1
|
Dziewulska D, Tykałowski B, Łukaszuk E, Stenzel T. The course of pigeon circovirus infection in young pigeons experimentally kept under conditions mimicking the One Loft Race rearing system. J Vet Res 2025; 69:1-6. [PMID: 40144067 PMCID: PMC11936090 DOI: 10.2478/jvetres-2025-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Racing pigeon competitions are a popular sport where success depends on birds' ability to return fast to their loft of origin. However, many additional factors like differences in feeding, training, everyday care and even geographical loft location influence race outcomes, which has led to the development of the One Loft Race (OLR) system. The OLR system aims to eliminate these factors by housing pigeons from various lofts in equal conditions in one facility. This in turn, however, fosters inter-individual transmission of pathogens. Material and Methods Fifteen young racing pigeons from five different lofts, naturally infected with pigeon circovirus (PiCV) were reared in one unit for six weeks. Four uninfected birds were kept in a separate unit and were treated as controls for flow cytometry analyses (background establishment). Blood samples were collected every seven days to extract DNA for PiCV quantification using droplet digital PCR and to isolate the mononuclear cells for flow cytometry analyses. On day 42, all birds were euthanised for spleen samples to be collected for further analyses. Results The viraemia peak was noted on day 14 of the experiment and subsequently decreased afterwards, with a remarkable decrease noted on day 35. The percentage of IgM+ B lymphocytes, including apoptotic cells, in the blood was very similar throughout the experiment. The percentage of apoptotic splenic IgM+ B cells was approximately 40% higher in the experimental group than in the control group. Conclusion Study results showed that the birds' adaptation period and the specific immunity they had probably developed hindered PiCV replication. Mild PiCV infection led to a slight increase of B lymphocyte apoptosis in the spleen.
Collapse
Affiliation(s)
- Daria Dziewulska
- Department of Poultry Diseases, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Ewa Łukaszuk
- Department of Poultry Diseases, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Tomasz Stenzel
- Department of Poultry Diseases, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| |
Collapse
|
2
|
Łukaszuk E, Dziewulska D, Stenzel T. Rotaviruses in Pigeons With Diarrhea: Recovery of Three Complete Pigeon Rotavirus A Genomes and the First Case of Pigeon Rotavirus G in Europe. Transbound Emerg Dis 2024; 2024:4684235. [PMID: 40303061 PMCID: PMC12019971 DOI: 10.1155/tbed/4684235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/05/2024] [Indexed: 05/02/2025]
Abstract
Rotaviruses are well-recognized pathogens responsible for diarrhea in humans and various animal species, with Rotavirus A the most often detected and most thoroughly described. Rotaviral disease is an important concern in pathology of pigeons as well, as pigeon rotavirus A was proven to play a major role in young pigeon disease (YPD). However, rotaviruses of other groups have been so far understudied in birds. This paper describes the first finding of Rotavirus G in domestic pigeon in Europe, as well as the recovery of three complete genomes of pigeon rotavirus A with Oxford Nanopore Sequencing. Quantification of pigeon rotavirus A genetic material with droplet digital polymerase chain reaction (PCR) in pigeons suffering from diarrhea and in asymptomatic pigeons was also performed in the frameworks of this study and resulted in determination of statistically highly significant differences between the groups in both detection rate and shedding of the virus. Phylogenetic analysis revealed the close relationship of acquired strains with those originating from pigeons from Europe, North America, Asia, and Australia, indicating a broad geographical spread of pigeon rotaviruses. Results of our research shed more light on occurrence and diversity of Rotavirus species in pigeons.
