1
|
Garcia MDDN, Da Costa IPS, da Silva MAN, Ferreira VNDS, de Almeida ALT, Caldas GC, de Almeida AS, de Filippis AMB, Fintelman-Rodrigues N, da Silva ADPD, Alves Ferreira M, Souza TML, Pauvolid-Corrêa A, Barreto-Vieira DF. In Vitro System for Studying Ilhéus Virus, a Neglected Arbovirus: Ultrastructural Characterization of Cytopathology, Morphology, and Morphogenesis. Viruses 2025; 17:320. [PMID: 40143249 PMCID: PMC11945781 DOI: 10.3390/v17030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Ilhéus Virus (ILHV) was first detected in 1944 in Ilhéus, state of Bahia, northeast Brazil. During cellular infection, orthoflaviviruses induce cellular changes related both to the replication process, the formation of replication complexes, and to structures resulting from cellular damage. Although more detailed data are available in the literature for other orthoflaviviruses, the relationship between ILHV, the formation of these structures, its replication cycle, and cellular changes remains unknown. One of the main objectives of this study is to characterize the primary ultrastructural changes in green monkey kidney epithelial cell lineage (Vero cell) infected with ILHV, as well as to map its replication cycle, virion structure, and genome. To achieve these objectives, Vero cell monolayers were infected with an MOI of 0.01 and collected at different times post-infection. Cell monolayers were evaluated under bright-field microscopy and transmission electron microscopy. Ultrastructural analyses confirmed that ILHV can induce the formation of double-membrane vesicles, convoluted membranes, and vesicular packets. These structures, like those observed in zika (ZIKV) and dengue (DENV) viruses, form replication complexes that aid ILHV's replication process in cells. Our preliminary results reveal that ILHV infection induces cytopathogenesis like that observed in vitro studies for other arboviruses.
Collapse
Affiliation(s)
- Maycon Douglas do Nascimento Garcia
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.P.S.D.C.); (M.A.N.d.S.); (V.N.d.S.F.); (A.L.T.d.A.); (G.C.C.); (A.S.d.A.)
| | - Igor Pinto Silva Da Costa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.P.S.D.C.); (M.A.N.d.S.); (V.N.d.S.F.); (A.L.T.d.A.); (G.C.C.); (A.S.d.A.)
| | - Marcos Alexandre Nunes da Silva
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.P.S.D.C.); (M.A.N.d.S.); (V.N.d.S.F.); (A.L.T.d.A.); (G.C.C.); (A.S.d.A.)
| | - Vivian Neuza dos Santos Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.P.S.D.C.); (M.A.N.d.S.); (V.N.d.S.F.); (A.L.T.d.A.); (G.C.C.); (A.S.d.A.)
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ana Luisa Teixeira de Almeida
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.P.S.D.C.); (M.A.N.d.S.); (V.N.d.S.F.); (A.L.T.d.A.); (G.C.C.); (A.S.d.A.)
| | - Gabriela Cardoso Caldas
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.P.S.D.C.); (M.A.N.d.S.); (V.N.d.S.F.); (A.L.T.d.A.); (G.C.C.); (A.S.d.A.)
| | - Andressa Santos de Almeida
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.P.S.D.C.); (M.A.N.d.S.); (V.N.d.S.F.); (A.L.T.d.A.); (G.C.C.); (A.S.d.A.)
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Natalia Fintelman-Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.F.-R.); (A.d.P.D.d.S.); (T.M.L.S.)
- Centro de Desenvolvimento Tecnológico em Saúde, National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Aline de Paula Dias da Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.F.-R.); (A.d.P.D.d.S.); (T.M.L.S.)
- Centro de Desenvolvimento Tecnológico em Saúde, National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Marcelo Alves Ferreira
- Centro de Desenvolvimento Tecnológico em Saúde, National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Thiago Moreno L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.F.-R.); (A.d.P.D.d.S.); (T.M.L.S.)
- Centro de Desenvolvimento Tecnológico em Saúde, National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Alex Pauvolid-Corrêa
- Laboratório de Virologia Veterinária de Viçosa, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Debora Ferreira Barreto-Vieira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.P.S.D.C.); (M.A.N.d.S.); (V.N.d.S.F.); (A.L.T.d.A.); (G.C.C.); (A.S.d.A.)
| |
Collapse
|
2
|
Yang P, Wang ZJ, Lu HT, Feng XM, Ye JL, Wang G, Qin CF, Ye Q, Liu ZY. Imaging of viral replication in live cells by using split fluorescent protein-tagged reporter flaviviruses. Virology 2025; 603:110374. [PMID: 39754862 DOI: 10.1016/j.virol.2024.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
The knowledge on the life cycle of flaviviruses is still incomplete, and no direct-acting antivirals against their infections are clinically available. Herein, by screening via a Zika virus (ZIKV) replicon assay, we found that the N-terminus of NS2A exhibited great tolerance to the insertions of different split fluorescent proteins (split-FPs). Furthermore, both ZIKV and dengue virus encoding a split-FP-tagged NS2A propagated efficiently, and the split-FP-tagged ZIKVs had good genetic stability. Robust green fluorescence was observed in the reporter cell lines infected with these viruses and the fluorescence responded to anti-flavivirus chemicals with high specificity and sensitivity. Moreover, the sites of viral RNA replication were illuminated in live cells. Interestingly, by blocking viral RNA synthesis with an NS5 inhibitor, we found a correlation between the morphological characteristics of potential replication organelles and RNA amplification, highlighting that the NS2A-tagged viruses are of great value for the in-depth understanding of flavivirus replication mechanisms.
Collapse
Affiliation(s)
- Ping Yang
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zheng-Jian Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hai-Tao Lu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xu-Meng Feng
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guangchuan Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Ye S, Liang Y, Chang Y, Lai B, Zhong J. Dengue Virus Replicative-Form dsRNA Is Recognized by Both RIG-I and MDA5 to Activate Innate Immunity. J Med Virol 2025; 97:e70194. [PMID: 39873327 DOI: 10.1002/jmv.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
RIG-I like receptors (RLRs) are a family of cytosolic RNA sensors that sense RNA virus infection to activate innate immune response. It is generally believed that different RNA viruses are recognized by either RIG-I or MDA5, two important RLR members, depending on the nature of pathogen-associated molecular patterns (PAMPs) that are generated by RNA virus replication. Dengue virus (DENV) is an important RNA virus causing serious human diseases. Despite extensive investigations, the molecular basis of the DENV PAMP recognized by the host RLR has been poorly defined. Here, we demonstrated that the DENV infection-induced interferon response is dependent upon both RIG-I and MDA5, with RIG-I playing a predominant role. Next we purified the DENV PAMP RNA from the DENV-infected cells, and demonstrated that the purified DENV PAMP is viral full-length double-stranded RNA bearing 5'ppp modifications, likely representing the viral replicative-form RNA. Finally, we confirmed the nature of the DENV PAMP by reconstituting the viral replicative-form RNA from in vitro synthesized DENV genomic RNA. In conclusion, our work not only defined the molecular basis of the RLR-PAMP interaction during DENV infection, but also revealed the previously underappreciated recognition of a distinct moiety of the same PAMP by different RLRs in innate immunity against RNA viruses.
Collapse
Affiliation(s)
- Sichao Ye
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yisha Liang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Chang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bailiang Lai
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Yuan H, Luo Y, Zou J, Zhang J, Zhang J, Cao G, Cao S, Chen H, Song Y. Cellular NONO protein binds to the flavivirus replication complex and promotes positive-strand RNA synthesis. J Virol 2024; 98:e0029724. [PMID: 39499073 PMCID: PMC11650977 DOI: 10.1128/jvi.00297-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
A cellular protein, non-POU-domain-containing octamer binding protein (NONO), bound to the replication complex of Japanese encephalitis virus (JEV) by directly interacting with the viral 3' UTR RNA and NS3 protein. These interactions were also identified in West Nile virus (WNV) and Zika virus (ZIKV). The infection of JEV or the expression of JEV NS3 protein in cells could induce relocation of NONO protein from the nucleus to the cytoplasm. In JEV-infected cells, the NS3, NS5, and viral RNA could be concurrently detected in the immunoprecipitation by the NONO-specific antibody, suggesting that NONO could integrate into the replication complex of JEV. Further results of co-immunoprecipitation assays showed that NONO protein interacted with NS3 helicase domains 1 and 2 by its two RNA recognize motifs (RRMs). The knockdown and knockout of NONO in cells could significantly reduce the replication of JEV and ZIKV but had no effect on the replication of vesicular stomatitis virus (VSV). The effect of NONO protein on JEV proliferation occurred during the replication stage, rather than the attachment and entry stages. The level of viral positive-strand RNA in NONO knockout cells was significantly reduced than that in wild-type cells at 12-48 h post-JEV infection. However, the level of negative-strand virus RNA had no difference between NONO knockout and wild-type cells at 12-24 h post-infection. In summary, our study identified a cellular protein that bound to the replication complex of flavivirus and facilitated the synthesis of positive-strand RNA.IMPORTANCEOver half of the world's population is at risk of flaviviruses infection, posing a serious global health concern. To date, there are no antiviral drugs or treatments for the severe symptoms caused by the infection of flaviviruses. Some cellular proteins could participate in the replication of virus, and these cellular proteins were also ideal targets in antiviral strategy. Here, we identified cellular NONO protein was recruited by flavivirus NS3 protein to the cytoplasm, serving as a "scaffold" for viral replication complex. Our findings also revealed that NONO protein was critical for flavivirus positive-strand RNA synthesis. Specific areas where NONO interacted with flavivirus NS3 proteins and viral UTRs have also been identified. These results propose a new mechanism for cellular protein to participate in flavivirus replication and also raise a new potential anti-flavivirus strategy.
