1
|
Nergiz S, Ozturk O. The impact of Prognostic Nutritional Index on mortality in patients with COVID-19. NUTRITION & FOOD SCIENCE 2024; 54:1259-1267. [DOI: 10.1108/nfs-03-2023-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Purpose
Malnutrition has a significant effect on the onset and progression of infective pathology. The malnutrition status in COVID-19 cases are not understood well. Prognostic Nutritional Index (PNI) is a new and detailed assessment of nutrition and inflammation cases. This study aims to investigate the effect of PNI on mortality in COVID-19 patients.
Design/methodology/approach
In total, 334 patients (males, 142; females, 192; 64.5 ± 12.3 years of age) with COVID-19 bronchopneumonia were enrolled in this investigation. Cases were divided into two groups with respect to survival (Group 1: survivor patients, Group 2: non-survivor patients). Demographic and laboratory variables of COVID-19 cases were recorded. Laboratory parameters were calculated from blood samples taken following hospital admission. PNI was calculated according to this formula: PNI = 5 * Lymphocyte count (109/L) + Albumin value (g/L).
Findings
When the patients were assessed with respect to laboratory values, leukocytes, neutrophils, CRP, ferritin, creatinine and D-Dimer parameters were significantly lower in Group 1 patients than Group 2 patients. Nevertheless, serum potassium value, lymphocyte count, calcium and albumin values were significantly higher in Group 1 cases than in Group 2 cases. PNI value was significantly lower in Group 2 cases than in Group 1 cases (39.4 ± 3.7 vs 53.1 ± 4.6).
Originality/value
In this retrospective study of COVID-19 cases, it can be suggested that PNI may be a significant risk factor for mortality. In conclusion of this research, high-risk patients with COVID-19 can be determined early, and suitable medical therapy can be begun in the early duration.
Collapse
|
2
|
Luo C, Chen W, Cai J, He Y. The mechanisms of milder clinical symptoms of COVID-19 in children compared to adults. Ital J Pediatr 2024; 50:28. [PMID: 38355623 PMCID: PMC10865718 DOI: 10.1186/s13052-024-01587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024] Open
Abstract
In stark contrast to adult patients, children who contract Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) typically manifest milder symptoms or remain asymptomatic. However, the precise underlying mechanisms of this pathogenesis remain elusive. In this review, we primarily retrospect the clinical characteristics of SARS-CoV-2 infection in children, and explore the factors that may contribute to the typically milder clinical presentation in pediatric Coronavirus Disease 2019 (COVID-19) patients compare with adults patients with COVID-19. The pathophysiological mechanisms that mitigate lung injury in children are as follows: the expression level of ACE2 receptor in children is lower; the binding affinity between ACE2 receptors and viral spike proteins in children was weaker; children have strong pre-activated innate immune response and appropriate adaptive immune response; children have more natural lymphocytes; children with COVID-19 can produce higher levels of IgM, IgG and interferon; children infected with SARS-CoV-2 can produce lower levels of IL-6 and IL-10; children have fewer underlying diseases and the lower risk of worsening COVID-19; children are usually exposed to other respiratory viruses and have an enhanced cross-reactive immunity. Comprehending the relative contributions of these processes to the protective phenotype in the developing lungs can help in the diagnosis, treatment and research pertaining to children with COVID-19.
Collapse
Affiliation(s)
- Caiyin Luo
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Wanwen Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Junying Cai
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China
| | - Yuwen He
- Department of Pharmacy, the First Affiliated Hospital of Guangzhou Medical University, 28 Qiaozhong Middle Road, Liwan District, 510120, Guangzhou, China.
