1
|
Liu J, Wu Y, Gao GF. A Structural Voyage Toward the Landscape of Humoral and Cellular Immune Escapes of SARS-CoV-2. Immunol Rev 2025; 330:e70000. [PMID: 39907512 DOI: 10.1111/imr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
The genome-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the past nearly 5 years since its emergence has refreshed our understanding of virus evolution, especially on convergent co-evolution with the host. SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations that affect the functional properties of the virus by altering its infectivity, virulence, transmissibility, and interactions with host immunity. This poses a huge challenge to global prevention and control measures based on drug treatment and vaccine application. As one of the key evasion strategies in response to the immune profile of the human population, there are overwhelming amounts of evidence for the reduced antibody neutralization of SARS-CoV-2 variants. Additionally, data also suggest that the levels of CD4+ and CD8+ T-cell responses against variants or sub-variants decrease in the populations, although non-negligible cross-T-cell responses are maintained. Herein, from the perspectives of structural immunology, we outline the characteristics and mechanisms of the T cell and antibody responses to SARS-CoV and its variants/sub-variants. The molecular bases for the impact of the immune escaping variants on the interaction of the epitopes with the key receptors in adaptive immunity, that is, major histocompatibility complex (MHC), T-cell receptor (TCR), and antibody are summarized and discussed, the knowledge of which will widen our understanding of this pandemic-threatening virus and assist the preparedness for Pathogen X in the future.
Collapse
Affiliation(s)
- Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Cao J, Gan M, Zhang Z, Lin X, Ouyang Q, Fu H, Xu X, Wang Z, Li X, Wang Y, Cai H, Lei Q, Liu L, Wang H, Fan X. A Hidden Guardian: The Stability and Spectrum of Antibody-Dependent Cell-Mediated Cytotoxicity in COVID-19 Response in Chinese Adults. Vaccines (Basel) 2025; 13:262. [PMID: 40266151 PMCID: PMC11945335 DOI: 10.3390/vaccines13030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVES Identifying immune-protective biomarkers is crucial for the effective management and mitigation of current and future COVID-19 outbreaks, particularly in preventing or counteracting the immune evasion exhibited by the Omicron variants. The emergence of SARS-CoV-2 variants, especially those within the Omicron lineage, has highlighted their capacity to evade neutralizing antibodies, emphasizing the need to understand the role of antibody-dependent cell-mediated cytotoxicity (ADCC) in combating these infections. METHODS This study, conducted in Qichun City, Hubei province, from December 2021 to March 2023, involved 50 healthy Chinese adults who had received two doses of inactivated vaccines and had subsequently experienced mild infections with the Omicron BA.5 variant. Blood samples from these 50 healthy Chinese adults were collected at six distinct time points: at baseline and at the 1st, 3rd, 6th, and 9th months following the third dose of the inactivated vaccine, as well as 3 months post-breakthrough infection. Their sera were analyzed to assess ADCC and neutralization effects. RESULTS The results indicated that the antibodies elicited by the inactivated SARS-CoV-2 vaccine targeted the spike protein, exhibiting both pre-existing neutralizing and ADCC activities against Omicron variants BA.5 and XBB.1.5. Notably, the ADCC activity demonstrated greater stability compared to that of the neutralizing effects, persisting for at least 15 months post-vaccination, and could be augmented by additional vaccine doses and breakthrough infections. The ADCC effect associated with hybrid immunity effectively targets a spectrum of prospective Omicron variants, including BA.2.86, CH.1.1, EG.5.1, and JN.1. CONCLUSIONS In light of its stability and broad-spectrum efficacy, we recommend the use of the ADCC effect as a biomarker for assessing protective immunity and guiding the development of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhihao Zhang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhen Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xinlian Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Yaxin Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Qing Lei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Li Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| |
Collapse
|
3
|
Emmelot ME, Bodewes R, Maissan C, Vos M, de Swart RL, van Els CACM, Kaaijk P. Impact of genotypic variability of measles virus T-cell epitopes on vaccine-induced T-cell immunity. NPJ Vaccines 2025; 10:36. [PMID: 39979288 PMCID: PMC11842548 DOI: 10.1038/s41541-025-01088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
After the COVID-19 pandemic, significant increases in measles cases were observed globally. Community-wide vaccination remains the most effective strategy for preventing measles. However, it is crucial to understand whether prevalent genotypes, when circulating in populations with suboptimal vaccination coverage, may undergo adaptive mutations that allow them to escape vaccine-induced immunity. In this study, a bioinformatics-guided approach was used to predict universal helper T-cell epitopes specific to the measles vaccine virus (vaccine-MeV) presented by multiple HLA-DR, -DP, and -DQ alleles to achieve population-wide coverage. By using MeV-specific T-cell lines, we identified 37 functional epitopes out of 83 predicted candidates, including 25 novel ones. Strikingly, 73% of these epitope regions were associated with sequence variations in wild-type viruses. More importantly, we demonstrated that mutations disrupted the ability of vaccine-induced CD4+ T cells to respond to circulating viruses. Consequently, mutations in epitope regions of circulating viruses may affect the effectiveness of vaccine-induced T-cell immunity.
