1
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
2
|
Kim MS, Jeon S, Lee HJ, Ri HS, Cho AR, Park EJ, Yeo JS, Kim JH, Lee J. NKG2D (Natural Killer Group 2, Member D) ligand expression and ameloblastoma recurrence: a retrospective immunohistological pilot study. BMC Oral Health 2024; 24:1102. [PMID: 39289711 PMCID: PMC11409757 DOI: 10.1186/s12903-024-04873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND/PURPOSE This retrospective immunohistological pilot study aimed to investigate the influence of natural killer group 2, member D (NKG2D) ligand expression on ameloblastoma recurrence after surgical resection. It also aimed to elucidate additional clinical factors that could serve as predictors of ameloblastoma recurrence. MATERIALS AND METHODS This study included 96 patients who were histologically diagnosed with ameloblastoma after surgical resection. The expression of NKG2D ligands, including UL16-binding proteins (ULBPs) 1-3 and major histocompatibility complex class I chain-related molecule (MIC) A/B, was evaluated in formalin-fixed paraffin-embedded tumor tissues via immunohistochemistry assays. Furthermore, the patients' electronic medical records were reviewed. Multivariate Cox regression analysis was conducted, and data were expressed as adjusted hazard ratios [HRs] with 95% confidence intervals [95% CIs]. RESULTS Multivariate analysis revealed that recurrent tumors (ref.: primary; adjusted HR [95% CI]: 2.780 [1.136, 6.803], p = 0.025) and positive MICA/B expression (ref.: negative; adjusted HR [95% CI]: 0.223 [0.050, 0.989], p = 0.048) independently affected recurrence-free survival in ameloblastoma. CONCLUSION This study identified recurrent cases and loss of MICA/B expression as independent predictors of early ameloblastoma recurrence following surgical resection. The findings suggest that decreased MICA/B expression might undermine NKG2D-mediated tumor immunosurveillance, thereby influencing early recurrence.
Collapse
Affiliation(s)
- Mee-Seon Kim
- Department of Pathology, School of Dentistry, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Soeun Jeon
- Department of Anesthesia and Pain Medicine, School of Dentistry, Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea.
- Department of Anesthesia and Pain Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu, Republic of Korea.
| | - Hyeon Jeong Lee
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hyun-Su Ri
- Department of Anesthesia and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ah-Reum Cho
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Eun Ji Park
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jin Song Yeo
- Department of Anesthesia and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jiyoun Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Gutiérrez-Iñiguez C, Cervantes-Rodríguez P, González-Hernández LA, Andrade-Villanueva JF, Gutiérrez-Silerio GY, Peña Rodríguez M, Rubio-Sánchez AX, García-Castillo E, Marín-Contreras ME, Del Toro-Arreola S, Bueno-Topete MR, Vega-Magaña N. Unraveling the non-fitness status of NK cells: Examining the NKp30 receptor and its isoforms distribution in HIV/HCV coinfected patients. Mol Immunol 2024; 172:9-16. [PMID: 38850777 DOI: 10.1016/j.molimm.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND HIV/HCV coinfection is associated with a rapid progression to liver damage. Specifically, NK cell population dysregulation is of particular interest, as these cells have been shown to block HCV replication effectively and have an anti-fibrogenic activity. The NKp30 receptor is linked to tumor cell lysis and has a crucial role during viral infections. In the present study, we determined the subpopulations of NK cells based on CD56 and CD16 expression, NKp30 receptor expression, its isoforms A, B, and C, along with the cytotoxicity molecules in patients with HIV/HCV. RESULTS evidenced by the APRI and FIB-4 indices, the HCV-infected patients presented greater liver damage than the HIV and HIV/HCV groups. The HCV group presented a decreased expression of NKp30 isoform A, and NK cell frequency was not different between groups; however, CD56brigth subpopulation, NKp30 receptor, and CD247 adaptor chain were decreased in HIV/HCV patients; further, we described increased levels of soluble IL-8, IL-10, IL-12, and IL-23 in the serum of HIV/HCV patients. CONCLUSIONS HCV and HIV/HCV patients have multiple parameters of non-fitness status in NK cells; awareness of these dysfunctional immunological parameters in HIV/HCV and HCV patients can elucidate possible novel therapeutics directed towards the improvement of NK cell fitness status, in order to improve their function against liver damage.