| |
Collapse
|
3
|
Eichhorn T, Weiss R, Huber S, Ebeyer-Masotta M, Mostageer M, Emprechtinger R, Knabl L, Knabl L, Würzner R, Weber V. Expression of Tissue Factor and Platelet/Leukocyte Markers on Extracellular Vesicles Reflect Platelet-Leukocyte Interaction in Severe COVID-19. Int J Mol Sci 2023; 24:16886. [PMID: 38069209 PMCID: PMC10707108 DOI: 10.3390/ijms242316886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Severe COVID-19 is frequently associated with thromboembolic complications. Increased platelet activation and platelet-leukocyte aggregate formation can amplify thrombotic responses by inducing tissue factor (TF) expression on leukocytes. Here, we characterized TF-positive extracellular vesicles (EVs) and their cellular origin in 12 patients suffering from severe COVID-19 (time course, 134 samples overall) and 25 healthy controls. EVs exposing phosphatidylserine (PS) were characterized by flow cytometry. Their cellular origin was determined by staining with anti-CD41, anti-CD45, anti-CD235a, and anti-CD105 as platelet, leukocyte, red blood cell, and endothelial markers. We further investigated the association of EVs with TF, platelet factor 4 (PF4), C-reactive protein (CRP), and high mobility group box-1 protein (HMGB-1). COVID-19 patients showed higher levels of PS-exposing EVs compared to controls. The majority of these EVs originated from platelets. A higher amount of EVs in patient samples was associated with CRP, HMGB-1, PF4, and TF as compared to EVs from healthy donors. In COVID-19 samples, 16.5% of all CD41+ EVs displayed the leukocyte marker CD45, and 55.5% of all EV aggregates (CD41+CD45+) co-expressed TF, which reflects the interaction of platelets and leukocytes in COVID-19 on an EV level.
Collapse
Affiliation(s)
- Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (R.W.)
| | - Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Marwa Mostageer
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| | - Robert Emprechtinger
- Faculty of Health and Medicine, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Ludwig Knabl
- Department of Internal Medicine, Hospital St. Vinzenz, 6511 Zams, Austria;
| | | | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (R.W.)
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria; (R.W.); (M.E.-M.); (M.M.); (V.W.)
| |
Collapse
|
4
|
Bakos T, Kozma GT, Szebeni J, Szénási G. Eculizumab suppresses zymosan-induced release of inflammatory cytokines IL-1α, IL-1β, IFN-γ and IL-2 in autologous serum-substituted PBMC cultures: Relevance to cytokine storm in Covid-19. Biomed Pharmacother 2023; 166:115294. [PMID: 37567071 DOI: 10.1016/j.biopha.2023.115294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Cytokine storm (CS) is a major contributor to the fatal outcome of severe infectious diseases, including Covid-19. Treatment with the complement (C) C5 inhibitor eculizumab was beneficial in end-stage Covid-19, however, the mechanism of this effect is unknown. To clarify this, we analyzed the relationship between C activation and production of pro-inflammatory cytokines in a PBMC model. METHODS Human PBMC with or without 20 % autologous serum was incubated with C3a, C5a, zymosan or zymosan-pre-activated serum (ZAS) for 24 h with or without eculizumab or the C5a receptor antagonist, DF2593A. C activation (sC5b-9) and 9 inflammatory cytokines were measured by ELISA. RESULTS In serum-free unstimulated PBMC only IL-8 release could be measured during incubation. Addition of C5a increased IL-8 secretion only, ZAS induced both IL-2 and IL-8, while zymosan led to significant production of all cytokines, most abundantly IL-8. In the presence of serum the above effects were greatly enhanced, and the zymosan-induced rises of IL-1α, IL-1β IFN-γ and IL-2 were significantly attenuated by eculizumab but not by DF2593a. CONCLUSIONS These data highlight the complexity of interrelationships between C activation and cytokine secretion under different experimental conditions. The clinically relevant findings include the abundant formation of the chemokine IL-8, which was stimulated by C5a, and the suppression of numerous inflammatory cytokines by eculizumab, which explains its therapeutic efficacy in severe Covid-19. These data strengthen the clinical relevance of the applied PBMC model for drug screening against CS, enabling the separation of complex innate immune cross-talks.