Collapse
Affiliation(s)
- Honggen Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yun Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junmei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jinhua Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Hehner J, Schneider L, Woitalla A, Ott B, Vu KCT, Schöbel A, Hain T, Schwudke D, Herker E. Glycerophospholipid remodeling is critical for orthoflavivirus infection. Nat Commun 2024; 15:8683. [PMID: 39375358 PMCID: PMC11458896 DOI: 10.1038/s41467-024-52979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Flavivirus infection is tightly connected to host lipid metabolism. Here, we performed shotgun lipidomics of cells infected with neurotropic Zika, West Nile, and tick-borne encephalitis virus, as well as dengue and yellow fever virus. Early in infection specific lipids accumulate, e.g., neutral lipids in Zika and some lysophospholipids in all infections. Ceramide levels increase following infection with viruses that cause a cytopathic effect. In addition, fatty acid desaturation as well as glycerophospholipid metabolism are significantly altered. Importantly, depletion of enzymes involved in phosphatidylserine metabolism as well as phosphatidylinositol biosynthesis reduce orthoflavivirus titers and cytopathic effects while inhibition of fatty acid monounsaturation only rescues from virus-induced cell death. Interestingly, interfering with ceramide synthesis has opposing effects on virus replication and cytotoxicity depending on the targeted enzyme. Thus, lipid remodeling by orthoflaviviruses includes distinct changes but also common patterns shared by several viruses that are needed for efficient infection and replication.
Collapse
Affiliation(s)
- Julia Hehner
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Anna Woitalla
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Benjamin Ott
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Kim Chi Thi Vu
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Anja Schöbel
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
- Thematic Translational Unit Tuberculosis, German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Site Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
| | - Eva Herker
- Institute of Virology, University of Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Huang C, Jiang T, Pan W, Feng T, Zhou X, Wu Q, Ma F, Dai J. Ubiquitination of NS1 Confers Differential Adaptation of Zika Virus in Mammalian Hosts and Mosquito Vectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408024. [PMID: 39159062 PMCID: PMC11497017 DOI: 10.1002/advs.202408024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Arboviruses, transmitted by medical arthropods, pose a serious health threat worldwide. During viral infection, Post Translational Modifications (PTMs) are present on both host and viral proteins, regulating multiple processes of the viral lifecycle. In this study, a mammalian E3 ubiquitin ligase WWP2 (WW domain containing E3 ubiquitin ligase 2) is identified, which interacts with the NS1 protein of Zika virus (ZIKV) and mediates K63 and K48 ubiquitination of Lys 265 and Lys 284, respectively. WWP2-mediated NS1 ubiquitination leads to NS1 degradation via the ubiquitin-proteasome pathway, thereby inhibiting ZIKV infection in mammalian hosts. Simultaneously, it is found Su(dx), a protein highly homologous to host WWP2 in mosquitoes, is capable of ubiquitinating NS1 in mosquito cells. Unexpectedly, ubiquitination of NS1 in mosquitoes does not lead to NS1 degradation; instead, it promotes viral infection in mosquitoes. Correspondingly, the NS1 K265R mutant virus is less infectious to mosquitoes than the wild-type (WT) virus. The above results suggest that the ubiquitination of the NS1 protein confers different adaptations of ZIKV to hosts and vectors, and more importantly, this explains why NS1 K265-type strains have become predominantly endemic in nature. This study highlights the potential application in antiviral drug and vaccine development by targeting viral proteins' PTMs.
Collapse
Affiliation(s)
- Chenxiao Huang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
- Department of Clinical LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu School of Nanjing Medical UniversitySuzhou215000China
| | - Tao Jiang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Wen Pan
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Tingting Feng
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Xia Zhou
- School of Biology and Basic Medical ScienceSuzhou Medical College of Soochow UniversitySuzhou215000China
| | - Qihan Wu
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsNHC Key Lab of Reproduction RegulationShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200000China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammationand CAMS Key Laboratory of Synthetic Biology Regulatory ElementsSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhou215123China
| | - Jianfeng Dai
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| |
Collapse
|
7
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
9
|
Verhaegen M, Vermeire K. The endoplasmic reticulum (ER): a crucial cellular hub in flavivirus infection and potential target site for antiviral interventions. NPJ VIRUSES 2024; 2:24. [PMID: 40295816 PMCID: PMC11721386 DOI: 10.1038/s44298-024-00031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/23/2024] [Indexed: 04/30/2025]
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne flavivirus and imposes a significant healthcare threat worldwide. At present no FDA-approved specific antiviral treatment is available, and the safety of a vaccine against DENV is still on debate. Following its entry into the host cell, DENV takes advantage of the cellular secretory pathway to produce new infectious particles. The key organelle of the host cell in DENV infections is the endoplasmic reticulum (ER) which supports various stages throughout the entire life cycle of flaviviruses. This review delves into the intricate interplay between flaviviruses and the ER during their life cycle with a focus on the molecular mechanisms underlying viral replication, protein processing and virion assembly. Emphasizing the significance of the ER in the flavivirus life cycle, we highlight potential antiviral targets in ER-related steps during DENV replication and summarize the current antiviral drugs that are in (pre)clinical developmental stage. Insights into the exploitation of the ER by DENV offer promising avenues for the development of targeted antiviral strategies, providing a foundation for future research and therapeutic interventions against flaviviruses.
Collapse
Affiliation(s)
- Marijke Verhaegen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Godoy AS, Mesquita NCMR, Noske GD, Gawriljuk VO, Lithgo RM, Balcomb BH, Aschenbrenner JC, Tomlinson CWE, Winokan M, Scheen J, Marples PG, Chandran AV, Ni X, Thompson W, Fairhead M, Fearon D, Koekemoer L, Xavier MAE, Walsh M, Oliva G, von Delft F. High-throughput crystallographic fragment screening of Zika virus NS3 Helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591279. [PMID: 38746241 PMCID: PMC11092484 DOI: 10.1101/2024.04.27.591279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Zika virus (ZIKV), discovered in Africa in 1947, swiftly spread across continents, causing significant concern due to its recent association with microcephaly in newborns and Guillain-Barré syndrome in adults. Despite a decrease in prevalence, the potential for a resurgence remains, necessitating urgent therapeutic interventions. Like other flaviviruses, ZIKV presents promising drug targets within its replication machinery, notably the NS3 helicase (NS3Hel) protein, which plays critical roles in viral replication. However, a lack of structural information impedes the development of specific inhibitors targeting NS3Hel. Here we applied high-throughput crystallographic fragment screening on ZIKV NS3Hel, which yielded structures that reveal 3D binding poses of 46 fragments at multiple sites of the protein, including 11 unique fragments in the RNA-cleft site. These fragment structures provide templates for direct design of hit compounds and should thus assist the development of novel direct-acting antivirals against ZIKV and related flaviviruses, thus opening a promising avenue for combating future outbreaks.
