1
|
Tang J, Wang L, Fang W, Su CM, Kim J, Du Y, Yoo D. Coinfection with bacterial pathogens and genetic modification of PRRSV-2 for suppression of NF-κB and attenuation of proinflammatory responses. Virology 2025; 606:110484. [PMID: 40086205 DOI: 10.1016/j.virol.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infects pulmonary alveolar macrophages and induces inflammation in the respiratory system. In swine farms, coinfection with PRRSV and bacterial pathogens is common and can result in clinically complicated outcomes, including porcine respiratory disease complex. Coinfection can cause excessive expressions of proinflammatory mediators and may lead to cytokine-storm-like syndrome. An immunological hallmark of PRRSV-2 is the bidirectional regulation of NF-κB with the nucleocapsid (N) protein identified as the NF-κB activator. We generated an NF-κB-silencing mutant PRRSV-2 by mutating the N gene to block its binding to PIAS1 [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1)]. PIAS1 functions as an NF-κB repressor, and thus, the PIAS1-binding modified N-mutant PRRSV-2 became NF-κB activation-resistant in its phenotype. During coinfection of pigs with PRRSV-2 and Streptococcus suis, the N-mutant PRRSV-2 decreased the expression of proinflammatory cytokines and showed clinical attenuation. This review describes the coinfection of pigs with various pathogens, the generation of mutant PRRSV for NF-κB suppression, inflammatory profiles during bacterial coinfection, and the potential application of these findings to designing a new vaccine candidate for PRRSV-2.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chia-Ming Su
- Department of Biochemistry and Cell Biology, School of Medicine, Boston University, Boston, MA, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yijun Du
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Zhao M, Xiao X, Jin D, Zhai L, Li Y, Yang Q, Xing F, Qiao W, Yan X, Tang Q. Composition and Biological Activity of Colored Rice-A Comprehensive Review. Foods 2025; 14:1394. [PMID: 40282795 PMCID: PMC12026479 DOI: 10.3390/foods14081394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Colored rice (black, purple, red and brown) has been consumed in China for nearly 4000 years. Recent research has focused on exploring its nutritional and metabolomic profiles and associated health benefits. Due to the improvement in detection and quantification techniques for health-promoting compounds and their activities, the number of studies has increased significantly. In this regard, a timely and updated review of research on nutritional composition, phytochemistry, and metabolite content and composition can significantly enhance consumer awareness. Here, we present a detailed and up-to-date understanding and comparison of the nutritional and phytochemical (metabolite) composition of colored rice. While earlier literature reviews focus on either single type of colored rice or briefly present nutritional comparison or bioactivities, here we present more detailed nutrient profile comparison (carbohydrates, fats, proteins, amino acids, minerals, and vitamins), together with the most recent comparative data on phytochemicals/metabolites (flavonoids, anthocyanins, fatty acids, amino acids and derivatives, phenolic acids, organic acids, alkaloids, and others). We discuss how metabolomics has broadened the scope of research by providing an increasing number of detected compounds. Moreover, directions on the improvement in colored rice nutritional quality through breeding are also presented. Finally, we present the health-beneficial activities (antioxidant, anti-inflammatory, antimicrobial, hypoglycemic, neuroprotective, anti-aging, and antitumor activities) of different colored rice varieties, together with examples of the clinical trials, and discuss which bioactive substances are correlated with such activities.