Collapse
Affiliation(s)
- Tamás Bakos
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - János Szebeni
- SeroScience LTD., Budapest, Hungary; Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest 1089, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health Sciences, Miskolc University, Miskolc 2880, Hungary; School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, the Republic of Korea
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Abstract
Myocarditis is frequently caused by viral infections, but animal models that closely resemble human disease suggest that virus-triggered autoimmune disease is the most likely cause of myocarditis. Myocarditis is a rare condition that occurs primarily in men under age 50. The incidence of myocarditis rose at least 15x during the COVID-19 pandemic from 1-10 to 150-400 cases/100,000 individuals, with most cases occurring in men under age 50. COVID-19 vaccination was also associated with rare cases of myocarditis primarily in young men under 50 years of age with an incidence as high as 50 cases/100,000 individuals reported for some mRNA vaccines. Sex differences in the immune response to COVID-19 are virtually identical to the mechanisms known to drive sex differences in myocarditis pre-COVID based on clinical studies and animal models. The many similarities between COVID-19 vaccine-associated myocarditis to COVID-19 myocarditis and non-COVID myocarditis suggest common immune mechanisms drive disease.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
6
|
Abstract
Viral infections are a leading cause of myocarditis and pericarditis worldwide, conditions that frequently coexist. Myocarditis and pericarditis were some of the early comorbidities associated with SARS-CoV-2 infection and COVID-19. Many epidemiologic studies have been conducted since that time concluding that SARS-CoV-2 increased the incidence of myocarditis/pericarditis at least 15× over pre-COVID levels although the condition remains rare. The incidence of myocarditis pre-COVID was reported at 1 to 10 cases/100 000 individuals and with COVID ranging from 150 to 4000 cases/100 000 individuals. Before COVID-19, some vaccines were reported to cause myocarditis and pericarditis in rare cases, but the use of novel mRNA platforms led to a higher number of reported cases than with previous platforms providing new insight into potential pathogenic mechanisms. The incidence of COVID-19 vaccine-associated myocarditis/pericarditis covers a large range depending on the vaccine platform, age, and sex examined. Importantly, the findings highlight that myocarditis occurs predominantly in male patients aged 12 to 40 years regardless of whether the cause was due to a virus-like SARS-CoV-2 or associated with a vaccine-a demographic that has been reported before COVID-19. This review discusses findings from COVID-19 and COVID-19 vaccine-associated myocarditis and pericarditis considering the known symptoms, diagnosis, management, treatment, and pathogenesis of disease that has been gleaned from clinical research and animal models. Sex differences in the immune response to COVID-19 are discussed, and theories for how mRNA vaccines could lead to myocarditis/pericarditis are proposed. Additionally, gaps in our understanding that need further research are raised.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (D.F.,)
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Nicolas Musigk
- Deutsches Herzzentrum der Charité, Berlin, Germany (N.M., B.H.)
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
7
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
8
|
Sun Y, Luo B, Liu Y, Wu Y, Chen Y. Immune damage mechanisms of COVID-19 and novel strategies in prevention and control of epidemic. Front Immunol 2023; 14:1130398. [PMID: 36960050 PMCID: PMC10028144 DOI: 10.3389/fimmu.2023.1130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has diverse clinical manifestations, which is the main feature of the disease, and the fundamental reason is the different immune responses in different bodies among the population. The damage mechanisms of critical illness by SARS-CoV-2 and its variants, such as hyperinflammatory response, a double-edged function of type I interferon, and hyperactivation of the complement system, are the same as other critical illnesses. Targeting specific immune damage mechanisms of COVID-19, we scored the first to put forward that the responses of T cells induced by acute virus infection result in "acute T-cell exhaustion" in elderly patients, which is not only the peripheral exhaustion with quantity reduction and dysfunction of T cells but also the central exhaustion that central immune organs lost immune homeostasis over peripheral immune organs, whereas the increased thymic output could alleviate the severity and reduce the mortality of the disease with the help of medication. We discovered that immune responses raised by SARS-CoV-2 could also attack secondary lymphoid organs, such as the spleen, lymphoid nodes, and kidneys, in addition to the lung, which we generally recognize. Integrated with the knowledge of mechanisms of immune protection, we developed a coronavirus antigen diagnostic kit and therapeutic monoclonal antibody. In the future, we will further investigate the mechanisms of immune damage and protection raised by coronavirus infection to provide more scientific strategies for developing new vaccines and immunotherapies.
Collapse
Affiliation(s)
- Yuting Sun
- School of Medicine, Chongqing University, Chongqing, China
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Bin Luo
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yueping Liu
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
- *Correspondence: Yongwen Chen,
| |
Collapse
|
9
|
Lim EHT, van Amstel RBE, de Boer VV, van Vught LA, de Bruin S, Brouwer MC, Vlaar APJ, van de Beek D. Complement activation in COVID-19 and targeted therapeutic options: A scoping review. Blood Rev 2023; 57:100995. [PMID: 35934552 PMCID: PMC9338830 DOI: 10.1016/j.blre.2022.100995] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Increasing evidence suggests that activation of the complement system plays a key role in the pathogenesis and disease severity of Coronavirus disease 2019 (COVID-19). We used a systematic approach to create an overview of complement activation in COVID-19 based on histopathological, preclinical, multiomics, observational and clinical interventional studies. A total of 1801 articles from PubMed, EMBASE and Cochrane was screened of which 157 articles were included in this scoping review. Histopathological, preclinical, multiomics and observational studies showed apparent complement activation through all three complement pathways and a correlation with disease severity and mortality. The complement system was targeted at different levels in COVID-19, of which C5 and C5a inhibition seem most promising. Adequately powered, double blind RCTs are necessary in order to further investigate the effect of targeting the complement system in COVID-19.
