane University School of Medicine, Department of Pediatrics, Section of Infectious Disease, New Orleans, LA, USA
| | - Raphaëlle Klitting
- The Scripps Research Institute, Department of Microbiology and Immunology, La Jolla, CA, USA
| | - Matthias Pauthner
- The Scripps Research Institute, Department of Microbiology and Immunology, La Jolla, CA, USA
| | - Kristian G. Andersen
- The Scripps Research Institute, Department of Microbiology and Immunology, La Jolla, CA, USA
| | - Jeffrey G. Shaffer
- Tulane University School of Public Health and Tropical Medicine, Department of Biostatistics, New Orleans, LA, USA
| | - Robert W. Cross
- University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX, USA
| | - John S. Schieffelin
- Tulane University School of Medicine, Department of Pediatrics, Section of Infectious Disease, New Orleans, LA, USA
| | - Robert F. Garry
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, LA, USA
- Zalgen Labs, LLC, Frederick, MD, USA
| |
Collapse
|
5
|
Geldenhuys M, Weyer J, Kearney T, Markotter W. Host-Associated Distribution of Two Novel Mammarenaviruses in Rodents from Southern Africa. Viruses 2022; 15:99. [PMID: 36680139 PMCID: PMC9861163 DOI: 10.3390/v15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Mammarenaviruses are hosted by several rodent species, a small number of which have been known to be zoonotic. Host surveillance among small mammals has identified a large diversity of previously undescribed mammarenaviruses. Intensified biosurveillance is warranted to better understand the diversity of these agents. Longitudinal host surveillance involving non-volant small mammals at a site in the Limpopo province, South Africa, was conducted. The study reports on the screening results of 563 samples for the presence of mammarenavirus RNA. PCR-positive samples were subjected to sequencing using Miseq amplicon sequencing. Sequences with close similarity to Mariental and Lunk viruses were identified from two rodent species, Micaelamys namaquensis and Mus minutoides. This represents the first description of these viruses from South Africa. The genomic sequences reported here partially satisfied the requirements put forward by the International Committee on the Taxonomy of Viruses' criteria for species delineation, suggesting that these may be new strains of existing species. The known distribution of these mammarenaviruses is thus expanded further south in Africa.
Collapse
Affiliation(s)
- Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| | - Teresa Kearney
- Ditsong National Museum of Natural History, Pretoria 0001, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
6
|
Bentim Góes LG, Fischer C, Almeida Campos AC, de Carvalho C, Moreira-Soto A, Ambar G, Ruckert da Rosa A, de Oliveira DC, Jo WK, Cruz-Neto AP, Pedro WA, Queiroz LH, Minoprio P, Durigon EL, Drexler JF. Highly Diverse Arenaviruses in Neotropical Bats, Brazil. Emerg Infect Dis 2022; 28:2528-2533. [PMID: 36417964 PMCID: PMC9707603 DOI: 10.3201/eid2812.220980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
We detected arenavirus RNA in 1.6% of 1,047 bats in Brazil that were sampled during 2007-2011. We identified Tacaribe virus in 2 Artibeus sp. bats and a new arenavirus species in Carollia perspicillata bats that we named Tietê mammarenavirus. Our results suggest that bats are an underrecognized arenavirus reservoir.
Collapse
|
7
|
Murphy H, Ly H. Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines (Basel) 2022; 10:1668. [PMID: 36298533 PMCID: PMC9612042 DOI: 10.3390/vaccines10101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic fever disease that is endemic in several countries in West Africa. It is caused by Lassa virus (LASV), which has been estimated to be responsible for approximately 300,000 infections and 5000 deaths annually. LASV is a highly pathogenic human pathogen without effective therapeutics or FDA-approved vaccines. Here, we aim to provide a literature review of the current understanding of the basic mechanism of immune responses to LASV infection in animal models and patients, as well as to several of its candidate vaccines.