Collapse
Affiliation(s)
- Andre S Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
- ASAP Discovery Consortium: asapdiscovery.org
| | - Nathalya C M R Mesquita
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Gabriela Dias Noske
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Victor Oliveira Gawriljuk
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Ryan M Lithgo
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Blake H Balcomb
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Jasmin Cara Aschenbrenner
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Charles W E Tomlinson
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Max Winokan
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Jenke Scheen
- Open Molecular Sciences Foundation, Davis, CA 95618, USA
- ASAP Discovery Consortium: asapdiscovery.org
| | - Peter George Marples
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Anu V Chandran
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Xiaomin Ni
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Warren Thompson
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Michael Fairhead
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Daren Fearon
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Mary-Ann Elvina Xavier
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Martin Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| |
Collapse
|
11
|
Zhang C, Li Y, Samad A, He H, Ma H, Chen Y, Jin T. Kyasanur Forest disease virus NS3 helicase: Insights into structure, activity, and inhibitors. Int J Biol Macromol 2024; 254:127856. [PMID: 37924898 DOI: 10.1016/j.ijbiomac.2023.127856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Kyasanur Forest disease virus (KFDV), a tick-borne flavivirus prevalent in India, presents a serious threat to human health. KFDV NS3 helicase (NS3hel) is considered a potential drug target due to its involvement in the viral replication complex. Here, we resolved the crystal structures of KFDV NS3hel apo and its complex with three phosphate molecules, which indicates a conformational switch during ATP hydrolysis. Our data revealed that KFDV NS3hel has a higher binding affinity for dsRNA, and its intrinsic ATPase activity was enhanced by dsRNA while being inhibited by DNA. Through mutagenesis analysis, several residues within motifs I, Ia, III, V, and VI were identified to be crucial for NS3hel ATPase activity. Notably, the M419A mutation drastically reduced NS3hel ATPase activity. We propose that the methionine-aromatic interaction between residues M419 and W294, located on the surface of the RNA-binding channel, could be a target for the design of efficient inhibitor probes. Moreover, epigallocatechin gallate (EGCG), a tea-derived polyphenol, strongly inhibited NS3hel ATPase activity with an IC50 value of 0.8 μM. Our computational docking data show that EGCG binds at the predicted druggable hotspots of NS3hel. Overall, these findings contribute to the development and design of more effective and specific inhibitors.
Collapse
Affiliation(s)
- Caiying Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Yuelong Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Abdus Samad
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hongliang He
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huan Ma
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Tengchuan Jin
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
12
|
Liu Y, Guan W, Liu H. Subgenomic Flaviviral RNAs of Dengue Viruses. Viruses 2023; 15:2306. [PMID: 38140548 PMCID: PMC10747610 DOI: 10.3390/v15122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wuxiang Guan
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| |
Collapse
|
13
|
Shiryaev SA, Cieplak P, Cheltsov A, Liddington RC, Terskikh AV. Dual function of Zika virus NS2B-NS3 protease. PLoS Pathog 2023; 19:e1011795. [PMID: 38011215 PMCID: PMC10723727 DOI: 10.1371/journal.ppat.1011795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
Zika virus (ZIKV) serine protease, indispensable for viral polyprotein processing and replication, is composed of the membrane-anchored NS2B polypeptide and the N-terminal domain of the NS3 polypeptide (NS3pro). The C-terminal domain of the NS3 polypeptide (NS3hel) is necessary for helicase activity and contains an ATP-binding site. We discovered that ZIKV NS2B-NS3pro binds single-stranded RNA with a Kd of ~0.3 μM, suggesting a novel function. We tested various structural modifications of NS2B-NS3pro and observed that constructs stabilized in the recently discovered "super-open" conformation do not bind RNA. Likewise, stabilizing NS2B-NS3pro in the "closed" (proteolytically active) conformation using substrate inhibitors abolished RNA binding. We posit that RNA binding occurs when ZIKV NS2B-NS3pro adopts the "open" conformation, which we modeled using highly homologous dengue NS2B-NS3pro crystallized in the open conformation. We identified two positively charged fork-like structures present only in the open conformation of NS3pro. These forks are conserved across Flaviviridae family and could be aligned with the positively charged grove on NS3hel, providing a contiguous binding surface for the negative RNA strand exiting helicase. We propose a "reverse inchworm" model for a tightly intertwined NS2B-NS3 helicase-protease machinery, which suggests that NS2B-NS3pro cycles between open and super-open conformations to bind and release RNA enabling long-range NS3hel processivity. The transition to the closed conformation, likely induced by the substrate, enables the classical protease activity of NS2B-NS3pro.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, La Jolla, California, United States of America
| | - Piotr Cieplak
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, La Jolla, California, United States of America
| | - Anton Cheltsov
- Q-mol LLC, San Diego, California, United States of America
| | - Robert C. Liddington
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, La Jolla, California, United States of America
| | - Alexey V. Terskikh
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, La Jolla, California, United States of America
| |
Collapse
|
14
|
Zeng Q, Liu J, Li Z, Zhang Y, Zu S, Ding X, Zhang H. Japanese encephalitis virus NS4B inhibits interferon beta production by targeting TLR3 and TRIF. Vet Microbiol 2023; 284:109849. [PMID: 37597377 DOI: 10.1016/j.vetmic.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus transmitted by mosquitoes, causing epidemics of encephalitis in humans and reproductive disorders in pigs. This virus is predominantly distributed in Asian countries and causes tens of thousands of infections in humans annually. Interferon (IFN) is an essential component of host defense against viral infection. Multiple studies have indicated that multifunctional nonstructural proteins of flaviviruses suppress the host IFN response via various strategies to facilitate viral replication. The flaviviruses encoded nonstructural protein 4B (NS4B) is a multifunctional hydrophobic nonstructural protein widely involved in viral replication, pathogenesis and host immune evasion. In this study, we demonstrated that NS4B of JEV suppressed the induction of IFN-β production, mainly through targeting the TLR3 and TRIF (a TIR domain-containing linker that induces IFN-β) proteins in the TLR3 pathway. In a dual-luciferase reporter assay, JEV NS4B significantly inhibited the activation of IFN-β promoter induced by TLR3 and simultaneously treated with poly (I:C). Moreover, NS4B also inhibited the activation of IFN-β promoter triggered by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in TLR3 signaling pathway. Furthermore, NS4B inhibited the phosphorylation of IRF3 under the stimulation of TLR3 and TRIF molecules. Mechanistically, JEV NS4B interacts with TLR3 and TRIF and confirmed by co-localization and co-immunoprecipitation assay, thereby inhibiting the activation of downstream sensors in the TLR3-mediated pathway. Overall, our results provide a novel mechanism by which JEV NS4B interferes with the host's antiviral response through targeting TLR3 receptor signaling pathway.
Collapse
Affiliation(s)
- Quan Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zhaoyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yucan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Xueyan Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Osawa T, Aoki M, Ehara H, Sekine SI. Structures of dengue virus RNA replicase complexes. Mol Cell 2023:S1097-2765(23)00470-7. [PMID: 37478848 DOI: 10.1016/j.molcel.2023.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Dengue is a mosquito-borne viral infection caused by dengue virus (DENV), a member of the flaviviruses. The DENV genome is a 5'-capped positive-sense RNA with a unique 5'-stem-loop structure (SLA), which is essential for RNA replication and 5' capping. The virus-encoded proteins NS5 and NS3 are responsible for viral genome replication, but the structural basis by which they cooperatively conduct the required tasks has remained unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of SLA-bound NS5 (PC), NS3-bound PC (PC-NS3), and an RNA-elongating NS5-NS3 complex (EC). While SLA bridges the NS5 methyltransferase and RNA-dependent RNA polymerase domains in PC, the NS3 helicase domain displaces it in elongation complex (EC). The SLA- and NS3-binding sites overlap with that of human STAT2. These structures illuminate the key steps in DENV genome replication, namely, SLA-dependent replication initiation, processive RNA elongation, and 5' capping of the nascent genomic RNA, thereby providing foundations to combat flaviviruses.
Collapse
Affiliation(s)
- Takuo Osawa
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
16
|
Barnard TR, Landry BN, Wang AB, Sagan SM. Zika virus NS3 and NS5 proteins determine strain-dependent differences in dsRNA accumulation in a host cell type-dependent manner. J Gen Virol 2023; 104. [PMID: 37289497 DOI: 10.1099/jgv.0.001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
For positive-sense RNA viruses, initiation of viral RNA replication represents a major target of antiviral responses to infection. Despite this, the interplay between viral replication and the innate antiviral response at early steps in the Zika virus (ZIKV) life cycle is not well understood. We have previously identified ZIKV isolates with differing levels of dsRNA accumulation, ZIKVPR (high dsRNA per infected cell) and ZIKVCDN (low dsRNA per infected cell), and we hypothesized that we could use reverse genetics to investigate how host and viral factors contribute to the establishment of viral RNA replication. We found that both the ZIKV NS3 and NS5 proteins as well as host factors were necessary to determine the dsRNA accumulation phenotype. Additionally, we show that dsRNA correlates with viral negative-strand RNA measured by strand-specific RT-qPCR, suggesting that dsRNA is an accurate readout of viral RNA replication. Interestingly, although we did not observe NS3- and NS5-dependent differences in cells with defects in interferon (IFN) production, differences in RNA accumulation precede induction of the IFN response, suggesting that RNA sensing pathways or intrinsic restriction factors may differentially restrict ZIKV in an NS3- and NS5-dependent manner. This work expands our understanding of the interplay of early steps of viral RNA replication and the induction of the innate antiviral response to ZIKV infection.