Collapse
Affiliation(s)
- Endry Hartono Taslim Lim
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rombout Benjamin Ezra van Amstel
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Vieve Victoria de Boer
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lonneke Alette van Vught
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Sanne de Bruin
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Matthijs Christian Brouwer
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alexander Petrus Johannes Vlaar
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands.
| | - Diederik van de Beek
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Meroni PL, Croci S, Lonati PA, Pregnolato F, Spaggiari L, Besutti G, Bonacini M, Ferrigno I, Rossi A, Hetland G, Hollan I, Cugno M, Tedesco F, Borghi MO, Salvarani C. Complement activation predicts negative outcomes in COVID-19: The experience from Northen Italian patients. Clin Exp Rheumatol 2023; 22:103232. [PMID: 36414219 PMCID: PMC9675082 DOI: 10.1016/j.autrev.2022.103232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Coronavirus disease 19 (COVID-19) may present as a multi-organ disease with a hyperinflammatory and prothrombotic response (immunothrombosis) in addition to upper and lower airway involvement. Previous data showed that complement activation plays a role in immunothrombosis mainly in severe forms. The study aimed to investigate whether complement involvement is present in the early phases of the disease and can be predictive of a negative outcome. We enrolled 97 symptomatic patients with a positive RT-PCR for SARS-CoV-2 presenting to the emergency room. The patients with mild symptoms/lung involvement at CT-scan were discharged and the remaining were hospitalized. All the patients were evaluated after a 4-week follow-up and classified as mild (n. 54), moderate (n. 17) or severe COVID-19 (n. 26). Blood samples collected before starting any anti-inflammatory/immunosuppressive therapy were assessed for soluble C5b-9 (sC5b-9) and C5a plasma levels by ELISA, and for the following serum mediators by ELLA: IL-1β, IL-6, IL-8, TNFα, IL-4, IL-10, IL-12p70, IFNγ, IFNα, VEGF-A, VEGF-B, GM-CSF, IL-2, IL-17A, VEGFR2, BLyS. Additional routine laboratory parameters were measured (fibrin fragment D-dimer, C-reactive protein, ferritin, white blood cells, neutrophils, lymphocytes, monocytes, platelets, prothrombin time, activated partial thromboplastin time, and fibrinogen). Fifty age and sex-matched healthy controls were also evaluated. SC5b-9 and C5a plasma levels were significantly increased in the hospitalized patients (moderate and severe) in comparison with the non-hospitalized mild group. SC5b9 and C5a plasma levels were predictive of the disease severity evaluated one month later. IL-6, IL-8, TNFα, IL-10 and complement split products were higher in moderate/severe versus non-hospitalized mild COVID-19 patients and healthy controls but with a huge heterogeneity. SC5b-9 and C5a plasma levels correlated positively with CRP, ferritin values and the neutrophil/lymphocyte ratio. Complement can be activated in the very early phases of the disease, even in mild non-hospitalized patients. Complement activation can be observed even when pro-inflammatory cytokines are not increased, and predicts a negative outcome.
Collapse
Affiliation(s)
- Pier Luigi Meroni
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-rheumatologic Researches, Cusano Milanino, Milan, Italy.