Collapse
Affiliation(s)
- Maarten E Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rogier Bodewes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cyril Maissan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
4
|
Tang YS, Tan CW, Chong KC, Chen C, Sun Y, Yiu K, Ling KC, Chan KKP, Peiris M, Mok CKP, Hui DS. Determination of T cell response against XBB variants in adults who received either monovalent wild-type inactivated whole virus or mRNA vaccine or bivalent WT/BA.4-5 COVID-19 mRNA vaccine as the additional booster. Int J Infect Dis 2024; 149:107271. [PMID: 39426493 DOI: 10.1016/j.ijid.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES As the SARS-CoV-2 virus evolves more rapidly than vaccines are updated, T cell immunity potentially confers protection against disease progression and death from new variants. In this study, we aimed to assess whether the current boosting vaccination schemes offer sufficient T cell protection against new SARS-CoV-2 variants. METHODS A total of 292 adults who had received the second booster of either monovalent wild-type (WT) vaccines (inactivated virus or mRNA) (Cohort 1) or the second/third booster of bivalent WT/BA.4-5 mRNA vaccine (Cohort 2) were recruited in Hong Kong. All participants showed no serological evidence of recent infection of SARS-CoV-2. Blood samples of each participant were collected before and 1 month after receiving the booster. T cell and antibody responses were determined by flow cytometry and neutralization test, respectively. RESULTS Among all vaccination strategies, only the adults who had received the bivalent vaccine as the third booster dose significantly elicited T cell responses to the XBB variant. Either monovalent or bivalent mRNA but not inactivated virus vaccine as the second/third booster induced antibody against different XBB variants. CONCLUSION Receiving bivalent mRNA vaccine as the third booster is preferable to induce both T cell and antibody responses against XBB.
Collapse
Affiliation(s)
- Yun Sang Tang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chee Wah Tan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore; Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ka Chun Chong
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Centre for Health Systems and Policy Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chunke Chen
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Karen Yiu
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kwun Cheung Ling
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ken K P Chan
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Centre for Immunology and Infection, Hong Kong SAR, PR China
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; SH Ho Research Centre for Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China.
| | - David S Hui
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; SH Ho Research Centre for Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
5
|
Gomes BBM, Ferreira NN, Garibaldi PMM, Dias CFSDL, Silva LN, Almeida MAALDS, de Moraes GR, Covas DT, Kashima S, Calado RT, Fonseca BAL, Volpe GJ, Borges MDC. Impact of SARS-CoV-2 variants on COVID-19 symptomatology and severity during five waves. Heliyon 2024; 10:e40113. [PMID: 39605810 PMCID: PMC11600076 DOI: 10.1016/j.heliyon.2024.e40113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Background SARS-CoV-2 variants have distinct features of transmissibility, infectivity, and aggressiveness that may cause different clinical manifestations. A better understanding of the disease presentation and progression could help to outline more precise preventive and treatment frameworks. This study describes the differences in COVID-19 presentation and outcomes across five variant waves. Methods This prospective cohort was conducted in Serrana, São Paulo State, Brazil. Clinical and demographic data was obtained from June 2020 to December 2022 as part of an enhanced health surveillance system for COVID-19, based on increasing access to diagnostic testing for SARS-CoV-2 and patient follow-up. Individuals were assessed for COVID-19 symptoms and comorbidities. Mild cases were followed up for at least 14 days, and severe cases until discharge or death. Samples were genetically sequenced, and variant waves were determined based on global SARS-CoV-2 variant predominance (>90 % sequenced samples), being as follows: Ancestral, Delta, Gamma, Omicron BA.1, and Omicron BA.2 waves. The relationship between clinical data and disease outcomes was analyzed in each variant wave. Results Patients infected during the Delta wave were the youngest (36.1 ± 18.2 years, p < 0.001). The proportion of female patients was higher across all waves. Positivity rate, disease severity, and COVID-19-related deaths varied among them. Ageusia and anosmia were related to SARS-CoV-2 positivity during the Ancestral, Gamma, and Delta waves but not in Omicron BA.1 and Omicron BA.2 waves. Diarrhea presented a lower chance of positivity only in Omicron BA.1 and Omicron BA.2. Dyspnea was the most consistent risk factor for severity across all waves. Conclusions Although patients with COVID-19 from different SARS-CoV-2 variants shared some clinical-epidemiological characteristics, each variant presented distinguishable features related to positivity and severity. This could help to understand the dynamics of COVID-19 variants and update recommendations for clinical practice.