Collapse
Affiliation(s)
- Cecilia Gutiérrez-Iñiguez
- Maestría en Microbiología Médica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Paulina Cervantes-Rodríguez
- Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara, Jalisco CP.44430, Mexico
| | - Luz Alicia González-Hernández
- Unidad de VIH del Antiguo Hospital Civil "Fray Antonio Alcalde", Guadalajara, Jalisco CP.44200, Mexico; Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44200, Mexico
| | | | - Gloria Yareli Gutiérrez-Silerio
- Laboratorio de endocrinología y nutrición, Facultad de Medicina de la Universidad Autónoma de Querétaro, Querétaro CP.76140, Mexico
| | - Marcela Peña Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes (LaDEER), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Alina Xcaret Rubio-Sánchez
- Maestría en Microbiología Médica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Estefania García-Castillo
- Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP.44340, Mexico
| | - María Eugenia Marín-Contreras
- Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP.44340, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas (IECD), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas (IECD), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Natali Vega-Magaña
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes (LaDEER), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico; Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Mexico.
| |
Collapse
|
4
|
Nappi F, Alzamil A, Avtaar Singh SS, Spadaccio C, Bonnet N. Current Knowledge on the Interaction of Human Cytomegalovirus Infection, Encoded miRNAs, and Acute Aortic Syndrome. Viruses 2023; 15:2027. [PMID: 37896804 PMCID: PMC10611417 DOI: 10.3390/v15102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Aortic dissection is a clinicopathological entity caused by rupture of the intima, leading to a high mortality if not treated. Over time, diagnostic and investigative methods, antihypertensive therapy, and early referrals have resulted in improved outcomes according to registry data. Some data have also emerged from recent studies suggesting a link between Human Cytomegalovirus (HCMV) infection and aortic dissection. Furthermore, the use of microRNAs has also become increasingly widespread in the literature. These have been noted to play a role in aortic dissections with elevated levels noted in studies as early as 2017. This review aims to provide a broad and holistic overview of the role of miRNAs, while studying the role of HCMV infection in the context of aortic dissections. The roles of long non-coding RNAs, circular RNAs, and microRNAs are explored to identify changes in expression during aortic dissections. The use of such biomarkers may one day be translated into clinical practice to allow early detection and prognostication of outcomes and drive preventative and therapeutic options in the future.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | | | - Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Mayo Clinic, Rochester, Rochester, MN 55905, USA;
| | - Nicolas Bonnet
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| |
Collapse
|
5
|
Qin Y, Mace EM, Barton JP. An inference model gives insights into innate immune adaptation and repertoire diversity. Proc Natl Acad Sci U S A 2023; 120:e2305859120. [PMID: 37695895 PMCID: PMC10515141 DOI: 10.1073/pnas.2305859120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
The innate immune system is the body's first line of defense against infection. Natural killer (NK) cells, a vital part of the innate immune system, help to control infection and eliminate cancer. Studies have identified a vast array of receptors that NK cells use to discriminate between healthy and unhealthy cells. However, at present, it is difficult to explain how NK cells will respond to novel stimuli in different environments. In addition, the expression of different receptors on individual NK cells is highly stochastic, but the reason for these variegated expression patterns is unclear. Here, we studied the recognition of unhealthy target cells as an inference problem, where NK cells must distinguish between healthy targets with normal variability in ligand expression and ones that are clear "outliers." Our mathematical model fits well with experimental data, including NK cells' adaptation to changing environments and responses to different target cells. Furthermore, we find that stochastic, "sparse" receptor expression profiles are best able to detect a variety of possible threats, in agreement with experimental studies of the NK cell repertoire. While our study was specifically motivated by NK cells, our model is general and could also apply more broadly to explain principles of target recognition for other immune cell types.
Collapse
Affiliation(s)
- Yawei Qin
- Department of Physics and Astronomy, University of California, Riverside, CA92521
| | - Emily M. Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY10032
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, CA92521
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15260
| |
Collapse
|
6
|
Yao Y, Kong W, Yang L, Ding Y, Cui H. Immunity and Immune Evasion Mechanisms of Epstein-Barr Virus. Viral Immunol 2023; 36:303-317. [PMID: 37285188 DOI: 10.1089/vim.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human oncogenic virus to be identified, which evades the body's immune surveillance through multiple mechanisms that allow long-term latent infection. Under certain pathological conditions, EBVs undergo a transition from the latent phase to the lytic phase and cause targeted dysregulation of the host immune system, leading to the development of EBV-related diseases. Therefore, an in-depth understanding of the mechanism of developing an immune response to EBV and the evasion of immune recognition by EBV is important for the understanding of the pathogenesis of EBV, which is of great significance for finding strategies to prevent EBV infection, and developing a therapy to treat EBV-associated diseases. In this review, we will discuss the molecular mechanisms of host immunological responses to EBV infection and the mechanisms of EBV-mediated immune evasion during chronic active infection.