Collapse
Affiliation(s)
- Trisha R Barnard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Breanna N Landry
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Alex B Wang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Cheng Y, Lou JX, Liu YY, Liu CC, Chen J, Yang MC, Ye YB, Go YY, Zhou B. Intracellular Vimentin Regulates the Formation of Classical Swine Fever Virus Replication Complex through Interaction with NS5A Protein. J Virol 2023; 97:e0177022. [PMID: 37129496 PMCID: PMC10231149 DOI: 10.1128/jvi.01770-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023] Open
Abstract
Vimentin (VIM), an indispensable protein, is responsible for the formation of intermediate filament structures within cells and plays a crucial role in viral infections. However, the precise role of VIM in classical swine fever virus (CSFV) infection remains unclear. Herein, we systematically investigated the function of VIM in CSFV replication. We demonstrated that both knockdown and overexpression of VIM affected CSFV replication. Furthermore, we observed by confocal microscopy the rearrangement of cellular VIM into a cage-like structure during CSFV infection. Three-dimensional (3D) imaging indicated that the cage-like structures were localized in the endoplasmic reticulum (ER) and ringed around the double-stranded RNA (dsRNA), thereby suggesting that VIM was associated with the formation of the viral replication complex (VRC). Mechanistically, phosphorylation of VIM at serine 72 (Ser72), regulated by the RhoA/ROCK signaling pathway, induced VIM rearrangement upon CSFV infection. Confocal microscopy and coimmunoprecipitation assays revealed that VIM colocalized and interacted with CSFV NS5A. Structurally, it was determined that amino acids 96 to 407 of VIM and amino acids 251 to 416 of NS5A were the respective important domains for this interaction. Importantly, both VIM knockdown and disruption of VIM rearrangement inhibited the localization of NS5A in the ER, implying that VIM rearrangement recruited NS5A to the ER for VRC formation. Collectively, our results suggest that VIM recruits NS5A to form a stable VRC that is protected by the cage-like structure formed by VIM rearrangement, ultimately leading to enhanced virus replication. These findings highlight the critical role of VIM in the formation and stabilization of VRC, which provides alternative strategies for the development of antiviral drugs. IMPORTANCE Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly infectious disease that poses a significant threat to the global pig industry. Therefore, gaining insights into the virus and its interaction with host cells is crucial for developing effective antiviral measures and controlling the spread of CSF. Previous studies have shown that CSFV infection induces rearrangement of the endoplasmic reticulum, leading to the formation of small vesicular organelles containing nonstructural protein and double-stranded RNA of CSFV, as well as some host factors. These organelles then assemble into viral replication complexes (VRCs). In this study, we have discovered that VIM recruited CSFV NS5A to form a stable VRC that was protected by a cage-like structure formed by rearranged VIM. This enhanced viral replication. Our findings not only shed light on the molecular mechanism of CSFV replication but also offer new insights into the development of antiviral strategies for controlling CSFV.
Collapse
Affiliation(s)
- Yan Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin-xiu Lou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ya-yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chun-chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ming-chuan Yang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yin-bo Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Fiacre L, Lowenski S, Bahuon C, Dumarest M, Lambrecht B, Dridi M, Albina E, Richardson J, Zientara S, Jiménez-Clavero MÁ, Pardigon N, Gonzalez G, Lecollinet S. Evaluation of NS4A, NS4B, NS5 and 3'UTR Genetic Determinants of WNV Lineage 1 Virulence in Birds and Mammals. Viruses 2023; 15:v15051094. [PMID: 37243180 DOI: 10.3390/v15051094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.
Collapse
Affiliation(s)
- Lise Fiacre
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Steeve Lowenski
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Céline Bahuon
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Marine Dumarest
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | | | - Maha Dridi
- SCIENSANO, Avian Virology and Immunology, 1180 Brussels, Belgium
| | - Emmanuel Albina
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Jennifer Richardson
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Stéphan Zientara
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar s/n, 28130 Valdeolmos, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28001 Madrid, Spain
| | | | - Gaëlle Gonzalez
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| |
Collapse
|
19
|
Teramoto T, Choi KH, Padmanabhan R. Flavivirus proteases: The viral Achilles heel to prevent future pandemics. Antiviral Res 2023; 210:105516. [PMID: 36586467 PMCID: PMC10062209 DOI: 10.1016/j.antiviral.2022.105516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Flaviviruses are important human pathogens and include dengue (DENV), West Nile (WNV), Yellow fever virus (YFV), Japanese encephalitis (JEV) and Zika virus (ZIKV). DENV, transmitted by mosquitoes, causes diseases ranging in severity from mild dengue fever with non-specific flu-like symptoms to fatal dengue hemorrhagic fever and dengue shock syndrome. DENV infections are caused by four serotypes, DENV1-4, which interact differently with antibodies in blood serum. The incidence of DENV infection has increased dramatically in recent decades and the CDC estimates 400 million dengue infections occur each year, resulting in ∼25,000 deaths mostly among children and elderly people. Similarly, ZIKV infections are caused by infected mosquito bites to humans, can be transmitted sexually and through blood transfusions. If a pregnant woman is infected, the virus can cross the placental barrier and can spread to her fetus, causing severe brain malformations in the child including microcephaly and other birth defects. It is noteworthy that the neurological manifestations of ZIKV were also observed in DENV endemic regions, suggesting that pre-existing antibody response to DENV could augment ZIKV infection. WNV, previously unknown in the US (and known to cause only mild disease in Middle East), first arrived in New York city in 1999 (NY99) and spread throughout the US and Canada by Culex mosquitoes and birds. WNV is now endemic in North America. Thus, emerging and re-emerging flaviviruses are significant threat to human health. However, vaccines are available for only a limited number of flaviviruses, and antiviral therapies are not available for any flavivirus. Hence, there is an urgent need to develop therapeutics that interfere with essential enzymatic steps, such as protease in the flavivirus lifecycle as these viruses possess significant threat to future pandemics. In this review, we focus on our E. coli expression of NS2B hydrophilic domain (NS2BH) covalently linked to NS3 protease domain (NS3Pro) in their natural context which is processed by the combined action of both subunits of the NS2B-NS3Pro precursor. Biochemical activities of the viral protease such as solubility and autoproteolysis of NS2BH-NS3Pro linkage depended on the C-terminal portion of NS2BH linked to the NS3Pro domain. Since 2008, we also focus on the use of the recombinant protease in high throughput screens and characterization of small molecular compounds identified in these screens.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Kyung H Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47406, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
20
|
Cadar D, Simonin Y. Human Usutu Virus Infections in Europe: A New Risk on Horizon? Viruses 2022; 15:77. [PMID: 36680117 PMCID: PMC9866956 DOI: 10.3390/v15010077] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The Usutu virus (USUV), a neurotropic mosquito-borne flavivirus discovered in 1959 in South Africa, has spread over the last twenty years across the European continent. This virus follows an enzootic cycle involving mosquitoes and birds. This caused epizootics with significant bird mortality in Europe in 2016 and 2018. It can also occasionally infect humans and other mammals, including horses and bats, which act as incidental or dead-end hosts. The zoonotic risk associated with this succession of avian epizootics in Europe deserves attention, even if, to date, human cases remain exceptional. Human infection is most often asymptomatic or responsible for mild clinical symptoms. However, human Usutu infections have also been associated with neurological disorders, such as encephalitis and meningoencephalitis. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages which could co-circulate spatiotemporally. In this review we discuss several aspects of the circulation of Usutu virus in humans in Europe, the neurological disorders associated, involved viral lineages, and the issues and questions raised by their circulation.
Collapse
Affiliation(s)
- Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
21
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
22
|
de Paula Junior VF, van Tilburg MF, Morais PA, Júnior FFM, Lima EG, Oliveira VTDS, Guedes MIF, Caetano EWS, Freire VN. Quantum Biochemistry and MM-PBSA Description of the ZIKV NS2B-NS3 Protease: Insights into the Binding Interactions beyond the Catalytic Triad Pocket. Int J Mol Sci 2022; 23:ijms231710088. [PMID: 36077486 PMCID: PMC9456192 DOI: 10.3390/ijms231710088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The Zika virus protease NS2B-NS3 has a binding site formed with the participation of a H51-D75-S135 triad presenting two forms, active and inactive. Studies suggest that the inactive conformation is a good target for the design of inhibitors. In this paper, we evaluated the co-crystallized structures of the protease with the inhibitors benzoic acid (5YOD) and benzimidazole-1-ylmethanol (5H4I). We applied a protocol consisting of two steps: first, classical molecular mechanics energy minimization followed by classical molecular dynamics were performed, obtaining stabilized molecular geometries; second, the optimized/relaxed geometries were used in quantum biochemistry and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) calculations to estimate the ligand interactions with each amino acid residue of the binding pocket. We show that the quantum-level results identified essential residues for the stabilization of the 5YOD and 5H4I complexes after classical energy minimization, matching previously published experimental data. The same success, however, was not observed for the MM-PBSA simulations. The application of quantum biochemistry methods seems to be more promising for the design of novel inhibitors acting on NS2B-NS3.