Collapse
Affiliation(s)
- Mingchao Zhao
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Xiaorong Xiao
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Dingsha Jin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Linan Zhai
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
| | - Yapeng Li
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Qingwen Yang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Funeng Xing
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Weihua Qiao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaowei Yan
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Qingjie Tang
- Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou 571100, China; (M.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
3
|
Fang S, Zhu L, Bai S, Tian W, Pan Y, Zhang S, Bi R, Liang M, Luo G, Chen X, Peng M, Liu H, Xie L, Zhang R, Zhou W, Zhang S, Xie T, Zha H, Luo C, Wang X, Sun Y, Liu H, Jiang M, Wu W, Zou X, Chen Y, Yuan J, Jiang Y, Wu N, Shi M, Shu Y, Luo H. Year-round infectome profiling of acute febrile respiratory illness unveiled complex epidemiological dynamics postlifting of COVID-19 restrictions. Int J Infect Dis 2025; 155:107896. [PMID: 40164380 DOI: 10.1016/j.ijid.2025.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVES Following the lifting of COVID-19 nonpharmaceutical interventions in China, respiratory infections surged, though the specific causes remained unclear. This study provided a comprehensive overview of the infectome in patients with acute febrile respiratory illness (AFRI) to inform disease surveillance. METHODS Between March 2023 and February 2024, 1163 oropharyngeal swabs from AFRI patients and 338 from healthy individuals were collected in Shenzhen. Meta-transcriptomic sequencing was employed for microbial analysis. RESULTS We identified 14 viruses and 10 bacteria species known to cause human disease. Influenza virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Streptococcus pneumoniae, and redondovirus were the most common, with a negative correlation between H3N2 and SARS-CoV-2. Notably, we detected certain enterovirus subtypes (e.g., Coxsackievirus A6 and Echovirus 30), previously overlooked pathogens (e.g., redondovirus), and rare pathogens like Streptococcus pseudopneumoniae. Comparisons revealed five pathogens showed significantly higher abundance in patients than in controls, despite no significant differences for others probably due to their limited number of positive pools. Seasonal shifts in microbial diversity and composition were observed, with climate factors like temperature and precipitation playing a role. Phylogenetic analysis revealed changes in genotype diversity and dominant pathogen lineages. CONCLUSION This study highlighted complex pathogen infections in AFRI patients following COVID-19 restrictions, demonstrating the value of meta-transcriptomics over PCR-based methods for more detailed pathogen surveillance.
Collapse
Affiliation(s)
- Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, PR China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Weijian Tian
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Yuanfei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Shumiao Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Rongjun Bi
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Minqi Liang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Gengyan Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China
| | - Xiaojing Chen
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Minwu Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China
| | - Hanlin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China
| | - Lu Xie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China
| | - Runzi Zhang
- Nanjing University of Information Science and Technology, Nanjing, PR China
| | - Wudi Zhou
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Haolu Zha
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, PR China
| | - Ying Sun
- Shenzhen Center for Disease Control and Prevention, Shenzhen, PR China
| | - Hui Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, PR China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, PR China
| | - Weihua Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, PR China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, PR China
| | - Yaoqing Chen
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China
| | - Jianhui Yuan
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, PR China
| | - Ying Jiang
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, PR China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, PR China
| | - Mang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China; State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, PR China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, PR China.
| |
Collapse
|
4
|
Kamio N, Cueno ME, Takagi A, Imai K. Porphyromonas gingivalis gingipain potentially activates influenza A virus infectivity through proteolytic cleavage of viral hemagglutinin. J Biol Chem 2025; 301:108166. [PMID: 39793895 PMCID: PMC11834065 DOI: 10.1016/j.jbc.2025.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/03/2024] [Accepted: 11/30/2024] [Indexed: 01/13/2025] Open
Abstract
Influenza is a worldwide health problem that causes significant morbidity and mortality among the elderly; therefore, its prevention is important. During influenza virus infection, the cleavage of hemagglutinin (HA) is essential for the virus to enter host cells. Influenza virus-bacteria interactions influence the pathogenicity of infections, and specific bacteria contribute to the severity of the disease by participating in HA cleavage. Poor oral hygiene and the presence of oral bacteria are associated with influenza. Porphyromonas gingivalis, a periodontopathic bacterium, is particularly associated with influenza; however, the underlying mechanisms remain unclear. In the present study, we observed P. gingivalis culture supernatant promoted viral release and cell-to-cell spread of the infection. Further investigation revealed that the supernatant contained cleaved HA. Therefore, we focused on gingipains (Rgp and Kgp) which are trypsin-like proteases produced by P. gingivalis. We determined that the Rgp inhibitor inhibited both HA cleavage and the increase in virus release associated with the P. gingivalis culture supernatant, whereas such effects were not observed with the Kgp inhibitor. In addition, Rgp-deficient P. gingivalis culture supernatant failed to cleave HA, enhance virus spread, or increase virus release. In contrast, Kgp-deficient P. gingivalis culture supernatant cleaved HA and promoted infection. These results indicated that P. gingivalis-secreted Rgp has the potential to activate influenza virus infectivity through HA cleavage, suggesting that understanding the effects of P. gingivalis on influenza virus infection will contribute to the establishment of influenza prevention measures.