Collapse
Affiliation(s)
- Ewa Łukaszuk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Stenzel T, Dziewulska D, Łukaszuk E, Custer JM, De Koch MD, Kraberger S, Varsani A. The pigeon circovirus evolution, epidemiology and interaction with the host immune system under One Loft Race rearing conditions. Sci Rep 2024; 14:13815. [PMID: 38877168 PMCID: PMC11178769 DOI: 10.1038/s41598-024-64587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
This study was aimed to investigate the frequency of PiCV recombination, the kinetics of PiCV viremia and shedding and the correlation between viral replication and host immune response in young pigeons subclinically infected with various PiCV variants and kept under conditions mimicking the OLR system. Fifteen racing pigeons originating from five breeding facilities were housed together for six weeks. Blood and cloacal swab samples were collected from birds every seven days to recover complete PiCV genomes and determine PiCV genetic diversity and recombination dynamics, as well as to assess virus shedding rate, level of viremia, expression of selected genes and level of anti-PiCV antibodies. Three hundred and eighty-eight complete PiCV genomes were obtained and thirteen genotypes were distinguished. Twenty-five recombination events were detected. Recombinants emerged during the first three weeks of the experiment which was consistent with the peak level of viremia and viral shedding. A further decrease in viremia and shedding partially corresponded with IFN-γ and MX1 gene expression and antibody dynamics. Considering the role of OLR pigeon rearing system in spreading infectious agents and allowing their recombination, it would be reasonable to reflect on the relevance of pigeon racing from both an animal welfare and epidemiological perspective.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Łukaszuk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joy M Custer
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Matthew D De Koch
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
4
|
Łukaszuk E, Dziewulska D, Stenzel T. Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons. Viruses 2024; 16:917. [PMID: 38932208 PMCID: PMC11209253 DOI: 10.3390/v16060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.
Collapse
Affiliation(s)
| | | | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.Ł.); (D.D.)
| |
Collapse
|
5
|
Li X, Wang S, Li W, Wang S, Qin X, Wang J, Fu R. Investigating pigeon circovirus infection in a pigeon farm: molecular detection, phylogenetic analysis and complete genome analysis. BMC Genomics 2024; 25:369. [PMID: 38622517 PMCID: PMC11020411 DOI: 10.1186/s12864-024-10303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Pigeon circovirus infections in pigeons (Columba livia domestica) have been reported worldwide. Pigeons should be PiCV-free when utilized as qualified experimental animals. However, pigeons can be freely purchased as experimental animals without any clear guidelines to follow. Herein, we investigated the status quo of PiCV infections on a pigeon farm in Beijing, China, which provides pigeons for experimental use. RESULTS PiCV infection was verified in at least three types of tissues in all forty pigeons tested. A total of 29 full-length genomes were obtained and deposited in GenBank. The whole genome sequence comparison among the 29 identified PiCV strains revealed nucleotide homologies of 85.8-100%, and these sequences exhibited nucleotide homologies of 82.7-98.9% as compared with those of the reference sequences. The cap gene displayed genetic diversity, with a wide range of amino acid homologies ranging from 64.5% to 100%. Phylogenetic analysis of the 29 full-genome sequences revealed that the PiCV strains in this study could be further divided into four clades: A (17.2%), B (10.4%), C (37.9%) and D (34.5%). Thirteen recombination events were also detected in 18 out of the 29 PiCV genomes obtained in this study. Phylogenetic research using the rep and cap genes verified the recombination events, which occurred between clades A/F, A/B, C/D, and B/D among the 18 PiCV strains studied. CONCLUSIONS In conclusion, PiCV infection, which is highly genetically varied, is extremely widespread on pigeon farms in Beijing. These findings indicate that if pigeons are to be used as experimental animals, it is necessary to evaluate the impact of PiCV infection on the results.