Collapse
Affiliation(s)
- Valdir Ferreira de Paula Junior
- Biotechnology & Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, Brazil
- Correspondence: ; Tel.: +55-859-8541-8255
| | | | - Pablo Abreu Morais
- Federal Institute of Education, Science and Technology of Ceará, Campus Horizonte, Horizonte 62884-105, Brazil
| | - Francisco Franciné Maia Júnior
- Departamento de Ciências Naturais, Matemática e Estatística, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, Brazil
| | - Elza Gadelha Lima
- Laboratório Central de Saúde Pública do Ceará (LACEN), Fortaleza 60120-002, Brazil
| | | | | | | | | |
Collapse
|
23
|
Sun YT, Varani G. Structure of the dengue virus RNA promoter. RNA (NEW YORK, N.Y.) 2022; 28:1210-1223. [PMID: 35750488 PMCID: PMC9380747 DOI: 10.1261/rna.079197.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Dengue virus, a single-stranded positive sense RNA virus, is the most prevalent mosquito-borne pathogen in the world. Like all RNA viruses, it uses conserved structural elements within its genome to control essential replicative steps. A 70 nt stem-loop RNA structure (called SLA), found at the 5'-end of the genome of all flaviviruses, functions as the promoter for viral replication. This highly conserved structure interacts with the viral polymerase NS5 to initiate RNA synthesis. Here, we report the NMR structure of a monomeric SLA from dengue virus serotype 1, assembled to high-resolution from independently folded structural elements. The DENV1 SLA has an L-shaped structure, where the top and side helices are coaxially stacked, and the bottom helix is roughly perpendicular to them. Because the sequence is highly conserved among different flavivirus genomes, it is very likely that the three-dimensional fold and local structure of SLA are also conserved among flaviviruses and required for efficient replication. This work provides structural insight into the dengue promoter and provides the foundation for the discovery of new antiviral drugs that target this essential replicative step.
Collapse
Affiliation(s)
- Yi-Ting Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| |
Collapse
|
24
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
25
|
Zu S, Li C, Li L, Deng YQ, Chen X, Luo D, Ye Q, Huang YJ, Li XF, Zhang RR, Sun N, Zhang X, Aliyari SR, Nielsen-Saines K, Jung JU, Yang H, Qin CF, Cheng G. TRIM22 suppresses Zika virus replication by targeting NS1 and NS3 for proteasomal degradation. Cell Biosci 2022; 12:139. [PMID: 36042495 PMCID: PMC9429444 DOI: 10.1186/s13578-022-00872-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Recognition of viral invasion by innate antiviral immune system triggers activation of the type I interferon (IFN-I) and proinflammatory signaling pathways. Subsequently, IFN-I induction regulates expression of a group of genes known as IFN-I-stimulated genes (ISGs) to block viral infection. The tripartite motif containing 22 (TRIM22) is an ISG with strong antiviral functions. Results Here we have shown that the TRIM22 has been strongly upregulated both transcriptionally and translationally upon Zika virus (ZIKV) infection. ZIKV infection is associated with a wide range of clinical manifestations in human from mild to severe symptoms including abnormal fetal brain development. We found that the antiviral function of TRIM22 plays a crucial role in counterattacking ZIKV infection. Overexpression of TRIM22 protein inhibited ZIKV growth whereas deletion of TRIM22 in host cells increased ZIKV infectivity. Mechanistically, TRIM22, as a functional E3 ubiquitin ligase, promoted the ubiquitination and degradation of ZIKV nonstructural protein 1 (NS1) and nonstructural protein 3 (NS3). Further studies showed that the SPRY domain and Ring domain of TRIM22 played important roles in protein interaction and degradation, respectively. In addition, we found that TRIM22 also inhibited other flaviviruses infection including dengue virus (DENV) and yellow fever virus (YFV). Conclusion Thus, TRIM22 is an ISG with important role in host defense against flaviviruses through binding and degradation of the NS1 and NS3 proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00872-w.
Collapse
|
26
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
27
|
Cruz-Arreola O, Orduña-Diaz A, Domínguez F, Reyes-Leyva J, Vallejo-Ruiz V, Domínguez-Ramírez L, Santos-López G. In silico testing of flavonoids as potential inhibitors of protease and helicase domains of dengue and Zika viruses. PeerJ 2022; 10:e13650. [PMID: 35945938 PMCID: PMC9357371 DOI: 10.7717/peerj.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Background Dengue and Zika are two major vector-borne diseases. Dengue causes up to 25,000 deaths and nearly a 100 million cases worldwide per year, while the incidence of Zika has increased in recent years. Although Zika has been associated to fetal microcephaly and Guillain-Barré syndrome both it and dengue have common clinical symptoms such as severe headache, retroocular pain, muscle and join pain, nausea, vomiting, and rash. Currently, vaccines have been designed and antivirals have been identified for these diseases but there still need for more options for treatment. Our group previously obtained some fractions from medicinal plants that blocked dengue virus (DENV) infection in vitro. In the present work, we explored the possible targets by molecular docking a group of molecules contained in the plant fractions against DENV and Zika virus (ZIKV) NS3-helicase (NS3-hel) and NS3-protease (NS3-pro) structures. Finally, the best ligands were evaluated by molecular dynamic simulations. Methods To establish if these molecules could act as wide spectrum inhibitors, we used structures from four DENV serotypes and from ZIKV. ADFR 1.2 rc1 software was used for docking analysis; subsequently molecular dynamics analysis was carried out using AMBER20. Results Docking suggested that 3,5-dicaffeoylquinic acid (DCA01), quercetin 3-rutinoside (QNR05) and quercetin 3,7-diglucoside (QND10) can tightly bind to both NS3-hel and NS3-pro. However, after a molecular dynamics analysis, tight binding was not maintained for NS3-hel. In contrast, NS3-pro from two dengue serotypes, DENV3 and DENV4, retained both QNR05 and QND10 which converged near the catalytic site. After the molecular dynamics analysis, both ligands presented a stable trajectory over time, in contrast to DCA01. These findings allowed us to work on the design of a molecule called MOD10, using the QND10 skeleton to improve the interaction in the active site of the NS3-pro domain, which was verified through molecular dynamics simulation, turning out to be better than QNR05 and QND10, both in interaction and in the trajectory. Discussion Our results suggests that NS3-hel RNA empty binding site is not a good target for drug design as the binding site located through docking is too big. However, our results indicate that QNR05 and QND10 could block NS3-pro activity in DENV and ZIKV. In the interaction with these molecules, the sub-pocket-2 remained unoccupied in NS3-pro, leaving opportunity for improvement and drug design using the quercetin scaffold. The analysis of the NS3-pro in complex with MOD10 show a molecule that exerts contact with sub-pockets S1, S1', S2 and S3, increasing its affinity and apparent stability on NS3-pro.
Collapse
Affiliation(s)
- Omar Cruz-Arreola
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, PUEBLA, México,Instrumentación Analítica y Biosensores, Centro de Investigación en Biotecnología Aplicada (CIBA), Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, México
| | - Abdu Orduña-Diaz
- Instrumentación Analítica y Biosensores, Centro de Investigación en Biotecnología Aplicada (CIBA), Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, México
| | - Fabiola Domínguez
- Laboratorio de Biotecnología de Productos Naturales, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, Puebla, Mexico
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, PUEBLA, México
| | - Verónica Vallejo-Ruiz
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, PUEBLA, México
| | - Lenin Domínguez-Ramírez
- Department of Chemical and Biological Sciences, School of Sciences, Universidad de las Américas Puebla, San Andrés Cholula, Puebla, Mexico
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, PUEBLA, México
| |
Collapse
|
28
|
Wu X, Pan Y, Huang J, Huang S, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. The substitution at residue 218 of the NS5 protein methyltransferase domain of Tembusu virus impairs viral replication and translation and may triggers RIG-I-like receptor signaling. Poult Sci 2022; 101:102017. [PMID: 35901648 PMCID: PMC9334331 DOI: 10.1016/j.psj.2022.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Flavivirus RNA cap-methylation plays an important role in viral infection, proliferation, and escape from innate immunity. The methyltransferase (MTase) of the flavivirus NS5 protein catalyzes viral RNA methylation. The E218 amino acid of the NS5 protein MTase domain is one of the active sites of flavivirus methyltransferase. In flaviviruses, the E218A mutation abolished 2’-O methylation activity and significantly reduced N-7 methylation activity. Tembusu virus (TMUV, genus Flavivirus) was a pathogen that caused neurological symptoms in ducklings and decreased egg production in laying ducks. In this study, we focused on a comprehensive understanding of the effects of the E218A mutation on TMUV characteristics and the host immune response. E218A mutation reduced TMUV replication and proliferation, but did not affect viral adsorption and entry. Based on a TMUV replicon system, we found that the E218A mutation impaired viral translation. In addition, E218A mutant virus might be more readily recognized by RIG-I-like receptors to activate the corresponding antiviral immune signaling than WT virus. Together, our data suggest that the E218A mutation of TMUV MTase domain impairs viral replication and translation and may activates RIG-I-like receptor signaling, ultimately leading to a reduction in viral proliferation.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Shanzhi Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China.
| |
Collapse
|
29
|
Caldwell HS, Pata JD, Ciota AT. The Role of the Flavivirus Replicase in Viral Diversity and Adaptation. Viruses 2022; 14:1076. [PMID: 35632818 PMCID: PMC9143365 DOI: 10.3390/v14051076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses include several emerging and re-emerging arboviruses which cause millions of infections each year. Although relatively well-studied, much remains unknown regarding the mechanisms and means by which these viruses readily alternate and adapt to different hosts and environments. Here, we review a subset of the different aspects of flaviviral biology which impact host switching and viral fitness. These include the mechanism of replication and structural biology of the NS3 and NS5 proteins, which reproduce the viral genome; rates of mutation resulting from this replication and the role of mutational frequency in viral fitness; and the theory of quasispecies evolution and how it contributes to our understanding of genetic and phenotypic plasticity.