Collapse
Affiliation(s)
- Yanqing Yao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Yu JL, Jang SRJ, Liu KY. Exploring the Interactions of Oncolytic Viral Therapy and Immunotherapy of Anti-CTLA-4 for Malignant Melanoma Mice Model. Cells 2023; 12:cells12030507. [PMID: 36766849 PMCID: PMC9914370 DOI: 10.3390/cells12030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
Oncolytic ability to direct target and lyse tumor cells makes oncolytic virus therapy (OVT) a promising approach to treating cancer. Despite its therapeutic potential to stimulate anti-tumor immune responses, it also has immunosuppressive effects. The efficacy of OVTs as monotherapies can be enhanced by appropriate adjuvant therapy such as anti-CTLA-4. In this paper, we propose a mathematical model to explore the interactions of combined therapy of oncolytic viruses and a checkpoint inhibitor, anti-CTLA-4. The model incorporates both the susceptible and infected tumor populations, natural killer cell population, virus population, tumor-specific immune populations, virus-specific immune populations, tumor suppressive cytokine IFN-g, and the effect of immune checkpoint inhibitor CTLA-4. In particular, we distinguish the tumor-specific immune abilities of CD8+ T, NK cells, and CD4+ T cells and describe the destructive ability of cytokine on tumor cells as well as the inhibitory capacity of CTLA-4 on various components. Our model is validated through the experimental results. We also investigate various dosing strategies to improve treatment outcomes. Our study reveals that tumor killing rate by cytokines, cytokine decay rate, and tumor growth rate play important roles on both the OVT monotherapy and the combination therapy. Moreover, parameters related to CD8+ T cell killing have a large impact on treatment outcomes with OVT alone, whereas parameters associated with IFN-g strongly influence treatment responses for the combined therapy. We also found that virus killing by NK cells may halt the desired spread of OVs and enhance the probability of tumor escape during the treatment. Our study reveals that it is the activation of host anti-tumor immune system responses rather than its direct destruction of the tumor cells plays a major biological function of the combined therapy.
Collapse
Affiliation(s)
- Jui-Ling Yu
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 43301, Taiwan
- Correspondence:
| | - Sophia R.-J. Jang
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Kwei-Yan Liu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 53053, Taiwan
| |
Collapse
|
8
|
Brigleb PH, Kouame E, Fiske KL, Taylor GM, Urbanek K, Medina Sanchez L, Hinterleitner R, Jabri B, Dermody TS. NK cells contribute to reovirus-induced IFN responses and loss of tolerance to dietary antigen. JCI Insight 2022; 7:159823. [PMID: 35993365 PMCID: PMC9462493 DOI: 10.1172/jci.insight.159823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Celiac disease is an immune-mediated intestinal disorder that results from loss of oral tolerance (LOT) to dietary gluten. Reovirus elicits inflammatory Th1 cells and suppresses Treg responses to dietary antigen in a strain-dependent manner. Strain type 1 Lang (T1L) breaks oral tolerance, while strain type 3 Dearing reassortant virus (T3D-RV) does not. We discovered that intestinal infection by T1L in mice leads to the recruitment and activation of NK cells in mesenteric lymph nodes (MLNs) in a type I IFN-dependent manner. Once activated following infection, NK cells produce type II IFN and contribute to IFN-stimulated gene expression in the MLNs, which in turn induces inflammatory DC and T cell responses. Immune depletion of NK cells impairs T1L-induced LOT to newly introduced food antigen. These studies indicate that NK cells modulate the response to dietary antigen in the presence of a viral infection.
Collapse
Affiliation(s)
- Pamela H. Brigleb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elaine Kouame
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Kay L. Fiske
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Gwen M. Taylor
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Kelly Urbanek
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Luzmariel Medina Sanchez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA.,Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Terence S. Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| |
Collapse
|
9
|
Le H, Spearman P, Waggoner SN, Singh K. Ebola virus protein VP40 stimulates IL-12- and IL-18-dependent activation of human natural killer cells. JCI Insight 2022; 7:158902. [PMID: 35862204 PMCID: PMC9462474 DOI: 10.1172/jci.insight.158902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulation of activated natural killer (NK) cells in tissues during Ebola virus infection contributes to Ebola virus disease (EVD) pathogenesis. Yet, immunization with Ebola virus-like particles (VLPs) comprising glycoprotein and matrix protein VP40 provides rapid, NK cell–mediated protection against Ebola challenge. We used Ebola VLPs as the viral surrogates to elucidate the molecular mechanism by which Ebola virus triggers heightened NK cell activity. Incubation of human peripheral blood mononuclear cells with Ebola VLPs or VP40 protein led to increased expression of IFN-γ, TNF-α, granzyme B, and perforin by CD3–CD56+ NK cells, along with increases in degranulation and cytotoxic activity of these cells. Optimal activation required accessory cells like CD14+ myeloid and CD14– cells and triggered increased secretion of numerous inflammatory cytokines. VP40-induced IFN-γ and TNF-α secretion by NK cells was dependent on IL-12 and IL-18 and suppressed by IL-10. In contrast, their increased degranulation was dependent on IL-12 with little influence of IL-18 or IL-10. These results demonstrate that Ebola VP40 stimulates NK cell functions in an IL-12– and IL-18–dependent manner that involves CD14+ and CD14– accessory cells. These potentially novel findings may help in designing improved intervention strategies required to control viral transmission during Ebola outbreaks.