Collapse
Affiliation(s)
- Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan.
| | - Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Asako Takagi
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
5
|
Matsuura Y, Murashita M, Oyasu T, Kodate A, Sadamoto Y, Endo A, Sageshima H, Tsuchida T. Severe invasive streptococcal infection in a patient with COVID-19: A case report. IDCases 2025; 39:e02169. [PMID: 39989948 PMCID: PMC11847517 DOI: 10.1016/j.idcr.2025.e02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 08/09/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
A 63-year-old male with a history of hypertension had contracted Coronavirus Disease-2019 (COVID-19) five days before visiting our hospital and was recovering at home. He was brought to the hospital for emergency care because of bilateral leg pain, diarrhea, and shortness of breath. On arrival to the hospital, the patient was already suffering from multiple organ failure and was admitted to the intensive care unit. Streptococcus dysgalactiae subsp. equisimilis (SDSE) was detected in blood and sputum cultures, and we started antimicrobial therapy for septic shock/streptococcal toxic shock syndrome. However, multiple organ failure progressed, and the patient died one day after admission. This case suggests the possibility of immunosuppression due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The patient had no history of immunodeficiency, and COVID-19 may have contributed to the poor outcome. COVID-19 combined with SDSE sepsis has not been previously reported. Therefore, this case was considered rare.
Collapse
Affiliation(s)
- Yuki Matsuura
- Department of Emergency and Critical Care Medicine, Sapporo City General Hospital, Sapporo, Japan
| | - Mone Murashita
- Department of Emergency and Critical Care Medicine, Sapporo City General Hospital, Sapporo, Japan
| | - Takayoshi Oyasu
- Department of Emergency and Critical Care Medicine, Sapporo City General Hospital, Sapporo, Japan
| | - Akira Kodate
- Department of Emergency and Critical Care Medicine, Sapporo City General Hospital, Sapporo, Japan
| | - Yoshihiro Sadamoto
- Department of Emergency and Critical Care Medicine, Sapporo City General Hospital, Sapporo, Japan
| | - Akio Endo
- Department of Emergency and Critical Care Medicine, Sapporo City General Hospital, Sapporo, Japan
| | - Hisako Sageshima
- Department of Emergency and Critical Care Medicine, Sapporo City General Hospital, Sapporo, Japan
| | - Takumi Tsuchida
- Department of Emergency and Critical Care Medicine, Sapporo City General Hospital, Sapporo, Japan
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Solé D, Kuschnir FC, Pastorino AC, Constantino CF, Galvão C, Chong E Silva DC, Baptistella E, Goudouris ES, Sakano E, Ejzenbaum F, Matsumoto FY, Mizoguchi FM, Aarestrup FM, Wandalsen GF, Chong Neto HJ, Brito de Oliveira JV, Lubianca Neto JF, Rizzo MCV, Silva Chavarria MLF, Urrutia-Pereira M, Filho NAR, de Paula Motta Rubini N, Mion O, Piltcher OB, Ramos RT, Francesco RD, Roithmann R, Anselmo-Lima WT, Romano FR, de Mello Júnior JF. V Brazilian Consensus on Rhinitis - 2024. Braz J Otorhinolaryngol 2025; 91:101500. [PMID: 39388827 PMCID: PMC11497470 DOI: 10.1016/j.bjorl.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024] Open
Abstract
Since we published the "IV Brazilian Consensus on Rhinitis", in2017, several advances have been achieved and have enabled a further understanding of the different aspects of "Rhinitis". This new guideline, developed jointly by ASBAI, SBP and SBORL, represents a relevant milestone in the updated and integrated management of the different forms of the disease, and it aims to unify evidence-based approaches to improve the diagnosis and treatment of this common and often underestimated condition. The document covers a wide range of topics, including clear definitions of the different phenotypes and endotypes of rhinitis, risk factors, updated diagnostic criteria, and recommended methods for clinical and laboratory investigation. We stress the importance of detailed clinical history and objective assessment, as well as tools for control and assessing severity tools an accurate diagnostic approach to the disease. Regarding treatment, it emphasizes the treatment customization, considering the severity of symptoms, the presence of comorbidities and the impact on the patient's quality of life. We discuss different drug treatment, in addition to non-pharmacological measures, such as environmental control and specific immunotherapy; and the possible role of immunobiological agents. Furthermore, the consensus addresses issues related to patient education, prevention and management of special situations, such as rhinitis in children, in pregnant women and in the elderly. In short, the "V Brazilian Consensus on Rhinitis" represents a comprehensive and updated guide for healthcare professionals involved in the diagnosis and management of rhinitis, aiming to improve patients' quality of life through an integrated and evidence-based approach.