Collapse
Affiliation(s)
- Xiaobo Li
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| | - Shujing Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Wei Li
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Shasha Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Xiao Qin
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Rodent Laboratory Animal Resources Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China
| | - Ji Wang
- Institute of Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| | - Rui Fu
- National Laboratory Animal Quality Testing Center, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| |
Collapse
|
6
|
Nath BK, Das T, Peters A, Gupta SD, Sarker S, Forwood JK, Raidal SR, Das S. Australasian Pigeon Circoviruses Demonstrate Natural Spillover Infection. Viruses 2023; 15:2025. [PMID: 37896802 PMCID: PMC10611180 DOI: 10.3390/v15102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species of the Order Columbiformes, but limited data on the PiCV genome sequence has hindered phylogeographic studies in this species. To fill this gap, this study was conducted to investigate PiCV in 118 characteristic samples from different birds across Australia using PCR and sequencing. Eighteen partial PiCV Rep sequences and one complete PiCV genome sequence were recovered from reservoir and aberrant hosts. Phylogenetic analyses revealed that PiCV circulating in Australia was scattered across three different subclades. Importantly, one subclade dominated within the PiCV sequenced from Australia and Poland, whereas other PiCV sequenced in this study were more closely related to the PiCV sequenced from China, USA and Japan. In addition, PiCV Rep sequences obtained from clinically affected plumed whistling duck, blue billed duck and Australian magpie demonstrated natural spillover of PiCV unveiled host generalist characteristics of the pigeon circovirus. These findings indicate that PiCV genomes circulating in Australia lack host adapted population structure but demonstrate natural spillover infection.
Collapse
Affiliation(s)
- Babu Kanti Nath
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| | - Andrew Peters
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Suman Das Gupta
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia;
| | - Jade K. Forwood
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Shane R. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| |
Collapse
|
7
|
Nath BK, Das S, Das T, Forwood JK, Raidal SR. Development and applications of a TaqMan based quantitative real-time PCR for the rapid detection of Pigeon circovirus (PiCV). J Virol Methods 2022; 308:114588. [PMID: 35870671 DOI: 10.1016/j.jviromet.2022.114588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
TaqMan probe based quantitative polymerase reaction (TaqMan qPCR) is a robust and reliable technique for detecting and quantifying target DNA copies. Quantitative molecular diagnosis of genetically diverse single stranded DNA (ssDNA) virus such as Pigeon circovirus (PiCV) can be challenging owing to difficulties in primer binding or low abundance of template DNA copies in clinical specimens. Several methods have been described for the detection of PiCV, being qPCR the most simple and reliable. As far as is known, two qPCR systems described until now are based on SYBR green. This study reports development and validation of a highly sensitive TaqMan qPCR targeted to Rep for the detection of highly diverse PiCV in pigeon samples with excellent reproducibility, specificity, and sensitivity. The limit of detection was determined as low as 2 (two) plasmid copies. Estimations of 100 % specificity and 100 % sensitivity were obtained based on the qPCR results with panel of 60 samples (known PiCV positive, n = 30; known PiCV negative, n = 20; samples positive to Beak and feather disease virus (BFDV), n = 5 and samples positive to canine circovirus, n = 5). Co-efficient of variation (CV) for Ct values ranged between 0.27 % and 0.78 % in the same assay and 1.84-2.87 % in different assays.
Collapse
Affiliation(s)
- Babu K Nath
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia.
| |
Collapse
|
8
|
Silva BBI, Urzo MLR, Encabo JR, Simbulan AM, Lunaria AJD, Sedano SA, Hsu KC, Chen CC, Tyan YC, Chuang KP. Pigeon Circovirus over Three Decades of Research: Bibliometrics, Scoping Review, and Perspectives. Viruses 2022; 14:1498. [PMID: 35891478 PMCID: PMC9317399 DOI: 10.3390/v14071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The pigeon circovirus (PiCV), first described in the literature in the early 1990s, is considered one of the most important infectious agents affecting pigeon health. Thirty years after its discovery, the current review has employed bibliometric strategies to map the entire accessible PiCV-related research corpus with the aim of understanding its present research landscape, particularly in consideration of its historical context. Subsequently, developments, current knowledge, and important updates were provided. Additionally, this review also provides a textual analysis examining the relationship between PiCV and the young pigeon disease syndrome (YPDS), as described and propagated in the literature. Our examination revealed that usages of the term 'YPDS' in the literature are characterizations that are diverse in range, and neither standard nor equivalent. Guided by our understanding of the PiCV research corpus, a conceptualization of PiCV diseases was also presented in this review. Proposed definitions and diagnostic criteria for PiCV subclinical infection (PiCV-SI) and PiCV systemic disease (PiCV-SD) were also provided. Lastly, knowledge gaps and open research questions relevant to future PiCV-related studies were identified and discussed.