Collapse
Affiliation(s)
- Hung Le
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Paul Spearman
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Stephen N Waggoner
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Karnail Singh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| |
Collapse
|
10
|
Carroll HK, Duffy AG, O'Farrelly C. Liver Immunology, Immunotherapy, and Liver Cancers: Time for a Rethink? Semin Liver Dis 2022; 42:212-224. [PMID: 35263795 DOI: 10.1055/s-0042-1744143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The complex immune system of the liver has a major role in tumor surveillance, but also partly explains why current immune therapies are poorly effective against liver cancers. Known primarily for its tolerogenic capacity, the hepatic immune repertoire also comprises diverse populations of armored immune cells with tumor surveillant roles. In healthy people, these work together to successfully identify malignant cells and prevent their proliferation, thus halting tumor formation. When frontline hepatic immune surveillance systems fail, compromised hepatic immunity, driven by obesity, infection, or other pathological factors, allows primary or secondary liver cancers to develop. Tumor growth promotes the normal tolerogenic immunological milieu of the liver, perhaps explaining why current immunotherapies fail to work. This review explores the complex local liver immune system with the hope of identifying potential therapeutic targets needed to best overcome immunological barriers in the liver to create an environment no longer hostile to immunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Hailey K Carroll
- Department of Medical Oncology, The Mater Hospital, Dublin, Ireland
| | - Austin G Duffy
- Department of Medical Oncology, The Mater Hospital, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
11
|
D’Anna SE, Maniscalco M, Cappello F, Carone M, Motta A, Balbi B, Ricciardolo FLM, Caramori G, Di Stefano A. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med 2021; 53:135-150. [PMID: 32997525 PMCID: PMC7877965 DOI: 10.1080/07853890.2020.1831050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD) patients, bacterial and viral infections play a relevant role in worsening lung function and, therefore, favour disease progression. The inflammatory response to lung infections may become a specific indication of the bacterial and viral infections. We here review data on the bacterial-viral infections and related airways and lung parenchyma inflammation in stable and exacerbated COPD, focussing our attention on the prevalent molecular pathways in these different clinical conditions. The roles of macrophages, autophagy and NETosis are also briefly discussed in the context of lung infections in COPD. Controlling their combined response may restore a balanced lung homeostasis, reducing the risk of lung function decline. KEY MESSAGE Bacteria and viruses can influence the responses of the innate and adaptive immune system in the lung of chronic obstructive pulmonary disease (COPD) patients. The relationship between viruses and bacterial colonization, and the consequences of the imbalance of these components can modulate the inflammatory state of the COPD lung. The complex actions involving immune trigger cells, which activate innate and cell-mediated inflammatory responses, could be responsible for the clinical consequences of irreversible airflow limitation, lung remodelling and emphysema in COPD patients.
Collapse
Affiliation(s)
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), Istituto di Anatomia Umana e Istologia Università degli Studi di Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Bari, Bari, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Fabio L. M. Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, AOU San Luigi Gonzaga, Torino, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini morfologiche e funzionali (BIOMORF), Università degli studi di Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| |
Collapse
|
12
|
Beran J, Špajdel M, Slíva J. Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course. Viruses 2021; 13:2246. [PMID: 34835052 PMCID: PMC8619495 DOI: 10.3390/v13112246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Since its licensing in 1971, the synthetic compound inosine pranobex has been effectively combating viral infections, including herpes zoster, varicella, measles, and infections caused by the herpes simplex virus, human papillomavirus, Epstein-Barr virus, cytomegalovirus, and respiratory viruses. With the emergence of SARS-CoV-2, new and existing drugs have been intensively evaluated for their potential as COVID-19 medication. Due to its potent immunomodulatory properties, inosine pranobex, an orally administered drug with pleiotropic effects, can, during early treatment, alter the course of the disease. We describe the action of inosine pranobex in the body and give an overview of existing evidence collected to support further efforts to study this drug in a rigorous clinical trial setup.
Collapse
Affiliation(s)
- Jiří Beran
- Department for Tropical, Travel Medicine and Immunization, Institute of Postgraduate Health Education, 100 05 Prague, Czech Republic
| | - Marián Špajdel
- Department of Psychology, Faculty of Philosophy and Arts, Trnava University, 918 43 Trnava, Slovakia;
| | - Jiří Slíva
- Department of Pharmacology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| |
Collapse
|
13
|