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy
| | - Paola Adele Lonati
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-rheumatologic Researches, Cusano Milanino, Milan, Italy
| | - Francesca Pregnolato
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-rheumatologic Researches, Cusano Milanino, Milan, Italy
| | - Lucia Spaggiari
- Radiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Besutti
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy; Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy
| | - Ilaria Ferrigno
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy; PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Rossi
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy
| | - Geir Hetland
- Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Norway
| | - Ivana Hollan
- Norwegian University of Science and Technology, Gjøvik, Norway
| | - Massimo Cugno
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine and Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Francesco Tedesco
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-rheumatologic Researches, Cusano Milanino, Milan, Italy
| | - Maria Orietta Borghi
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-rheumatologic Researches, Cusano Milanino, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Tsai CL, Lai CC, Chen CY, Lee HS. The efficacy and safety of complement C5a inhibitors for patients with severe COVID-19: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2023; 21:77-86. [PMID: 36399686 DOI: 10.1080/14787210.2022.2150165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The clinical efficacy and safety of complement C5a inhibitors for patients with severe COVID-19 remains unclear. METHODS The PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases were searched from their inception to 27 September 2022. Only studies that assessed the usefulness of C5a inhibitors for the treatment of patients with severe COVID-19 patients were included. The primary outcome was the risk of 28-day mortality. RESULTS Six studies, including four randomized controlled trials (RCTs) and two non-RCTs, were included. The study group receiving C5a inhibitors had a significantly lower risk of mortality compared with the control group (23.6% [70/297] vs 39.2% [136/347]; odds ratio [OR], 0.53; 95% confidence interval [CI]: 0.37-0.76; P< 0.001), and no heterogeneity was detected (I2 = 0%; P= 0.58). Compared with control group, the study group was associated with a similar risk of serious adverse events (AEs) (OR, 0.84; 95% CI: 0.57-1.23; P0 = 0.37), infection (OR, 1.46; 95% CI: 0.77-2.79; P= 0.25) and acute kidney injury (OR, 0.89; 95% CI: 0.54-1.46; P= 0.64). CONCLUSION C5a inhibitors could help reduce the risk of mortality in patients with severe COVID-19 infection while being as safe as placebos. These findings support the promising role of C5a inhibitors in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Chi-Lun Tsai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan.,School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Yi Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, E-Da Hospital, Kaohsiung City, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Ho-Sheng Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, E-Da Hospital, Kaohsiung City, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Franke V, Meyer S, Schulze-Tanzil GG, Braun T, Kokozidou M, Fischlein T, Silawal S. Complement Regulation in Immortalized Fibroblast-like Synoviocytes and Primary Human Endothelial Cells in Response to SARS-CoV-2 Nucleocapsid Protein and Pro-Inflammatory Cytokine TNFα. Life (Basel) 2022; 12:1527. [PMID: 36294967 PMCID: PMC9604721 DOI: 10.3390/life12101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Case reports are available showing that patients develop symptoms of acute arthritis during or after recovery from SARS-CoV-2 infection. Since the interrelation is still unknown, our aim was to study the impact of the SARS-CoV-2 nucleocapsid protein (NP) on human fibroblast-like synoviocytes and human endothelial cells (hEC) in terms of complement and cytokine regulation. Methods: Non-arthritic (K4IM) synoviocyte, arthritic (HSE) synoviocyte cell lines and primary hEC were stimulated with recombinant NP and/or TNFα. Analyses of cell viability, proliferation, gene and protein expression of cytokines and complement factors were performed. Results: NP suppressed significantly the vitality of hEC and proliferation of HSE. NP alone did not induce any significant changes in the examined gene expressions. However, NP combined with TNFα induced significantly higher TNFα in HSE and K4IM as well as higher IL-6 and CD55 gene expression in HSE and suppressed C3aR1 gene expression in hEC. HSE proliferated twice as fast as K4IM, but showed significantly lesser gene expressions of CD46, CD55, CD59 and TNFα with significantly higher IL-6 gene expression. CD35 gene expression was undetectable in K4IM, HSE and hEC. Conclusions: NP might contribute in combination with other inflammatory factors to complement regulation in arthritis.