Collapse
Affiliation(s)
- Haley S. Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| | - Janice D. Pata
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| |
Collapse
|
30
|
Du Pont KE, McCullagh M, Geiss BJ. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1688. [PMID: 34472205 PMCID: PMC8888775 DOI: 10.1002/wrna.1688] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
Flaviviruses are a major health concern because over half of the world population is at risk of infection and there are very few antiviral therapeutics to treat diseases resulting from infection. Replication is an essential part of the flavivirus survival. One of the viral proteins, NS3 helicase, is critical for unwinding the double stranded RNA intermediate during flaviviral replication. The helicase performs the unwinding of the viral RNA intermediate structure in an ATP-dependent manner. NS3 helicase is a member of the Viral/DEAH-like subfamily of the superfamily 2 helicase containing eight highly conserved structural motifs (I, Ia, II, III, IV, IVa, V, and VI) localized between the ATP-binding and RNA-binding pockets. Of these structural motifs only three are well characterized for function in flaviviruses (I, II, and VI). The roles of the other structural motifs are not well understood for NS3 helicase function, but comparison of NS3 with other superfamily 2 helicases within the viral/DEAH-like, DEAH/RHA, and DEAD-box subfamilies can be used to elucidate the roles of these structural motifs in the flavivirus NS3 helicase. This review aims to summarize the role of each conserved structural motif within flavivirus NS3 in RNA helicase function. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Kelly E. Du Pont
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brian J. Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
31
|
Liu CC, Liu YY, Zhou JF, Chen X, Chen H, Hu JH, Chen J, Zhang J, Sun RC, Wei JC, Go YY, Morita E, Zhou B. Cellular ESCRT components are recruited to regulate the endocytic trafficking and RNA replication compartment assembly during classical swine fever virus infection. PLoS Pathog 2022; 18:e1010294. [PMID: 35120190 PMCID: PMC8849529 DOI: 10.1371/journal.ppat.1010294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
As the important molecular machinery for membrane protein sorting in eukaryotic cells, the endosomal sorting and transport complexes (ESCRT-0/I/II/III and VPS4) usually participate in various replication stages of enveloped viruses, such as endocytosis and budding. The main subunit of ESCRT-I, Tsg101, has been previously revealed to play a role in the entry and replication of classical swine fever virus (CSFV). However, the effect of the whole ESCRT machinery during CSFV infection has not yet been well defined. Here, we systematically determine the effects of subunits of ESCRT on entry, replication, and budding of CSFV by genetic analysis. We show that EAP20 (VPS25) (ESCRT-II), CHMP4B and CHMP7 (ESCRT-III) regulate CSFV entry and assist vesicles in transporting CSFV from Clathrin, early endosomes, late endosomes to lysosomes. Importantly, we first demonstrate that HRS (ESCRT-0), VPS28 (ESCRT-I), VPS25 (ESCRT-II) and adaptor protein ALIX play important roles in the formation of virus replication complexes (VRC) together with CHMP2B/4B/7 (ESCRT-III), and VPS4A. Further analyses reveal these subunits interact with CSFV nonstructural proteins (NS) and locate in the endoplasmic reticulum, but not Golgi, suggesting the role of ESCRT in regulating VRC assembly. In addition, we demonstrate that VPS4A is close to lipid droplets (LDs), indicating the importance of lipid metabolism in the formation of VRC and nucleic acid production. Altogether, we draw a new picture of cellular ESCRT machinery in CSFV entry and VRC formation, which could provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus. ESCRT machinery can be responsible for virus budding and participate in regulating virus entry. However, little has been reported on its effects on VRC formation. Here, we uncover the novel roles of ESCRT-III and VPS4A in VRC assembly and update the additional subunits involved in the intracellular trafficking of CSFV. These data indicate that the ESCRT machinery promotes CSFV replication by forming VRC, which making it become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Furthermore, we first demonstrate that the roles of ESCRT components in the formation of VRC in swine Pestivirus. Our findings highlight the growing evidence of diverse interactions between ESCRT subunits and viral factors of Flaviviridae family, and provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus.
Collapse
Affiliation(s)
- Chun-chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ya-yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiang-fei Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia-huan Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui-cong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jian-chao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
32
|
Wang S, Chan KWK, Tan MJA, Flory C, Luo D, Lescar J, Forwood JK, Vasudevan SG. A conserved arginine in NS5 binds genomic 3' stem-loop RNA for primer-independent initiation of flavivirus RNA replication. RNA (NEW YORK, N.Y.) 2022; 28:177-193. [PMID: 34759006 PMCID: PMC8906541 DOI: 10.1261/rna.078949.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The commitment to replicate the RNA genome of flaviviruses without a primer involves RNA-protein interactions that have been shown to include the recognition of the stem-loop A (SLA) in the 5' untranslated region (UTR) by the nonstructural protein NS5. We show that DENV2 NS5 arginine 888, located within the carboxy-terminal 18 residues, is completely conserved in all flaviviruses and interacts specifically with the top-loop of 3'SL in the 3'UTR which contains the pentanucleotide 5'-CACAG-3' previously shown to be critical for flavivirus RNA replication. We present virological and biochemical data showing the importance of this Arg 888 in virus viability and de novo initiation of RNA polymerase activity in vitro. Based on our binding studies, we hypothesize that ternary complex formation of NS5 with 3'SL, followed by dimerization, leads to the formation of the de novo initiation complex that could be regulated by the reversible zipping and unzipping of cis-acting RNA elements.
Collapse
Affiliation(s)
- Sai Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Charlotte Flory
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore
| | - Julian Lescar
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
- Department of Microbiology and Immunology, National University of Singapore, 117545 Singapore
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
33
|
Dai G, Han K, Huang X, Zhang L, Liu Q, Yang J, Liu Y, Li Y, Zhao D. Heat shock protein 70 (HSP70) plays important role in tembusu virus infection. Vet Microbiol 2022; 267:109377. [DOI: 10.1016/j.vetmic.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
|
34
|
Lin M, Cui W, Tian H, Zhang Y, Chen C, Yang X, Chi H, Mu Z, Chen C, Wang Z, Ji X, Yang H, Lin Z. Structural Basis of Zika Virus Helicase in RNA Unwinding and ATP Hydrolysis. ACS Infect Dis 2022; 8:150-158. [PMID: 34904824 DOI: 10.1021/acsinfecdis.1c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The flavivirus nonstructural protein 3 helicase (NS3hel) is a multifunctional domain protein that is associated with DNA/RNA helicase, nucleoside triphosphatase (NTPase), and RNA 5'-triphosphatase (RTPase) activities. As an NTPase-dependent superfamily 2 (SF2) member, NS3hel employs an NTP-driven motor force to unwind double-stranded RNA while translocating along single-stranded RNA and is extensively involved in the viral replication process. Although the structures of SF2 helicases are widely investigated as promising drug targets, the mechanism of energy transduction between NTP hydrolysis and the RNA binding sites in ZIKV NS3hel remains elusive. Here, we report the crystal structure of ZIKV NS3hel in complex with its natural substrates ATP-Mn2+ and ssRNA. Distinct from other members of the Flavivirus genus, ssRNA binding to ZIKV NS3hel induces relocation of the active water molecules and ATP-associated metal ions in the NTP hydrolysis active site, which promotes the hydrolysis of ATP and the production of AMP. Our findings highlight the importance of the allosteric role of ssRNA on the modulation of ATP hydrolysis and energy utilization.
Collapse
Affiliation(s)
- Mengmeng Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Wen Cui
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongliang Tian
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xiaoyun Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Heng Chi
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhongyu Mu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
35
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
36
|
dos Reis VP, Keller M, Schmidt K, Ulrich RG, Groschup MH. αVβ3 Integrin Expression Is Essential for Replication of Mosquito and Tick-Borne Flaviviruses in Murine Fibroblast Cells. Viruses 2021; 14:v14010018. [PMID: 35062222 PMCID: PMC8780171 DOI: 10.3390/v14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication.