Jeyaraman M, Muthu S, Bapat A, Jain R, Sushmitha E, Gulati A, Channaiah Anudeep T, Dilip SJ, Jha NK, Kumar D, Kesari KK, Ojha S, Dholpuria S, Gupta G, Dureja H, Chellappan DK, Singh SK, Dua K, Jha SK. Bracing NK cell based therapy to relegate pulmonary inflammation in COVID-19. Heliyon 2021; 7:e07635. [PMID: 34312598 PMCID: PMC8294777 DOI: 10.1016/j.heliyon.2021.e07635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/05/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The contagiosity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has startled mankind and has brought our lives to a standstill. The treatment focused mainly on repurposed immunomodulatory and antiviral agents along with the availability of a few vaccines for prophylaxis to vanquish COVID-19. This seemingly mandates a deeper understanding of the disease pathogenesis. This necessitates a plausible extrapolation of cell-based therapy to COVID-19 and is regarded equivalently significant. Recently, correlative pieces of clinical evidence reported a robust decline in lymphocyte count in severe COVID-19 patients that suggest dysregulated immune responses as a key element contributing to the pathophysiological alterations. The large granular lymphocytes also known as natural killer (NK) cells play a heterogeneous role in biological functioning wherein their frontline action defends the body against a wide array of infections and tumors. They prominently play a critical role in viral clearance and executing immuno-modulatory activities. Accumulated clinical evidence demonstrate a decrease in the number of NK cells in circulation with or without phenotypical exhaustion. These plausibly contribute to the progression of pulmonary inflammation in COVID-19 pneumonia and result in acute lung injury. In this review, we have outlined the present understanding of the immunological response of NK cells in COVID-19 infection. We have also discussed the possible use of these powerful biological cells as a therapeutic agent in view of preventing immunological harms of SARS-CoV-2 and the current challenges in advocating NK cell therapy for the same.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Orthopedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
| | - Asawari Bapat
- Quality and Regulatory Affairs, Infohealth FZE, United Arab Emirates
| | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - E.S. Sushmitha
- Department of Dermatology, Raja Rajeswari Medical College & Hospital, Bengaluru, Karnataka
| | - Arun Gulati
- Department of Orthopedics, Kalpana Chawla Government Medical College & Hospital, Karnal, Haryana, India
| | - Talagavadi Channaiah Anudeep
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai, Maharashtra, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering &Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sunny Dholpuria
- Indian Scientific Education and Technology Foundation, Lucknow, 226002, UP, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kamal Dua
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering &Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
14
|
Zuo W, Zhao X. Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application. Clin Immunol 2021; 227:108727. [PMID: 33887436 PMCID: PMC8055501 DOI: 10.1016/j.clim.2021.108727] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
With the global spread of coronavirus disease 2019 (COVID-19), the important role of natural killer (NK) cells in the control of various viral infections attracted more interest, via non-specific activation, such as antibody-dependent cell-mediated cytotoxicity (ADCC) and activating receptors, as well as specific activation, such as memory-like NK generation. In response to different viral infections, NK cells fight viruses in different ways, and different NK subsets proliferate. For instance, cytomegalovirus (CMV) induces NKG2C + CD57 + KIR+ NK cells to expand 3-6 months after hematopoietic stem cell transplantation (HSCT), but human immunodeficiency virus (HIV) induces KIR3DS1+/KIR3DL1 NK cells to expand in the acute phase of infection. However, the similarities and differences among these processes and their molecular mechanisms have not been fully discussed. In this article, we provide a summary and comparison of antiviral mechanisms, unique subset expansion and time periods in peripheral blood and tissues under different conditions of CMV, HIV, Epstein-Barr virus (EBV), COVID-19 and hepatitis B virus (HBV) infections. Accordingly, we also discuss current clinical NK-associated antiviral applications, including cell therapy and NK-related biological agents, and we state the progress and future prospects of NK cell antiviral treatment.
Collapse
Affiliation(s)
- Wei Zuo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
15
|
Beran J, Špajdel M, Katzerová V, Holoušová A, Malyš J, Finger Rousková J, Slíva J. Inosine Pranobex Significantly Decreased the Case-Fatality Rate among PCR Positive Elderly with SARS-CoV-2 at Three Nursing Homes in the Czech Republic. Pathogens 2020; 9:pathogens9121055. [PMID: 33339426 PMCID: PMC7766462 DOI: 10.3390/pathogens9121055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
During the COVID-19 pandemic, the elderly population has been disproportionately affected, especially those in nursing homes (NH). Inosine pranobex (IP) has been previously demonstrated to be effective in treating acute viral respiratory infections. In three NH experiencing the SARS-CoV-2 virus epidemic, we started treatment with IP as soon as clients tested PCR+. In Litovel, CZ, the difference in case-fatality rate (CFR) for the PCR+ group using vs. not using IP was statistically significant, and the odds ratio (OR) was 7.2. When comparing all those taking IP in the three NH vs. the non-drug PCR+ group in Litovel, the odds ratio was lower for all three NH, but still significant at 2.9. The CFR in all three tested NHs, age range 75-84, compared to the CFR in all NHs in the Czech Republic, was significantly reduced (7.5% vs. 18%) (OR: 2.8); there was also a significant difference across all age groups (OR: 1.7). In our study with 301 residents, the CFR was significantly reduced (OR: 2.8) to 11.9% (17/142) in comparison to a study in Ireland with 27.6% (211/764). We think the effect of IP was significant in this reduction; nevertheless, these are preliminary results that need larger-scale trials on COVID-19 patients.