Collapse
Affiliation(s)
| | - Hinh Ly
- Comparative & Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, St Paul, MN 55108, USA
| |
Collapse
|
8
|
Understanding Host–Virus Interactions: Assessment of Innate Immune Responses in Mastomys natalensis Cells after Arenavirus Infection. Viruses 2022; 14:v14091986. [PMID: 36146793 PMCID: PMC9506377 DOI: 10.3390/v14091986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Mastomys natalensis is the natural host of various arenaviruses, including the human-pathogenic Lassa virus. Homologous arenaviruses, defined here as those having M. natalensis as a natural host, can establish long-lasting infection in M. natalensis, while these animals rapidly clear arenaviruses having another rodent species as a natural host (heterologous viruses). Little is known about the mechanisms behind the underlying arenavirus–host barriers. The innate immune system, particularly the type I interferon (IFN) response, might play a role. In this study, we developed and validated RT-PCR assays to analyse the expression of M. natalensis interferon-stimulated genes (ISGs). We then used these assays to study if homologous and heterologous viruses induce different IFN responses in M. natalensis cells. Infection experiments were performed with the homologous Lassa and Morogoro viruses and the related but heterologous Mobala virus. Compared to the direct induction with IFN or Poly(I:C), arenaviruses generally induced a weak IFN response. However, the ISG-expression profiles of homologous and heterologous viruses were similar. Our data indicate that, at least in M. natalensis cells, the IFN system is not a major factor in the virus–host barrier for arenaviruses. Our system provides a valuable tool for future in vivo investigation of arenavirus host restrictions at the level of the innate immune response.
Collapse
|
9
|
Safronetz D, Rosenke K, Meade-White K, Sloan A, Maiga O, Bane S, Martellaro C, Scott DP, Sogoba N, Feldmann H. Temporal analysis of Lassa virus infection and transmission in experimentally infected Mastomys natalensis. PNAS NEXUS 2022; 1:pgac114. [PMID: 35967978 PMCID: PMC9364215 DOI: 10.1093/pnasnexus/pgac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
Little is known about the temporal patterns of infection and transmission of Lassa virus (LASV) within its natural reservoir (Mastomys natalensis). Here, we characterize infection dynamics and transmissibility of a LASV isolate (Soromba-R) in adult lab-reared M. natalensis originating from Mali. The lab-reared M. natalenesis proved to be highly susceptible to LASV isolates from geographically distinct regions of West Africa via multiple routes of exposure, with 50% infectious doses of < 1 TCID50. Postinoculation, LASV Soromba-R established a systemic infection with no signs of clinical disease. Viral RNA was detected in all nine tissues examined with peak concentrations detected between days 7 and 14 postinfection within most organs. There was an overall trend toward clearance of virus within 40 days of infection in most organs. The exception is lung specimens, which retained positivity throughout the course of the 85-day study. Direct (contact) and indirect (fomite) transmission experiments demonstrated 40% of experimentally infected M. natalensis were capable of transmitting LASV to naïve animals, with peak transmissibility occurring between 28 and 42 days post-inoculation. No differences in patterns of infection or transmission were noted between male and female experimentally infected rodents. Adult lab-reared M. natalensis are highly susceptible to genetically distinct LASV strains developing a temporary asymptomatic infection associated with virus shedding resulting in contact and fomite transmission within a cohort.