Collapse
Affiliation(s)
- Vinicius Pinho dos Reis
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Institute for Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
| | - Katja Schmidt
- Microbiological Diagnostics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Deutsches Zentrum für Infektionsforschung(DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin Hermann Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (V.P.d.R.); (M.K.); (R.G.U.)
- Deutsches Zentrum für Infektionsforschung(DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-71163
| |
Collapse
|
37
|
Wu X, Zhang Y, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Huang J, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. Methyltransferase-Deficient Avian Flaviviruses Are Attenuated Due to Suppression of Viral RNA Translation and Induction of a Higher Innate Immunity. Front Immunol 2021; 12:751688. [PMID: 34691066 PMCID: PMC8526935 DOI: 10.3389/fimmu.2021.751688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The 5' end of the flavivirus genome contains a type 1 cap structure formed by sequential N-7 and 2'-O methylations by viral methyltransferase (MTase). Cap methylation of flavivirus genome is an essential structural modification to ensure the normal proliferation of the virus. Tembusu virus (TMUV) (genus Flavivirus) is a causative agent of duck egg drop syndrome and has zoonotic potential. Here, we identified the in vitro activity of TMUV MTase and determined the effect of K61-D146-K182-E218 enzymatic tetrad on N-7 and 2'-O methylation. The entire K61-D146-K182-E218 motif is essential for 2'-O MTase activity, whereas N-7 MTase activity requires only D146. To investigate its phenotype, the single point mutation (K61A, D146A, K182A or E218A) was introduced into TMUV replicon (pCMV-Rep-NanoLuc) and TMUV infectious cDNA clone (pACYC-TMUV). K-D-K-E mutations reduced the replication ability of replicon. K61A, K182A and E218A viruses were genetically stable, whereas D146A virus was unstable and reverted to WT virus. Mutant viruses were replication and virulence impaired, showing reduced growth and attenuated cytopathic effects and reduced mortality of duck embryos. Molecular mechanism studies showed that the translation efficiency of mutant viruses was inhibited and a higher host innate immunity was induced. Furthermore, we found that the translation inhibition of MTase-deficient viruses was caused by a defect in N-7 methylation, whereas the absence of 2'-O methylation did not affect viral translation. Taken together, our data validate the debilitating mechanism of MTase-deficient avian flavivirus and reveal an important role for cap-methylation in viral translation, proliferation, and escape from innate immunity.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuetian Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
38
|
Abstract
Flaviviruses such as dengue, Japanese encephalitis, West Nile, Yellow Fever and Zika virus, cause viral hemorrhagic fever and encephalitis in humans. However, antiviral therapeutics to treat or prevent flavivirus infections are not yet available. Thus, there is pressing need to develop therapeutics and vaccines that target flavivirus infections. All flaviviruses carry a positive-sense single-stranded RNA genome, which encodes ten proteins; three structural proteins form the virus shell, and seven nonstructural (NS) proteins are involved in replication of the viral genome. While all NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are part of a functional membrane-bound replication complex, enzymatic activities required for flaviviral replication reside in only two NS proteins, NS3 and NS5. NS3 functions as a protease, helicase, and triphosphatase, and NS5 as a capping enzyme, methyltransferase, and RNA-dependent RNA polymerase. In this chapter, we provide an overview of viral replication focusing on the structure and function of NS3 and NS5 replicases. We further describe strategies and examples of current efforts to identify potential flavivirus inhibitors against NS3 and NS5 enzymatic activities that can be developed as therapeutic agents to combat flavivirus infections.
Collapse
Affiliation(s)
- Ekaterina Knyazhanskaya
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
39
|
New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021; 10:pathogens10081010. [PMID: 34451474 PMCID: PMC8398659 DOI: 10.3390/pathogens10081010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
Collapse
|
40
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
41
|
The Role of the Stem-Loop A RNA Promoter in Flavivirus Replication. Viruses 2021; 13:v13061107. [PMID: 34207869 PMCID: PMC8226660 DOI: 10.3390/v13061107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
An essential challenge in the lifecycle of RNA viruses is identifying and replicating the viral genome amongst all the RNAs present in the host cell cytoplasm. Yet, how the viral polymerase selectively recognizes and copies the viral RNA genome is poorly understood. In flaviviruses, the 5′-end of the viral RNA genome contains a 70 nucleotide-long stem-loop, called stem-loop A (SLA), which functions as a promoter for genome replication. During replication, flaviviral polymerase NS5 specifically recognizes SLA to both initiate viral RNA synthesis and to methylate the 5′ guanine cap of the nascent RNA. While the sequences of this region vary between different flaviviruses, the three-way junction arrangement of secondary structures is conserved in SLA, suggesting that viruses recognize a common structural feature to replicate the viral genome rather than a particular sequence. To better understand the molecular basis of genome recognition by flaviviruses, we recently determined the crystal structures of flavivirus SLAs from dengue virus (DENV) and Zika virus (ZIKV). In this review, I will provide an overview of (1) flaviviral genome replication; (2) structures of viral SLA promoters and NS5 polymerases; and (3) and describe our current model of how NS5 polymerases specifically recognize the SLA at the 5′ terminus of the viral genome to initiate RNA synthesis at the 3′ terminus.
Collapse
|
42
|
Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells. Molecules 2021; 26:molecules26113118. [PMID: 34071102 PMCID: PMC8197141 DOI: 10.3390/molecules26113118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3′-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.
Collapse
|
43
|
Li D, Lin MH, Rawle DJ, Jin H, Wu Z, Wang L, Lor M, Hussain M, Aaskov J, Harrich D. Dengue virus-free defective interfering particles have potent and broad anti-dengue virus activity. Commun Biol 2021; 4:557. [PMID: 33976375 PMCID: PMC8113447 DOI: 10.1038/s42003-021-02064-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Dengue virus (DENV) is spread from human to human through the bite of the female Aedes aegypti mosquito and leads to about 100 million clinical infections yearly. Treatment options and vaccine availability for DENV are limited. Defective interfering particles (DIPs) are considered a promising antiviral approach but infectious virus contamination has limited their development. Here, a DENV-derived DIP production cell line was developed that continuously produced DENV-free DIPs. The DIPs contained and could deliver to cells a DENV serotype 2 subgenomic defective-interfering RNA, which was originally discovered in DENV infected patients. The DIPs released into cell culture supernatant were purified and could potently inhibit replication of all DENV serotypes in cells. Antiviral therapeutics are limited for many viral infection. The DIP system described could be re-purposed to make antiviral DIPs for many other RNA viruses such as SARS-CoV-2, yellow fever, West Nile and Zika viruses.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zhonglan Wu
- Ningxia Center for Disease Control and Prevention, Ningxia, China
| | - Lu Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mazhar Hussain
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
44
|
Bakoa F, Préhaud C, Beauclair G, Chazal M, Mantel N, Lafon M, Jouvenet N. Genomic diversity contributes to the neuroinvasiveness of the Yellow fever French neurotropic vaccine. NPJ Vaccines 2021; 6:64. [PMID: 33903598 PMCID: PMC8076279 DOI: 10.1038/s41541-021-00318-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Mass vaccination with the live attenuated vaccine YF-17D is the current way to prevent infection with Yellow fever virus (YFV). However, 0.000012-0.00002% of vaccinated patients develop post-vaccination neurological syndrome (YEL-AND). Understanding the factors responsible for neuroinvasion, neurotropism, and neurovirulence of the vaccine is critical for improving its biosafety. The YF-FNV vaccine strain, known to be associated with a higher frequency of YEL-AND (0.3-0.4%) than YF-17D, is an excellent model to study vaccine neuroinvasiveness. We determined that neuroinvasiveness of YF-FNV occured both via infection and passage through human brain endothelial cells. Plaque purification and next generation sequencing (NGS) identified several neuroinvasive variants. Their neuroinvasiveness was not higher than that of YF-FNV. However, rebuilding the YF-FNV population diversity from a set of isolated YF-FNV-N variants restored the original neuroinvasive phenotype of YF-FNV. Therefore, we conclude that viral population diversity is a critical factor for YFV vaccine neuroinvasiveness.