Collapse
Affiliation(s)
- Jiří Beran
- Department for Tropical, Travel Medicine and Immunization, Institute of Postgraduate Health Education, 100 05 Prague, Czech Republic
- Correspondence: ; Tel.: +420-603-113-867 or +420-495-541-584
| | - Marian Špajdel
- Department of Psychology, Faculty of Philosophy and Arts, Trnava University, 918 43 Trnava, Slovakia;
| | | | - Alena Holoušová
- Sanatorium Topas, 534 01 Holice, Czech Republic; (A.H.); (J.M.)
| | - Jan Malyš
- Sanatorium Topas, 534 01 Holice, Czech Republic; (A.H.); (J.M.)
| | - Jana Finger Rousková
- Senior dům Beránek Úpice, 542 32 Úpice, Czech Republic;
- Department of Pharmacology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Jiří Slíva
- Department of Pharmacology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| |
Collapse
|
16
|
Human cytomegalovirus-encoded MicroRNAs: A master regulator of latent infection. INFECTION GENETICS AND EVOLUTION 2020; 78:104119. [DOI: 10.1016/j.meegid.2019.104119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
|
17
|
Shah SV, Manickam C, Ram DR, Kroll K, Itell H, Permar SR, Barouch DH, Klatt NR, Reeves RK. CMV Primes Functional Alternative Signaling in Adaptive Δg NK Cells but Is Subverted by Lentivirus Infection in Rhesus Macaques. Cell Rep 2019; 25:2766-2774.e3. [PMID: 30517864 PMCID: PMC6372106 DOI: 10.1016/j.celrep.2018.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022] Open
Abstract
Despite burgeoning evidence demonstrating the adaptive properties of natural killer (NK) cells, mechanistic data explaining these phenomena are lacking. Following antibody sensitization, NK cells lacking the Fc receptor (FcR) signaling chain (Δg) acquire adaptive features, including robust proliferation, multi-functionality, rapid killing, and mobilization to sites of virus exposure. Using the rhesus macaque model, we demonstrate the systemic distribution of Δg NK cells expressing memory features, including downregulated Helios and Eomes. Furthermore, we find that Δg NK cells abandon typical γ-chain/Syk in lieu of CD3ζ-Zap70 signaling. FCγRIIIa (CD16) density, mucosal homing, and function are all coupled to this alternate signaling, which in itself requires priming by rhesus cytomegalovirus (rhCMV). Simian immunodeficiency virus (SIV) infections further expand gut-homing adaptive NK cells but result in pathogenic suppression of CD3ζ-Zap70 signaling and function. Herein, we provide a mechanism of virus-dependent alternative signaling that may explain the acquisition of adaptive features by primate NK cells and could be targeted for future vaccine or curative therapies. Gamma-chain-deficient adaptive NK cells are robust mediators of antiviral immunity via ADCC. Shah et al. demonstrate using macaque models that acquisition of these features requires previous priming with CMV infection and involves alternative signaling via CD3zeta but is actively suppressed by lentivirus infection.
Collapse
Affiliation(s)
- Spandan V Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Itell
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Nichole R Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Miami, Miami, FL 33136, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019; 20:ijms20153715. [PMID: 31366013 PMCID: PMC6695959 DOI: 10.3390/ijms20153715] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells play a critical role in host defense against viral infections. The mechanisms of recognition and killing of virus-infected cells mediated by NK cells are still only partially defined. Several viruses induce, on the surface of target cells, the expression of molecules that are specifically recognized by NK cell-activating receptors. The main NK cell-activating receptors involved in the recognition and killing of virus-infected cells are NKG2D and DNAM-1. In particular, ligands for DNAM-1 are nectin/nectin-like molecules involved also in mechanisms allowing viral infection. Viruses adopt several immune evasion strategies, including those affecting NK cell-mediated immune surveillance, causing persistent viral infection and the development of virus-associated diseases. The virus's immune evasion efficacy depends on molecules differently expressed during the various phases of infection. In this review, we overview the molecular strategies adopted by viruses, specifically cytomegalovirus (CMV), human immunodeficiency virus (HIV-1), herpes virus (HSV), Epstein-Barr virus (EBV) and hepatitis C virus (HCV), aiming to evade NK cell-mediated surveillance, with a special focus on the modulation of DNAM-1 activating receptor and its ligands in various phases of the viral life cycle. The increasing understanding of mechanisms involved in the modulation of activating ligands, together with those mediating the viral immune evasion strategies, would provide critical tools leading to design novel NK cell-based immunotherapies aiming at viral infection control, thus improving cure strategies of virus-associated diseases.