Collapse
Affiliation(s)
- Benji Brayan Ilagan Silva
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
- Graduate School, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Jaymee R. Encabo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Alea Maurice Simbulan
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Allen Jerard D. Lunaria
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Susan A. Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Keng-Chih Hsu
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
| | - Chia-Chi Chen
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
- You Guan Yi Biotechnology Company, Kaohsiung 807, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
9
|
Wang H, Gao H, Jiang Z, Shi L, Zhao P, Zhang Y, Wang C. Molecular detection and phylogenetic analysis of pigeon circovirus from racing pigeons in Northern China. BMC Genomics 2022; 23:290. [PMID: 35410130 PMCID: PMC8995411 DOI: 10.1186/s12864-022-08425-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background Pigeon circovirus (PiCV) infections in pigeons (Columba livia) have been reported worldwide. Currently, pigeon racing is becoming increasingly popular and considered to be a national sport in China, and even, the greatest competitions of racing pigeons are taking place in China. However, there are still no epidemiologic data regarding PiCV infections among racing pigeons in China. The purpose of our study was to provide information of prevalence, genetic variation and evolution of PiCV from racing pigeons in China. Results To trace the prevalence, genetic variation and evolution of PiCV in sick and healthy racing pigeons, 622 samples were collected from 11 provinces or municipalities in China from 2016 to 2019. The results showed that the positive rate of PiCV was 19.3% (120/622) at the sample level and 59.0% (23/39) at the club level, thus suggesting that the virus was prevalent in Chinese racing pigeons. A sequence analysis revealed that the cap genes of the PiCV strains identified in our study displayed a high genetic diversity and shared nucleotide homologies of 71.9%–100% and amino acid homologies of 71.7%–100%. 28 and 36 unique amino acid substitutions were observed in the Cap and Rep proteins derived from our PiCV strains, respectively. A cladogram representation of PiCV strains phylogeny based on 90 cap gene sequences showed that the strains in this study could be further divided into seven clades (A, B, C, E, G, H, and I) and some of them were closely related to worldwide strains from different types of pigeons. A large number of recombination events (31 events) were also detected in the PiCV genomes from Chinese racing pigeons. Conclusions These findings indicate that PiCV strains circulating in China exhibit a high genetic diversity and also contribute to information of prevalence, genetic variation and evolution of PiCV from racing pigeons in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08425-8.
Collapse
Affiliation(s)
- Haoran Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Hui Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiwen Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Leibo Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Pengwei Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
10
|
Epidemiology and Evolution of Emerging Porcine Circovirus-like Viruses in Pigs with Hemorrhagic Dysentery and Diarrhea Symptoms in Central China from 2018 to 2021. Viruses 2021; 13:v13112282. [PMID: 34835090 PMCID: PMC8624291 DOI: 10.3390/v13112282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus-like virus (PCLV) is a type of circular Rep-encoding single-stranded DNA virus and may be associated with the development of diarrheal symptoms in pigs. In this study, we retrospectively analyzed three years of past cases in Anhui, China, and reported a case of hemorrhagic enteritis and death in a pregnant sow possibly caused by PCLV. In addition, we analyzed the evolutionary characteristics of PCLV and found that mutation, recombination and selective pressure all played an important role in the evolution of PCLV. We identified N15D and T17S as well as L56T, T58R, K59Q, M62R, L75I and R190K mutations in two different branches, and we noted recombination events in the Rep of a group of Chinese strains. Analysis of selection pressure revealed that PCLV gained more positive selection, indicating that the virus is in a continuous evolutionary state. The PR2 plot, ENC-plot and neutrality analysis showed a greater role of natural selection than that of mutational pressure in the formation of codon usage patterns. This study is the first to identify PCLV in sows with hemorrhagic dysentery and death, and it provides new epidemiological information on PCLV infection in pigs in China.
Collapse
|