Collapse
Affiliation(s)
- Bruno Belmonte Martinelli Gomes
- University of São Paulo, Ribeirão Preto Medical School, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, Brazil
- Clinical Research Center - S, Rua Treze de Maio, 438, Serrana, SP, Brazil
| | - Natasha Nicos Ferreira
- Clinical Research Center - S, Rua Treze de Maio, 438, Serrana, SP, Brazil
- Serrana State Hospital, Rua Nossa Senhora das Dores, 811, Serrana, SP, Brazil
| | - Pedro Manoel Marques Garibaldi
- Clinical Research Center - S, Rua Treze de Maio, 438, Serrana, SP, Brazil
- Serrana State Hospital, Rua Nossa Senhora das Dores, 811, Serrana, SP, Brazil
| | | | | | | | | | - Dimas Tadeu Covas
- University of São Paulo, Ribeirão Preto Medical School, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- Center for Cell-based Therapy, Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, Brazil
| | - Rodrigo Tocantins Calado
- University of São Paulo, Ribeirão Preto Medical School, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, Brazil
| | | | - Gustavo Jardim Volpe
- Clinical Research Center - S, Rua Treze de Maio, 438, Serrana, SP, Brazil
- Serrana State Hospital, Rua Nossa Senhora das Dores, 811, Serrana, SP, Brazil
| | - Marcos de Carvalho Borges
- University of São Paulo, Ribeirão Preto Medical School, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, Brazil
- Clinical Research Center - S, Rua Treze de Maio, 438, Serrana, SP, Brazil
- Serrana State Hospital, Rua Nossa Senhora das Dores, 811, Serrana, SP, Brazil
| |
Collapse
|
6
|
Sharma S, Roy D, Cherian S. In-silico evaluation of the T-cell based immune response against SARS-CoV-2 omicron variants. Sci Rep 2024; 14:25413. [PMID: 39455652 PMCID: PMC11511884 DOI: 10.1038/s41598-024-75658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
During of COVID-19 pandemic, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continuously evolved, resulting in the emergence of several new variants of concerns (VOCs) with numerous mutations. These VOCs dominate in various regions due to increased transmissibility and antibody evasion, potentially reducing vaccine effectiveness. Nonetheless, it remains uncertain whether the recent SARS-CoV-2 VOCs have the ability to circumvent the T cell immunity elicited by either COVID-19 vaccination or natural infection. To address this, we conducted in-silico analysis to examine the impact of VOC-specific mutations at the epitope level and T cell cross-reactivity with the ancestral SARS-CoV-2. According to the in-silico investigation, T cell responses triggered by immunization or prior infections still recognize the variants in spite of mutations. These variants are expected to either maintain their dominant epitope HLA patterns or bind with new HLAs, unlike the epitopes of the ancestral strain. Our findings indicate that a significant proportion of immuno-dominant CD8 + and CD4 + epitopes are conserved across all the variants, implying that existing vaccines might maintain efficacy against new variations. However, further in-vitro and in-vivo studies are needed to validate the in-silico results and fully elucidate immune sensitivities to VOCs.
Collapse
Affiliation(s)
- Shivangi Sharma
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Diya Roy
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India.
| |
Collapse
|
7
|
Brummelman J, Suárez-Hernández S, de Rond L, Bogaard-van Maurik M, Molenaar P, van Wijlen E, Oomen D, Beckers L, Rots NY, van Beek J, Nicolaie MA, van Els CACM, Boer MC, Kaaijk P, Buisman AM, de Wit J. Distinct T cell responsiveness to different COVID-19 vaccines and cross-reactivity to SARS-CoV-2 variants with age and CMV status. Front Immunol 2024; 15:1392477. [PMID: 38774878 PMCID: PMC11106399 DOI: 10.3389/fimmu.2024.1392477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Accumulating evidence indicates the importance of T cell immunity in vaccination-induced protection against severe COVID-19 disease, especially against SARS-CoV-2 Variants-of-Concern (VOCs) that more readily escape from recognition by neutralizing antibodies. However, there is limited knowledge on the T cell responses across different age groups and the impact of CMV status after primary and booster vaccination with different vaccine combinations. Moreover, it remains unclear whether age has an effect on the ability of T cells to cross-react against VOCs. Methods Therefore, we interrogated the Spike-specific T cell responses in healthy adults of the Dutch population across different ages, whom received different vaccine types for the primary series and/or booster vaccination, using IFNɣ ELISpot. Cells were stimulated with overlapping peptide pools of the ancestral Spike protein and different VOCs. Results Robust Spike-specific T cell responses were detected in the vast majority of participants upon the primary vaccination series, regardless of the vaccine type (i.e. BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad26.COV2.S). Clearly, in the 70+ age group, responses were overall lower and showed more variation compared to younger age groups. Only in CMV-seropositive older adults (>70y) there was a significant inverse relation of age with T cell responses. Although T cell responses increased in all age groups after booster vaccination, Spike-specific T cell frequencies remained lower in the 70+ age group. Regardless of age or CMV status, primary mRNA-1273 vaccination followed by BNT162b2 booster vaccination showed limited booster effect compared to the BNT162b2/BNT162b2 or BNT162b2/mRNA-1273 primary-booster regimen. A modest reduction in cross-reactivity to the Alpha, Delta and Omicron BA.1, but not the Beta or Gamma variant, was observed after primary vaccination. Discussion Together, this study shows that age, CMV status, but also the primary-booster vaccination regimen influence the height of the vaccination-induced Spike-specific T cell response, but did not impact the VOC cross-reactivity.