Collapse
|
19
|
Campbell TM, McSharry BP, Steain M, Russell TA, Tscharke DC, Kennedy JJ, Slobedman B, Abendroth A. Functional paralysis of human natural killer cells by alphaherpesviruses. PLoS Pathog 2019; 15:e1007784. [PMID: 31194857 PMCID: PMC6564036 DOI: 10.1371/journal.ppat.1007784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are implicated as important anti-viral immune effectors in varicella zoster virus (VZV) infection. VZV can productively infect human NK cells, yet it is unknown how, or if, VZV can directly affect NK cell function. Here we demonstrate that VZV potently impairs the ability of NK cells to respond to target cell stimulation in vitro, leading to a loss of both cytotoxic and cytokine responses. Remarkably, not only were VZV infected NK cells affected, but VZV antigen negative NK cells that were exposed to virus in culture were also inhibited. This powerful impairment of function was dependent on direct contact between NK cells and VZV infected inoculum cells. Profiling of the NK cell surface receptor phenotype by multiparameter flow cytometry revealed that functional receptor expression is predominantly stable. Furthermore, inhibited NK cells were still capable of releasing cytotoxic granules when the stimulation signal bypassed receptor/ligand interactions and early signalling, suggesting that VZV paralyses NK cells from responding. Phosflow examination of key components in the degranulation signalling cascade also demonstrated perturbation following culture with VZV. In addition to inhibiting degranulation, IFN-γ and TNF production were also repressed by VZV co-culture, which was most strongly regulated in VZV infected NK cells. Interestingly, the closely related virus, herpes simplex virus type 1 (HSV-1), was also capable of efficiently infecting NK cells in a cell-associated manner, and demonstrated a similar capacity to render NK cells unresponsive to target cell stimulation–however HSV-1 differentially targeted cytokine production compared to VZV. Our findings progress a growing understanding of pathogen inhibition of NK cell function, and reveal a previously unreported strategy for VZV to manipulate the immune response. Natural killer (NK) cells–as their name implies–are the immune system’s ready to respond ‘killers’, being able to help control viral infection by cytolytic killing of infected cells and secretion of pro-inflammatory cytokines to activate and direct the immune response. In retaliation, viruses like varicella zoster virus (VZV; the cause of chickenpox and shingles) work to dampen the immune system in order to establish infection in human hosts. We have identified a previously uncharacterised ability of VZV to render NK cells unresponsive to target cells, hindering NK cells from both cytotoxic function and cytokine production. NK cells still maintained predominantly stable expression of functional surface receptors, and were capable of releasing cytotoxic granules when given a receptor-independent stimulus. In this way, VZV paralyses NK cells from functionally responding to target cells, essentially taking the ‘killer’ out of natural killer cells.
Collapse
Affiliation(s)
- Tessa Mollie Campbell
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Brian Patrick McSharry
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Megan Steain
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Tiffany Ann Russell
- Department of Microbial Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - David Carl Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jarrod John Kennedy
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
20
|
Abstract
Higher organisms are all born with general immunity as well as with, increasingly, more specific immune systems. All immune mechanisms function with the intent of aiding the body in defense against infection. Internal and external factors alike have varying effects on the immune system, and the immune response is tailored specifically to each one. Accompanying the components of the human innate and adaptive immune systems are the other intermingling systems of the human body. Increasing understanding of the body's immune interactions with other systems has opened new avenues of study, including that of the microbiome. The microbiome has become a highly active area of research over the last 10 to 20 years since the NIH began funding the Human Microbiome Project (HMP), which was established in 2007. Several publications have focused on the characterization, functions, and complex interplay of the microbiome as it relates to the rest of the body. A dysfunction between the microbiome and the host has been linked to various diseases including cancers, metabolic deficiencies, autoimmune disorders, and infectious diseases. Further understanding of the microbiome and its interaction with the host in relation to diseases is needed in order to understand the implications of microbiome dysfunction and the possible use of microbiota in the prevention of disease. In this review, we have summarized information on the immune system, the microbiome, the microbiome's interplay with other systems, and the association of the immune system and the microbiome in diseases such as diabetes and colorectal cancer.
Collapse
Affiliation(s)
| | - Sohail Siraj
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX
| | - Krishna Patel
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX
| | - Umesh T. Sankpal
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX
| | - Stephen Mathew
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX
| | - Riyaz Basha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX
| |
Collapse
|
21
|
Interactions of NK Cells and Trophoblast Cells. Methodological Aspects. Bull Exp Biol Med 2018; 165:548-553. [PMID: 30121921 DOI: 10.1007/s10517-018-4212-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 12/28/2022]
Abstract
NK cells present in different organs differ by their functional characteristics, in particular, proliferative activity. For studying tissue-resident NK cells, tissue-specific microenvironment should be reproduced. In case of decidual NK cells, this microenvironment is created by trophoblast cells. We developed a method for evaluation of proliferative activity of peripheral blood NK cells in the presence of trophoblast cells. Proliferative activity of peripheral blood NK cells was evaluated by the expression of protein Ki-67 after culturing with JEG-3 trophoblast cells. This method allows evaluating the functional state of NK cells in microenvironment specific for the decidua.