Collapse
Affiliation(s)
- Florian Bakoa
- Unité de Neuroimmunologie Virale, Institut Pasteur, Paris, France
- Research and External Innovation Department, Sanofi Pasteur, Marcy L'Etoile, France
- Sorbonne Université, Collège doctoral, Paris, France
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
| | | | - Guillaume Beauclair
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
- Institut de Biologie Intégrative de la Cellule, UMR9198, Équipe Autophagie et Immunité Antivirale, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Maxime Chazal
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Nathalie Mantel
- Research and External Innovation Department, Sanofi Pasteur, Marcy L'Etoile, France
| | - Monique Lafon
- Unité de Neuroimmunologie Virale, Institut Pasteur, Paris, France.
| | - Nolwenn Jouvenet
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France.
| |
Collapse
|
45
|
Choudhury SKM, Ma X, Abdullah SW, Zheng H. Activation and Inhibition of the NLRP3 Inflammasome by RNA Viruses. J Inflamm Res 2021; 14:1145-1163. [PMID: 33814921 PMCID: PMC8009543 DOI: 10.2147/jir.s295706] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation refers to the response of the immune system to viral, bacterial, and fungal infections, or other foreign particles in the body, which can involve the production of a wide array of soluble inflammatory mediators. It is important for the development of many RNA virus-infected diseases. The primary factors through which the infection becomes inflammation involve inflammasome. Inflammasomes are proteins complex that the activation is responsive to specific pathogens, host cell damage, and other environmental stimuli. Inflammasomes bring about the maturation of various pro-inflammatory cytokines such as IL-18 and IL-1β in order to mediate the innate immune defense mechanisms. Many RNA viruses and their components, such as encephalomyocarditis virus (EMCV) 2B viroporin, the viral RNA of hepatitis C virus, the influenza virus M2 viroporin, the respiratory syncytial virus (RSV) small hydrophobic (SH) viroporin, and the human rhinovirus (HRV) 2B viroporin can activate the Nod-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome to influence the inflammatory response. On the other hand, several viruses use virus-encoded proteins to suppress inflammation activation, such as the influenza virus NS1 protein and the measles virus (MV) V protein. In this review, we summarize how RNA virus infection leads to the activation or inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- S K Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| |
Collapse
|
46
|
Zhao Z, Tao M, Han W, Fan Z, Imran M, Cao S, Ye J. Nuclear localization of Zika virus NS5 contributes to suppression of type I interferon production and response. J Gen Virol 2021; 102:001376. [PMID: 31859616 PMCID: PMC8515865 DOI: 10.1099/jgv.0.001376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus, which caused an unprecedented epidemic in Latin America. Among all viral non-structural proteins in flavivirus, NS5 is the most highly conserved and has multiple crucial functions, including participating in viral RNA replication and suppressing host innate immunity. Although ZIKV NS5 prominently localizes in the nucleus during infection, its specific nuclear localization signal (NLS), and its role in viral replication and pathogenesis remain controversial. Here, we identified aa 11-90 and aa 370-406 regions that contain NLSs, which are critical for nuclear localization of ZIKV NS5. Further experiments demonstrated that nuclear localization of ZIKV NS5 predominantly participates in suppression of interferon regulatory factor 3 (IRF3)-mediated activation of type I IFN (IFN-I) transcription and inhibition of IFN-I downstream response independent of its effect on signal transducers and activators of transcription 2 (STAT2) degradation. These results suggest that subcellular localization of NS5 is important for its function on innate immune suppression, which provides new insight into ZIKV pathogenesis.
Collapse
Affiliation(s)
- Zikai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengying Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wei Han
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zijing Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Imran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
47
|
Potential Dual Role of West Nile Virus NS2B in Orchestrating NS3 Enzymatic Activity in Viral Replication. Viruses 2021; 13:v13020216. [PMID: 33572517 PMCID: PMC7911885 DOI: 10.3390/v13020216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
West Nile virus (WNV) nonstructural protein 3 (NS3) harbors the viral triphosphatase and helicase for viral RNA synthesis and, together with NS2B, constitutes the protease responsible for polyprotein processing. NS3 is a soluble protein, but it is localized to specialized compartments at the rough endoplasmic reticulum (RER), where its enzymatic functions are essential for virus replication. However, the mechanistic details behind the recruitment of NS3 from the cytoplasm to the RER have not yet been fully elucidated. In this study, we employed immunofluorescence and biochemical assays to demonstrate that NS3, when expressed individually and when cleaved from the viral polyprotein, is localized exclusively to the cytoplasm. Furthermore, NS3 appeared to be peripherally recruited to the RER and proteolytically active when NS2B was provided in trans. Thus, we provide evidence for a potential additional role for NS2B in not only serving as the cofactor for the NS3 protease, but also in recruiting NS3 from the cytoplasm to the RER for proper enzymatic activity. Results from our study suggest that targeting the interaction between NS2B and NS3 in disrupting the NS3 ER localization may be an attractive avenue for antiviral drug discovery.
Collapse
|
48
|
Syzdykova LR, Binke S, Keyer VV, Shevtsov AB, Zaripov MM, Zhylkibayev AA, Ramanculov EM, Shustov AV. Fluorescent tagging the NS1 protein in yellow fever virus: Replication-capable viruses which produce the secretory GFP-NS1 fusion protein. Virus Res 2020; 294:198291. [PMID: 33388393 DOI: 10.1016/j.virusres.2020.198291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/18/2020] [Accepted: 12/25/2020] [Indexed: 12/29/2022]
Abstract
Yellow fever virus, the prototype in the genus Flavivirus, was used to develop viruses in which the nonstructural protein NS1 is genetically fused to GFP in the context of viruses capable of autonomous replication. The GFP-tagging of NS1 at the amino-terminus appeared possible despite the presence of a small and functionally important domain at the NS1's amino-terminus which can be distorted by such fusing. GFP-tagged NS1 viruses were rescued from DNA-launched molecular clones. The initially produced GFP-tagged NS1 virus was capable of only poor replication. Sequential passages of the virus in cell cultures resulted in the appearance of mutations in GFP, NS4A, NS4B and NS5. The mutations which change amino acid sequences of GFP, NS4A and NS5 have the adaptive effect on the replication of GFP-tagged NS1 viruses. The pattern of GFP-fluorescence indicates that the GFP-NS1 fusion protein is produced into the endoplasmic reticulum. The intracellular GFP-NS1 fusion protein colocalizes with dsRNA. The discovered forms of extracellular GFP-NS1 possibly include tetramers and hexamers.
Collapse
Affiliation(s)
- Laura R Syzdykova
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Stephan Binke
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Viktoriya V Keyer
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Alexandr B Shevtsov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Mikhail M Zaripov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russian Federation.
| | | | - Erlan M Ramanculov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Alexandr V Shustov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| |
Collapse
|
49
|
Single Amino Acid Mutations Affect Zika Virus Replication In Vitro and Virulence In Vivo. Viruses 2020; 12:v12111295. [PMID: 33198111 PMCID: PMC7697975 DOI: 10.3390/v12111295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The 2014–2016 Zika virus (ZIKV) epidemic in the Americas resulted in large deposits of next-generation sequencing data from clinical samples. This resource was mined to identify emerging mutations and trends in mutations as the outbreak progressed over time. Information on transmission dynamics, prevalence, and persistence of intra-host mutants, and the position of a mutation on a protein were then used to prioritize 544 reported mutations based on their ability to impact ZIKV phenotype. Using this criteria, six mutants (representing naturally occurring mutations) were generated as synthetic infectious clones using a 2015 Puerto Rican epidemic strain PRVABC59 as the parental backbone. The phenotypes of these naturally occurring variants were examined using both cell culture and murine model systems. Mutants had distinct phenotypes, including changes in replication rate, embryo death, and decreased head size. In particular, a NS2B mutant previously detected during in vivo studies in rhesus macaques was found to cause lethal infections in adult mice, abortions in pregnant females, and increased viral genome copies in both brain tissue and blood of female mice. Additionally, mutants with changes in the region of NS3 that interfaces with NS5 during replication displayed reduced replication in the blood of adult mice. This analytical pathway, integrating both bioinformatic and wet lab experiments, provides a foundation for understanding how naturally occurring single mutations affect disease outcome and can be used to predict the of severity of future ZIKV outbreaks. To determine if naturally occurring individual mutations in the Zika virus epidemic genotype affect viral virulence or replication rate in vitro or in vivo, we generated an infectious clone representing the epidemic genotype of stain Puerto Rico, 2015. Using this clone, six mutants were created by changing nucleotides in the genome to cause one to two amino acid substitutions in the encoded proteins. The six mutants we generated represent mutations that differentiated the early epidemic genotype from genotypes that were either ancestral or that occurred later in the epidemic. We assayed each mutant for changes in growth rate, and for virulence in adult mice and pregnant mice. Three of the mutants caused catastrophic embryo effects including increased embryonic death or significant decrease in head diameter. Three other mutants that had mutations in a genome region associated with replication resulted in changes in in vitro and in vivo replication rates. These results illustrate the potential impact of individual mutations in viral phenotype.
Collapse
|
50
|
Kumar D, Kumar A, Bhardwaj T, Giri R. Zika virus NS4A N-Terminal region (1-48) acts as a cofactor for inducing NTPase activity of NS3 helicase but not NS3 protease. Arch Biochem Biophys 2020; 695:108631. [DOI: 10.1016/j.abb.2020.108631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
|