Collapse
Affiliation(s)
- Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Fábio Chigres Kuschnir
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antônio Carlos Pastorino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Clóvis F Constantino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de Santo Amaro, São Paulo, SP, Brazil
| | - Clóvis Galvão
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Carla Chong E Silva
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Eduardo Baptistella
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Ekaterini Simões Goudouris
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eulália Sakano
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fábio Ejzenbaum
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fausto Yoshio Matsumoto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Flavio Massao Mizoguchi
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Fernando Monteiro Aarestrup
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Gustavo F Wandalsen
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Herberto José Chong Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | | | - José Faibes Lubianca Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Marilyn Urrutia-Pereira
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Nelson Augusto Rosário Filho
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Norma de Paula Motta Rubini
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Olavo Mion
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Otávio Bejzman Piltcher
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazi
| | - Regina Terse Ramos
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Renata Di Francesco
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Roithmann
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Luterana do Brasil, Canos, RS, Brazil
| | - Wilma Terezinha Anselmo-Lima
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Fabrizio Ricci Romano
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - João Ferreira de Mello Júnior
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Shu W, Yang Q, Le J, Cai Q, Dai H, Luo L, Tong J, Song Y, Chen B, Tang Y, Jin D. Analysis of coinfections in patients with hematologic malignancies and COVID-19 by next-generation sequencing of bronchoalveolar lavage fluid. Eur J Med Res 2024; 29:576. [PMID: 39623478 PMCID: PMC11613933 DOI: 10.1186/s40001-024-02180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Coinfections in patients with coronavirus disease 2019 (COVID-19) affect patient prognosis. Patients with hematologic malignancies (HMs) are usually immunosuppressed and may be at high risk of coinfection, but few related data have been reported. Here, we conducted a retrospective study to explore coinfections in patients with HMs and COVID-19 by next-generation sequencing (NGS) of bronchoalveolar lavage fluid (BALF). METHODS The data of hospitalized patients with pneumonia who underwent NGS analysis of BALF were reviewed. COVID-19 patients with HMs were enrolled in the HM group, and those without HMs were enrolled in the non-HM group. The coinfections of the two groups identified by NGS were analyzed. RESULTS Fifteen patients were enrolled in the HM group, and 14 patients were enrolled in the non-HM group. The coinfection rates in the HM group and non-HM group were 80.0% and 85.7%, respectively. The percentage of coinfected bacteria in the HM group was significantly lower than that in the non-HM group (20.0% vs 71.4%, p = 0.005). The coinfection rates of fungi and viruses were 60.0% and 35.7%, respectively, in the HM group and 35.7% and 78.6%, respectively, in the non-HM group, with no significant differences. The most common coexisting pathogen in patients with HMs was Pneumocystis jirovecii (33.3%), and the most common coexisting pathogen in patients without HMs was human gammaherpesvirus 4 (50%). Coinfection with herpesviruses occurred frequently in both groups. CONCLUSIONS Our study showed that the majority of hospitalized patients with COVID-19 are likely to be co-infected with other pathogens. Pneumocystis jiroveci and herpesvirus are commonly coinfected pathogens in patients with HMs. Bacterial coinfection is rare in patients with HMs but is more common in patients without HMs.