Collapse
Affiliation(s)
- Jolanda Brummelman
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sara Suárez-Hernández
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lia de Rond
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marjan Bogaard-van Maurik
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Petra Molenaar
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Emma van Wijlen
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Debbie Oomen
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lisa Beckers
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Nynke Y. Rots
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Mioara A. Nicolaie
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Cécile A. C. M. van Els
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Mardi C. Boer
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Patricia Kaaijk
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Anne-Marie Buisman
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
8
|
Ahn YM, Maddumage JC, Grant EJ, Chatzileontiadou DS, Perera WG, Baker BM, Szeto C, Gras S. The impact of SARS-CoV-2 spike mutation on peptide presentation is HLA allomorph-specific. Curr Res Struct Biol 2024; 7:100148. [PMID: 38742159 PMCID: PMC11089313 DOI: 10.1016/j.crstbi.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
CD8+ T cells are crucial for viral elimination and recovery from viral infection. Nonetheless, the current understanding of the T cell response to SARS-CoV-2 at the antigen level remains limited. The Spike protein is an external structural protein that is prone to mutations, threatening the efficacy of current vaccines. Therefore, we have characterised the immune response towards the immunogenic Spike-derived peptide (S976-984, VLNDILSRL), restricted to the HLA-A*02:01 molecule, which is mutated in both Alpha (S982A) and Omicron BA.1 (L981F) variants of concern. We determined that the mutation in the Alpha variant (S982A) impacted both the stability and conformation of the peptide, bound to HLA-A*02:01, in comparison to the original S976-984. We identified a longer and overlapping immunogenic peptide (S975-984, SVLNDILSRL) that could be presented by HLA-A*02:01, HLA-A*11:01 and HLA-B*13:01 allomorphs. We showed that S975-specific CD8+ T cells were weakly cross-reactive to the mutant peptides despite their similar conformations when presented by HLA-A*11:01. Altogether, our results show that the impact of SARS-CoV-2 mutations on peptide presentation is HLA allomorph-specific, and that post vaccination there are T cells able to react and cross-react towards the variant of concern peptides.
Collapse
Affiliation(s)
- You Min Ahn
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
| | - Janesha C. Maddumage
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
| | - Emma J. Grant
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Demetra S.M. Chatzileontiadou
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W.W.J. Gihan Perera
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher Szeto
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Stephanie Gras
- Infection & Immunity Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Agriculture (SABE), La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Reinholm A, Maljanen S, Jalkanen P, Altan E, Tauriainen S, Belik M, Skön M, Haveri A, Österlund P, Iakubovskaia A, Pasternack A, Naves RA, Ritvos O, Miettinen S, K Häkkinen H, Ivaska L, Tähtinen PA, Lempainen J, Kantele A, Kakkola L, Julkunen I, Kolehmainen P. Neutralizing antibodies after the third COVID-19 vaccination in healthcare workers with or without breakthrough infection. COMMUNICATIONS MEDICINE 2024; 4:28. [PMID: 38396065 PMCID: PMC10891120 DOI: 10.1038/s43856-024-00457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Vaccinations against the SARS-CoV-2 are still crucial in combating the ongoing pandemic that has caused more than 700 million infections and claimed almost 7 million lives in the past four years. Omicron (B.1.1.529) variants have incurred mutations that challenge the protection against infection and severe disease by the current vaccines, potentially compromising vaccination efforts. METHODS We analyzed serum samples taken up to 9 months post third dose from 432 healthcare workers. Enzyme-linked immunosorbent assays (ELISA) and microneutralization tests (MNT) were used to assess the prevalence of vaccine-induced neutralizing antibodies against various SARS-CoV-2 Omicron variants. RESULTS In this serological analysis we show that SARS-CoV-2 vaccine combinations of BNT162b2, mRNA-1273, and ChAdOx1 mount SARS-CoV-2 binding and neutralizing antibodies with similar kinetics, but with differing neutralization capabilities. The most recent Omicron variants, BQ.1.1 and XBB.1.5, show a significant increase in the ability to escape vaccine and infection-induced antibody responses. Breakthrough infections in thrice vaccinated adults were seen in over 50% of the vaccinees, resulting in a stronger antibody response than without infection. CONCLUSIONS Different three-dose vaccine combinations seem to induce considerable levels of neutralizing antibodies against most SARS-CoV-2 variants. However, the ability of the newer variants BQ1.1 and XBB 1.5 to escape vaccine-induced neutralizing antibody responses underlines the importance of updating vaccines as new variants emerge.