Collapse
|
22
|
Brisse E, Wouters CH, Andrei G, Matthys P. How Viruses Contribute to the Pathogenesis of Hemophagocytic Lymphohistiocytosis. Front Immunol 2017; 8:1102. [PMID: 28936212 PMCID: PMC5594061 DOI: 10.3389/fimmu.2017.01102] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/22/2017] [Indexed: 11/23/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening, hyperinflammatory syndrome, characterized by the uncontrolled activation of macrophages and T cells, eliciting key symptoms such as persistent fever, hepatosplenomegaly, pancytopenia, hemophagocytosis, hyperferritinemia, and coagulopathy. Viral infections are frequently implicated in the onset of active HLH episodes, both in primary, genetic HLH as in the secondary, acquired form. Infections with herpesviruses such as Epstein-Barr virus and cytomegalovirus are the most common. In autoimmune diseases, a link between viral infections and autoreactive immune responses has been recognized for a considerable time. However, the mechanisms by which viruses contribute to HLH pathogenesis remain to be clarified. In this viewpoint, different factors that may come into play are discussed. Viruses, particularly larger DNA viruses such as herpesviruses, are potent modulators of the immune response. By evading immune recognition, interfering with cytokine balances and inhibiting apoptotic pathways, viruses may increase the host's susceptibility to HLH development. In particular cases, a direct connection between the viral infection and inhibition of natural killer cell or T cell cytotoxicity was reported, indicating that viruses may create immunological deficiencies reminiscent of primary HLH.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine H. Wouters
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
- University Hospital Gasthuisberg, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Shemer-Avni Y, Kundu K, Shemesh A, Brusilovsky M, Yossef R, Meshesha M, Solomon-Alemayehu S, Levin S, Gershoni-Yahalom O, Campbell KS, Porgador A. Expression of NKp46 Splice Variants in Nasal Lavage Following Respiratory Viral Infection: Domain 1-Negative Isoforms Predominate and Manifest Higher Activity. Front Immunol 2017; 8:161. [PMID: 28261217 PMCID: PMC5309248 DOI: 10.3389/fimmu.2017.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/31/2017] [Indexed: 01/20/2023] Open
Abstract
The natural killer (NK) cell activating receptor NKp46/NCR1 plays a critical role in elimination of virus-infected and tumor cells. The NCR1 gene can be transcribed into five different splice variants, but the functional importance and physiological distribution of NKp46 isoforms are not yet fully understood. Here, we shed light on differential expression of NKp46 splice variants in viral respiratory tract infections and their functional difference at the cellular level. NKp46 was the most predominantly expressed natural cytotoxicity receptor in the nasal lavage of patients infected with four respiratory viruses: respiratory syncytia virus, adenovirus, human metapneumovirus, or influenza A. Expression of NKp30 was far lower and NKp44 was absent in all patients. Domain 1-negative NKp46 splice variants (i.e., NKp46 isoform d) were the predominantly expressed isoform in nasal lavage following viral infections. Using our unique anti-NKp46 mAb, D2-9A5, which recognizes the D2 extracellular domain, and a commercial anti-NKp46 mAb, 9E2, which recognizes D1 domain, allowed us to identify a small subset of NKp46 D1-negative splice variant-expressing cells within cultured human primary NK cells. This NKp46 D1-negative subset also showed higher degranulation efficiency in term of CD107a surface expression. NK-92 cell lines expressing NKp46 D1-negative and NKp46 D1-positive splice variants also showed functional differences when interacting with targets. A NKp46 D1-negative isoform-expressing NK-92 cell line showed enhanced degranulation activity. To our knowledge, we provide the first evidence showing the physiological distribution and functional importance of human NKp46 splice variants under pathological conditions.
Collapse
Affiliation(s)
- Yonat Shemer-Avni
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Kiran Kundu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Rami Yossef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Mesfin Meshesha
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Semaria Solomon-Alemayehu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Shai Levin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Kerry S Campbell
- Institute for Cancer Research, Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
24
|
Bellinghausen C, Rohde GGU, Savelkoul PHM, Wouters EFM, Stassen FRM. Viral-bacterial interactions in the respiratory tract. J Gen Virol 2016; 97:3089-3102. [PMID: 27902340 DOI: 10.1099/jgv.0.000627] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the respiratory tract, viruses and bacteria can interact on multiple levels. It is well known that respiratory viruses, particularly influenza viruses, increase the susceptibility to secondary bacterial infections. Numerous mechanisms, including compromised physical and immunological barriers, and changes in the microenvironment have hereby been shown to contribute to the development of secondary bacterial infections. In contrast, our understanding of how bacteria shape a response to subsequent viral infection is still limited. There is emerging evidence that persistent infection (or colonization) of the lower respiratory tract (LRT) with potential pathogenic bacteria, as observed in diseases like chronic obstructive pulmonary disease or cystic fibrosis, modulates subsequent viral infections by increasing viral entry receptors and modulating the inflammatory response. Moreover, recent studies suggest that even healthy lungs are not, as had long been assumed, sterile. The composition of the lung microbiome may thus modulate responses to viral infections. Here we summarize the current knowledge on the co-pathogenesis between viruses and bacteria in LRT infections.
Collapse
Affiliation(s)
- Carla Bellinghausen
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
25
|
Abstract
Natural killer cells are a diverse group of innate lymphocytes that are specialized to rapidly respond to cancerous or virus-infected cells. NK cell function is controlled by the integration of signals from activating and inhibitory receptors expressed at the cell surface. Variegated expression patterns of these activating and inhibitory receptors at the single cell level leads to a highly diverse NK cell repertoire. Here I review the factors that influence NK cell repertoire diversity and its functional consequences for our ability to fight viruses.
Collapse
Affiliation(s)
- Catherine A. Blish
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine
- Immunology Program, Stanford University School of Medicine, Stanford, California
| |
Collapse
|