Collapse
Affiliation(s)
- Vincent Franke
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Sophie Meyer
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Tobias Braun
- Department of Cardiac Surgery, Cardiovascular Center, General Hospital Nuremberg and Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany
| | - Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Theodor Fischlein
- Department of Cardiac Surgery, Cardiovascular Center, General Hospital Nuremberg and Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany
| | - Sandeep Silawal
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
13
|
Götz MP, Skjoedt MO, Bayarri-Olmos R, Hansen CB, Pérez-Alós L, Jarlhelt I, Benfield T, Rosbjerg A, Garred P. Lectin Pathway Enzyme MASP-2 and Downstream Complement Activation in COVID-19. J Innate Immun 2022; 15:122-135. [PMID: 35816998 PMCID: PMC10643890 DOI: 10.1159/000525508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022] Open
Abstract
Mannose-binding lectin-associated serine protease 2 (MASP-2) is the main activator of the lectin complement pathway and has been suggested to be involved in the pathophysiology of coronavirus disease 2019 (COVID-19). To study a possible association between MASP-2 and COVID-19, we aimed at developing a sensitive and reliable MASP-2 ELISA. From an array of novel mouse-monoclonal antibodies using recombinant MASP-2 as antigen, two clones were selected to create a sandwich ELISA. Plasma samples were obtained from 216 healthy controls, 347 convalescent COVID-19 patients, and 147 prospectively followed COVID-19 patients. The assay was specific towards MASP-2 and did not recognize the truncated MASP2 splice variant MAP-2 (MAp19). The limit of quantification was shown to be 0.1 ng/mL. MASP-2 concentration was found to be stable after multiple freeze-thaw cycles. In healthy controls, the mean MASP-2 concentration was 524 ng/mL (95% CI: 496.5-551.6). No significant difference was found in the MASP-2 concentrations between COVID-19 convalescent samples and controls. However, a significant increase was observed in prospectively followed COVID-19 patients (mean: 834 ng/mL [95% CI: 765.3-902.7, p < 0.0001]). In these patients, MASP-2 concentration correlated significantly with the concentrations of the terminal complement complex (ρ = 0.3596, p < 0.0001), with the lectin pathway pattern recognition molecules ficolin-2 (ρ = 0.2906, p = 0.0004) and ficolin-3 (ρ = 0.3952, p < 0.0001) and with C-reactive protein (ρ = 0.3292, p = 0.0002). Overall, we developed a specific quantitative MASP-2 sandwich ELISA. MASP-2 correlated with complement activation and inflammatory markers in COVID-19 patients, underscoring a possible role of MASP-2 in COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Maximilian Peter Götz
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark,
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Wiech M, Chroscicki P, Swatler J, Stepnik D, De Biasi S, Hampel M, Brewinska-Olchowik M, Maliszewska A, Sklinda K, Durlik M, Wierzba W, Cossarizza A, Piwocka K. Remodeling of T Cell Dynamics During Long COVID Is Dependent on Severity of SARS-CoV-2 Infection. Front Immunol 2022; 13:886431. [PMID: 35757700 PMCID: PMC9226563 DOI: 10.3389/fimmu.2022.886431] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Several COVID-19 convalescents suffer from the post-acute COVID-syndrome (PACS)/long COVID, with symptoms that include fatigue, dyspnea, pulmonary fibrosis, cognitive dysfunctions or even stroke. Given the scale of the worldwide infections, the long-term recovery and the integrative health-care in the nearest future, it is critical to understand the cellular and molecular mechanisms as well as possible predictors of the longitudinal post-COVID-19 responses in convalescent individuals. The immune system and T cell alterations are proposed as drivers of post-acute COVID syndrome. However, despite the number of studies on COVID-19, many of them addressed only the severe convalescents or the short-term responses. Here, we performed longitudinal studies of mild, moderate and severe COVID-19-convalescent patients, at two time points (3 and 6 months from the infection), to assess the dynamics of T cells immune landscape, integrated with patients-reported symptoms. We show that alterations among T cell subsets exhibit different, severity- and time-dependent dynamics, that in severe convalescents result in a polarization towards an exhausted/senescent state of CD4+ and CD8+ T cells and perturbances in CD4+ Tregs. In particular, CD8+ T cells exhibit a high proportion of CD57+ terminal effector cells, together with significant decrease of naïve cell population, augmented granzyme B and IFN-γ production and unresolved inflammation 6 months after infection. Mild convalescents showed increased naïve, and decreased central memory and effector memory CD4+ Treg subsets. Patients from all severity groups can be predisposed to the long COVID symptoms, and fatigue and cognitive dysfunctions are not necessarily related to exhausted/senescent state and T cell dysfunctions, as well as unresolved inflammation that was found only in severe convalescents. In conclusion, the post-COVID-19 functional remodeling of T cells could be seen as a two-step process, leading to distinct convalescent immune states at 6 months after infection. Our data imply that attenuation of the functional polarization together with blocking granzyme B and IFN-γ in CD8+ cells might influence post-COVID alterations in severe convalescents. However, either the search for long COVID predictors or any treatment to prevent PACS and further complications is mandatory in all patients with SARS-CoV-2 infection, and not only in those suffering from severe COVID-19.
Collapse
Affiliation(s)
- Milena Wiech
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Chroscicki
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Stepnik
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Michal Hampel
- Department of Gastroenterological Surgery and Transplantology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Marta Brewinska-Olchowik
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Maliszewska
- Department of Gastroenterological Surgery and Transplantology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Katarzyna Sklinda
- Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marek Durlik
- Department of Gastroenterological Surgery and Transplantology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland.,Departament of Gastroenterological Surgery and Transplantology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Waldemar Wierzba
- Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland.,University of Humanities and Economics, Lodz, Poland
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|