Collapse
Affiliation(s)
- Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eda Altan
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marika Skön
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anu Haveri
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Alina Iakubovskaia
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Rauno A Naves
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Simo Miettinen
- Department of Infectious Diseases, Meilahti Vaccination Research Center, MeVac, Helsinki, University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanni K Häkkinen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Lauri Ivaska
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Paula A Tähtinen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Johanna Lempainen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Anu Kantele
- Department of Infectious Diseases, Meilahti Vaccination Research Center, MeVac, Helsinki, University Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | | |
Collapse
|
10
|
Gan M, Cao J, Zhang Y, Fu H, Lin X, Ouyang Q, Xu X, Yuan Y, Fan X. Landscape of T cell epitopes displays hot mutations of SARS-CoV-2 variant spikes evading cellular immunity. J Med Virol 2024; 96:e29452. [PMID: 38314852 DOI: 10.1002/jmv.29452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been accompanied by the emergence of viral mutations that pose a great challenge to existing vaccine strategies. It is not fully understood with regard to the role of mutations on the SARS-CoV-2 spike protein from emerging viral variants in T cell immunity. In the current study, recombinant eukaryotic plasmids were constructed as DNA vaccines to express the spike protein from multiple SARS-CoV-2 strains. These DNA vaccines were used to immunize BALB/c mice, and cross-T cell responses to the spike protein from these viral strains were quantitated using interferon-γ (IFN-γ) Elispot. Peptides covering the full-length spike protein from different viral strains were used to detect epitope-specific IFN-γ+ CD4+ and CD8+ T cell responses by fluorescence-activated cell sorting. SARS-CoV-2 Delta and Omicron BA.1 strains were found to have broad T cell cross-reactivity, followed by the Beta strain. The landscapes of T cell epitopes on the spike protein demonstrated that at least 30 mutations emerging from Alpha to Omicron BA.5 can mediate the escape of T cell immunity. Omicron and its sublineages have 19 out of these 30 mutations, most of which are new, and a few are inherited from ancient circulating variants of concerns. The cross-T cell immunity between SARS-CoV-2 prototype strain and Omicron strains can be attributed to the T cell epitopes located in the N-terminal domain (181-246 aa [amino acids], 271-318 aa) and C-terminal domain (1171-1273 aa) of the spike protein. These findings provide in vivo evidence for optimizing vaccine manufacturing and immunization strategies for current or future viral variants.
Collapse
Affiliation(s)
- Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yuan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Verheul MK, Vos M, de Rond L, De Zeeuw-Brouwer ML, Nijhof KH, Smit D, Oomen D, Molenaar P, Bogaard M, van Bergen R, Middelhof I, Beckers L, Wijmenga-Monsuur AJ, Buisman AM, Boer MC, van Binnendijk R, de Wit J, Guichelaar T. Contribution of SARS-CoV-2 infection preceding COVID-19 mRNA vaccination to generation of cellular and humoral immune responses in children. Front Immunol 2023; 14:1327875. [PMID: 38193077 PMCID: PMC10773747 DOI: 10.3389/fimmu.2023.1327875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Primary COVID-19 vaccination for children, 5-17 years of age, was offered in the Netherlands at a time when a substantial part of this population had already experienced a SARS-CoV-2 infection. While vaccination has been shown effective, underlying immune responses have not been extensively studied. We studied immune responsiveness to one and/or two doses of primary BNT162b2 mRNA vaccination and compared the humoral and cellular immune response in children with and without a preceding infection. Antibodies targeting the original SARS-CoV-2 Spike or Omicron Spike were measured by multiplex immunoassay. B-cell and T-cell responses were investigated using enzyme-linked immunosorbent spot (ELISpot) assays. The activation of CD4+ and CD8+ T cells was studied by flowcytometry. Primary vaccination induced both a humoral and cellular adaptive response in naive children. These responses were stronger in those with a history of infection prior to vaccination. A second vaccine dose did not further boost antibody levels in those who previously experienced an infection. Infection-induced responsiveness prior to vaccination was mainly detected in CD8+ T cells, while vaccine-induced T-cell responses were mostly by CD4+ T cells. Thus, SARS-CoV-2 infection prior to vaccination enhances adaptive cellular and humoral immune responses to primary COVID-19 vaccination in children. As most children are now expected to contract infection before the age of five, the impact of infection-induced immunity in children is of high relevance. Therefore, considering natural infection as a priming immunogen that enhances subsequent vaccine-responsiveness may help decision-making on the number and timing of vaccine doses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