Collapse
Affiliation(s)
| | | | - Kimberley Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, national Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Angela Sloan
- Special Pathogens, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ousmane Maiga
- University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidy Bane
- University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, national Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Nafomon Sogoba
- University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, national Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
10
|
Wozniak DM, Riesle-Sbarbaro SA, Kirchoff N, Hansen-Kant K, Wahlbrink A, Stern A, Lander A, Hartmann K, Krasemann S, Kurth A, Prescott J. Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir - Mastomys natalensis. Emerg Microbes Infect 2021; 10:2313-2325. [PMID: 34792436 PMCID: PMC8654411 DOI: 10.1080/22221751.2021.2008773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lassa virus (LASV), a Risk Group-4 zoonotic haemorrhagic fever virus, affects sub-Saharan African countries. Lassa fever, caused by LASV, results in thousands of annual deaths. Although decades have elapsed since the identification of the Natal multimammate mouse (Mastomys natalensis) as a natural reservoir of LASV, little effort has been made to characterize LASV infection in its reservoir. The natural route of infection and transmission of LASV within M. natalensis remains unknown, and the clinical impact of LASV in M. natalensis is mostly undescribed. Herein, using an outbred colony of M. natalensis, we investigate the replication and dissemination dynamics of LASV in this reservoir following various inoculation routes. Inoculation with LASV, regardless of route, resulted in a systemic infection and accumulation of abundant LASV-RNA in many tissues. LASV infection in the Natal multimammate mice was subclinical, however, clinical chemistry values were transiently altered and immune infiltrates were observed histologically in lungs, spleens and livers, indicating a minor disease with coordinated immune responses are elicited, controlling infection. Intranasal infection resulted in unique virus tissue dissemination dynamics and heightened LASV shedding, compared to subcutaneous inoculation. Our study provides important insights into LASV infection in its natural reservoir using a contemporary infection system, demonstrating that specific inoculation routes result in disparate dissemination outcomes, suggesting intranasal inoculation is important in the maintenance of LASV in the natural reservoir, and emphasizes that selection of the appropriate inoculation route is necessary to examine aspects of viral replication, transmission and responses to zoonotic viruses in their natural reservoirs.
Collapse
Affiliation(s)
- D M Wozniak
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | | | - N Kirchoff
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - K Hansen-Kant
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Wahlbrink
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Stern
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Lander
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - K Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Kurth
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - J Prescott
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
11
|
Murphy HL, Ly H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence 2021; 12:2989-3014. [PMID: 34747339 PMCID: PMC8923068 DOI: 10.1080/21505594.2021.2000290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic disease that is endemic to West Africa. The causative agent of LF is Lassa virus (LASV), which causes approximately 300,000 infections and 5,000 deaths annually. There are currently no approved therapeutics or FDA-approved vaccines against LASV. The high genetic variability between LASV strains and immune evasion mediated by the virus complicate the development of effective therapeutics and vaccines. Here, we aim to provide a comprehensive review of the basic biology of LASV and its mechanisms of disease pathogenesis and virulence in various animal models, as well as an update on prospective vaccines, therapeutics, and diagnostics for LF. Until effective vaccines and/or therapeutics are available for use to prevent or treat LF, a better level of understanding of the basic biology of LASV, its natural genetic variations and immune evasion mechanisms as potential pathogenicity factors, and of the rodent reservoir-vector populations and their geographical distributions, is necessary for the development of accurate diagnostics and effective therapeutics and vaccines against this deadly human viral pathogen.
Collapse
Affiliation(s)
- Hannah L Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| |
Collapse
|
12
|
Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses. Viruses 2021; 13:v13081509. [PMID: 34452374 PMCID: PMC8402684 DOI: 10.3390/v13081509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Rodents (order Rodentia), followed by bats (order Chiroptera), comprise the largest percentage of living mammals on earth. Thus, it is not surprising that these two orders account for many of the reservoirs of the zoonotic RNA viruses discovered to date. The spillover of these viruses from wildlife to human do not typically result in pandemics but rather geographically confined outbreaks of human infection and disease. While limited geographically, these viruses cause thousands of cases of human disease each year. In this review, we focus on three questions regarding zoonotic viruses that originate in bats and rodents. First, what biological strategies have evolved that allow RNA viruses to reside in bats and rodents? Second, what are the environmental and ecological causes that drive viral spillover? Third, how does virus spillover occur from bats and rodents to humans?
Collapse
|