12
|
Yajima Y, Kosaka A, Ohkuri T, Hirohashi Y, Li D, Nagasaki T, Nagato T, Torigoe T, Kobayashi H. SARS-CoV-2 spike protein-derived immunogenic peptides that are promiscuously presented by several HLA-class II molecules and their potential for inducing acquired immunity. Heliyon 2023; 9:e20192. [PMID: 37809871 PMCID: PMC10559948 DOI: 10.1016/j.heliyon.2023.e20192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/26/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic that is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a significant threat to public health. Although vaccines based on the mRNA of the SARS-CoV-2 spike protein have been developed to induce both cellular and humoral immunity against SARS-CoV-2, there have been some concerns raised about their high cost, particularly in developing countries. In the present study, we aim to identify an immunogenic peptide in the SARS-CoV-2 spike protein to activate cellular immunity, particularly CD4+ helper T lymphocytes (Th cells), which are a commander of immune system. SARS-CoV-2 spike protein-derived peptides Spike448-477 and Spike489-513(N501Y)-specific CD4+ Th cell lines were generated by repetitive stimulation of healthy donor-derived CD4+T-cells with each peptide. Their HLA-restrictions were addressed by using blocking antibodies against HLA and HLA-transfected L-cells. The epitopes of Spike448-477-specific CD4+ Th cell lines were defined using a series of 7-14-mer overlapping truncated peptides and alanine-substituted epitope peptides. To address responsiveness of these CD4+ Th cell lines to several SARS-CoV-2 variants, we stimulated the CD4+ Th cell lines with mutated peptides. We addressed whether these identified peptides were useful for monitoring T-cell-based immune responses in vaccinated donors using the IFN-γ ELISpot assay. The Spike448-477 peptide was found to be a promiscuous peptide presented by HLA- DRB1*08:02, DR53, and DPB1*02:02. Although HLA-DPB1*02:02-restricted CD4+ Th cells did not response to some peptides with the L452R and L452Q mutations, the other CD4+ Th cells were not affected by any mutant peptides. We developed two tetramers to detect HLA-DRB1*08:02/Spike449-463- and Spike449-463(L452R/Y453F)-recognizing CD4+ Th cells. Spike489-513(N501Y) peptide was also a promiscuously presented to HLA-DRB1*09:01 and DRB1*15:02. The T-cell responses specific to both peptides Spike448-477 and Spike489-513 were detected in PBMCs after vaccinations. In addition, we observed that the Spike448-477 peptide activated both CD8+ T-cells and CD4+ Th cells in individuals receiving mRNA vaccines. SARS-CoV-2 spike protein-derived peptides, Spike448-477 and Spike489-513, include several epitopes that are presented by multiple HLA-class II alleles to activate CD4+ Th cells, which are considered useful for monitoring the establishment of acquired immunity after vaccination.
Collapse
Affiliation(s)
- Yuki Yajima
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Dongliang Li
- Tsukuba Laboratory, Medical & Biological Laboratories Co., Ltd., Ina, Japan
| | - Takeshi Nagasaki
- Tsukuba Laboratory, Medical & Biological Laboratories Co., Ltd., Ina, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
13
|
Wang Y, Wang B, Zhao Z, Xu J, Zhang Z, Zhang J, Chen Y, Song X, Zheng W, Hou L, Wu S, Chen W. Effects of SARS-CoV-2 Omicron BA.1 Spike Mutations on T-Cell Epitopes in Mice. Viruses 2023; 15:763. [PMID: 36992472 PMCID: PMC10056712 DOI: 10.3390/v15030763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
T-cell immunity plays an important role in the control of SARS-CoV-2 and has a great cross-protective effect on the variants. The Omicron BA.1 variant contains more than 30 mutations in the spike and severely evades humoral immunity. To understand how Omicron BA.1 spike mutations affect cellular immunity, the T-cell epitopes of SARS-CoV-2 wild-type and Omicron BA.1 spike in BALB/c (H-2d) and C57BL/6 mice (H-2b) were mapped through IFNγ ELISpot and intracellular cytokine staining assays. The epitopes were identified and verified in splenocytes from mice vaccinated with the adenovirus type 5 vector encoding the homologous spike, and the positive peptides involved in spike mutations were tested against wide-type and Omicron BA.1 vaccines. A total of eleven T-cell epitopes of wild-type and Omicron BA.1 spike were identified in BALB/c mice, and nine were identified in C57BL/6 mice, only two of which were CD4+ T-cell epitopes and most of which were CD8+ T-cell epitopes. The A67V and Del 69-70 mutations in Omicron BA.1 spike abolished one epitope in wild-type spike, and the T478K, E484A, Q493R, G496S and H655Y mutations resulted in three new epitopes in Omicron BA.1 spike, while the Y505H mutation did not affect the epitope. These data describe the difference of T-cell epitopes in SARS-CoV-2 wild-type and Omicron BA.1 spike in H-2b and H-2d mice, providing a better understanding of the effects of Omicron BA.1 spike mutations on cellular immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shipo Wu
- Correspondence: (S.W.); (W.C.); Tel.: +86-10-66948692 (S.W.)
| | - Wei Chen
- Correspondence: (S.W.); (W.C.); Tel.: +86-10-66948692 (S.W.)
| |
Collapse
|
14
|
He Y, Sun M, Xu Y, Hu C, Wang Y, Zhang Y, Fang J, Jin L. Weighted gene co-expression network-based identification of genetic effect of mRNA vaccination and previous infection on SARS-CoV-2 infection. Cell Immunol 2023; 385:104689. [PMID: 36780771 PMCID: PMC9912041 DOI: 10.1016/j.cellimm.2023.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
To investigate the effect conferred by vaccination and previous infection against SARS-CoV-2 infection in molecular level, weighted gene co-expression network analysis was applied to screen vaccination, prior infection and Omicron infection-related gene modules in 46 Omicron outpatients and 8 controls, and CIBERSORT algorithm was used to infer the proportions of 22 subsets of immune cells. 15 modules were identified, where the brown module showed positive correlations with Omicron infection (r = 0.35, P = 0.01) and vaccination (r = 0.62, P = 1 × 10-6). Enrichment analysis revealed that LILRB2 was the unique gene shared by both phosphatase binding and MHC class I protein binding. Pathways including "B cell receptor signaling pathway" and "FcγR-mediated phagocytosis" were enriched in the vaccinated samples of the highly correlated LILRB2. LILRB2 was also identified as the second hub gene through PPI network, after LCP2. In conclusion, attenuated LILRB2 transcription in PBMC might highlight a novel target in overcoming immune evasion and improving vaccination strategies.
Collapse
Affiliation(s)
- Yue He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Yan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Chengxiang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Yanfang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Yuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Jiaxin Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
15
|
Meyer S, Blaas I, Bollineni RC, Delic-Sarac M, Tran TT, Knetter C, Dai KZ, Madssen TS, Vaage JT, Gustavsen A, Yang W, Nissen-Meyer LSH, Douvlataniotis K, Laos M, Nielsen MM, Thiede B, Søraas A, Lund-Johansen F, Rustad EH, Olweus J. Prevalent and immunodominant CD8 T cell epitopes are conserved in SARS-CoV-2 variants. Cell Rep 2023; 42:111995. [PMID: 36656713 PMCID: PMC9826989 DOI: 10.1016/j.celrep.2023.111995] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOC) is driven by mutations that mediate escape from neutralizing antibodies. There is also evidence that mutations can cause loss of T cell epitopes. However, studies on viral escape from T cell immunity have been hampered by uncertain estimates of epitope prevalence. Here, we map and quantify CD8 T cell responses to SARS-CoV-2-specific minimal epitopes in blood drawn from April to June 2020 from 83 COVID-19 convalescents. Among 37 HLA ligands eluted from five prevalent alleles and an additional 86 predicted binders, we identify 29 epitopes with an immunoprevalence ranging from 3% to 100% among individuals expressing the relevant HLA allele. Mutations in VOC are reported in 10.3% of the epitopes, while 20.6% of the non-immunogenic peptides are mutated in VOC. The nine most prevalent epitopes are conserved in VOC. Thus, comprehensive mapping of epitope prevalence does not provide evidence that mutations in VOC are driven by escape of T cell immunity.
Collapse
Affiliation(s)
- Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Isaac Blaas
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Marina Delic-Sarac
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Trung T. Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Knetter
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - John T. Vaage
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | | | - Karolos Douvlataniotis
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Morten Milek Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Arne Søraas
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway,ImmunoLingo Convergence Center, University of Oslo, 0372 Oslo, Norway
| | - Even H. Rustad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| |
Collapse
|
16
|
Singh DD, Han I, Choi EH, Yadav DK. A Clinical Update on SARS-CoV-2: Pathology and Development of Potential Inhibitors. Curr Issues Mol Biol 2023; 45:400-433. [PMID: 36661514 PMCID: PMC9857284 DOI: 10.3390/cimb45010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome) is highly infectious and causes severe acute respiratory distress syndrome (SARD), immune suppression, and multi-organ failure. For SARS-CoV-2, only supportive treatment options are available, such as oxygen supportive therapy, ventilator support, antibiotics for secondary infections, mineral and fluid treatment, and a significant subset of repurposed effective drugs. Viral targeted inhibitors are the most suitable molecules, such as ACE2 (angiotensin-converting enzyme-2) and RBD (receptor-binding domain) protein-based inhibitors, inhibitors of host proteases, inhibitors of viral proteases 3CLpro (3C-like proteinase) and PLpro (papain-like protease), inhibitors of replicative enzymes, inhibitors of viral attachment of SARS-CoV-2 to the ACE2 receptor and TMPRSS2 (transmembrane serine proteinase 2), inhibitors of HR1 (Heptad Repeat 1)-HR2 (Heptad Repeat 2) interaction at the S2 protein of the coronavirus, etc. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Even with the tremendous progress made, creating effective drugs remains difficult. To develop COVID-19 treatment alternatives, clinical studies are examining a variety of therapy categories, including antibodies, antivirals, cell-based therapy, repurposed diagnostic medicines, and more. In this article, we discuss recent clinical updates on SARS-CoV-2 infection, clinical characteristics, diagnosis, immunopathology, the new emergence of variant, SARS-CoV-2, various approaches to drug development and treatment options. The development of therapies has been complicated by the global occurrence of many SARS-CoV-2 mutations. Discussion of this manuscript will provide new insight into drug pathophysiology and drug development.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of R&D Center, Arontier Co., Seoul 06735, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| |
Collapse
|
17
|
Emmelot ME, Vos M, Boer MC, Rots NY, van Els CACM, Kaaijk P. SARS-CoV-2 Omicron BA.4/BA.5 Mutations in Spike Leading to T Cell Escape in Recently Vaccinated Individuals. Viruses 2022; 15:101. [PMID: 36680141 PMCID: PMC9863717 DOI: 10.3390/v15010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
SARS-CoV-2 Omicron (B.1.1.529) lineages rapidly became dominant in various countries reflecting its enhanced transmissibility and ability to escape neutralizing antibodies. Although T cells induced by ancestral SARS-CoV-2-based vaccines also recognize Omicron variants, we showed in our previous study that there was a marked loss of T cell cross-reactivity to spike epitopes harboring Omicron BA.1 mutations. The emerging BA.4/BA.5 subvariants carry other spike mutations than the BA.1 variant. The present study aims to investigate the impact of BA.4/BA.5 spike mutations on T cell cross-reactivity at the epitope level. Here, we focused on universal T-helper epitopes predicted to be presented by multiple common HLA class II molecules for broad population coverage. Fifteen universal T-helper epitopes of ancestral spike, which contain mutations in the Omicron BA.4/BA.5 variants, were identified utilizing a bioinformatic tool. T cells isolated from 10 subjects, who were recently vaccinated with mRNA-based BNT162b2, were tested for functional cross-reactivity between epitopes of ancestral SARS-CoV-2 spike and the Omicron BA.4/BA.5 spike counterparts. Reduced T cell cross-reactivity in one or more vaccinees was observed against 87% of the tested 15 non-conserved CD4+ T cell epitopes. These results should be considered for vaccine boosting strategies to protect against Omicron BA.4/BA.5 and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Maarten E. Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Martijn Vos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Mardi C. Boer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
18
|
Clémenceau B, Le Bourgeois A, Guillaume T, Coste-Burel M, Peterlin P, Garnier A, Jullien M, Ollier J, Grain A, Béné MC, Chevallier P. Strong SARS-CoV-2 T-Cell Responses after One or Two COVID-19 Vaccine Boosters in Allogeneic Hematopoietic Stem Cell Recipients. Cells 2022; 11:cells11193010. [PMID: 36230971 PMCID: PMC9563037 DOI: 10.3390/cells11193010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
A full exploration of immune responses is deserved after anti-SARS-CoV-2 vaccination and boosters, especially in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although several reports indicate successful humoral responses in such patients, the literature is scarce on cellular specific immunity. Here, both B- (antibodies) and T-cell responses were explored after one (V3 n = 40) or two (V4 n = 12) BNT162b2 mRNA vaccine boosters in 52 allo-HSCT recipients at a median of 755 days post-transplant (<1 year n = 9). Results were compared with those of 12 controls who had received only one booster (BNT162b2 n = 6; mRNA-1273 n = 6). All controls developed protective antibody levels (>250 BAU/mL) and anti-spike T-cell responses. Similarly, 81% of the patients developed protective antibody levels, without difference between V3 and V4 (82.5% vs. 75%, p = 0.63), and 85% displayed T-cell responses. The median frequency of anti-spike T cells did not differ either between controls or the whole cohort of patients, although it was significantly lower for V3 (but not V4) patients. COVID-19 infections were solely observed in individuals having received only one booster. These results indicate that four vaccine injections help to achieve a satisfactory level of both humoral and cellular immune protection in allo-HSCT patients.
Collapse
Affiliation(s)
- Béatrice Clémenceau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
- Correspondence: (B.C.); (P.C.); Tel.: +33-228080230 (B.C.); +33-240083271 (P.C.)
| | | | - Thierry Guillaume
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
| | | | - Pierre Peterlin
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
| | - Alice Garnier
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
| | - Maxime Jullien
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
| | - Jocelyn Ollier
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
| | - Audrey Grain
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
| | - Marie C. Béné
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
- Hematology Biology, Nantes University Hospital, F-44000 Nantes, France
| | - Patrice Chevallier
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000 Nantes, France
- Hematology Department, Nantes University Hospital, F-44000 Nantes, France
- Correspondence: (B.C.); (P.C.); Tel.: +33-228080230 (B.C.); +33-240083271 (P.C.)
| |
Collapse
|