Collapse
Affiliation(s)
- Wenxiu Shu
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Qianqian Yang
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Jing Le
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Qianqian Cai
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Hui Dai
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Liufei Luo
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Jiaqi Tong
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Yanping Song
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Bingrong Chen
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Yaodong Tang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Dian Jin
- Department of Hematology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China.
| |
Collapse
|
8
|
Salemi N, Shojaie B, Bolourinejad P, Sherkat R, Zamanifar A, Ghaedrahmati F, Azizi M, Aria H. Diversity in the Clinical Course and Outcome of COVID-19 in Patients with Different Inborn Errors of Immunity can be Associated with the Type of Error. Adv Biomed Res 2024; 13:112. [PMID: 39717240 PMCID: PMC11665184 DOI: 10.4103/abr.abr_134_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 12/25/2024] Open
Abstract
Background The relationship between inborn errors of immunity (IEIs) and COVID-19 severity and incidence rates remains unclear due to limited and diverse data. This study aimed to address this gap by identifying specific IEIs associated with an increased risk of severe COVID-19 or a predisposition to severe disease before vaccination. Materials and Methods Data were collected from the medical records of 15 patients with various IEIs, supplemented by interviews with individuals from an IEIs registry who had experienced COVID-19 before vaccination. Results Among the participants, only three patients (20%) experienced severe-prolonged COVID-19. Notably, this severity was predominantly observed in two male patients with Bruton's disease (BD) and one female patient with autosomal recessive hypogammaglobinemia. Moderate and severe COVID-19 cases were equally distributed (13.33%). In the female subgroup, one patient with common variable immunodeficiency and another with combined immunodeficiency experienced moderate and severe COVID-19, respectively. Conversely, both male patients with moderate and severe COVID-19 had BD. Conclusion Despite the limited number of severe cases, the absence of cytokine storm manifestation suggests potential protective mechanisms, possibly due to intravenous immunoglobulin therapy and inherent deficiencies within cytokine-producing cells (B and T cells). While IEIs may not be significant risk factors for COVID-19, they offer promising avenues for further research into therapeutic strategies targeting specific immune system components to mitigate severe COVID-19.
Collapse
Affiliation(s)
- Negin Salemi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrokh Shojaie
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paria Bolourinejad
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryana Zamanifar
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
9
|
Zhan X, Li Q, Tian P, Wang D. The attachment factors and attachment receptors of human noroviruses. Food Microbiol 2024; 123:104591. [PMID: 39038896 DOI: 10.1016/j.fm.2024.104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Human noroviruses (HuNoVs) are the leading etiological agent causing the worldwide outbreaks of acute epidemic non-bacterial gastroenteritis. Histo-blood group antigens (HBGAs) are commonly acknowledged as cellular receptors or co-receptors for HuNoVs. However, certain genotypes of HuNoVs cannot bind with any HBGAs, suggesting potential additional co-factors and attachment receptors have not been identified yet. In addition, food items, such as oysters and lettuce, play an important role in the transmission of HuNoVs. In the past decade, a couple of attachment factors other than HBGAs have been identified and analyzed from foods and microbiomes. Attachment factors exhibit potential as inhibitors of viral binding to receptors on host cells. Therefore, it is imperative to further characterize the attachment factors for HuNoVs present in foods to effectively control the spread of HuNoVs within the food chain. This review summarizes the potential attachment factors/receptors of HuNoVs in humans, foods, and microbiome.
Collapse
Affiliation(s)
- Xiangjun Zhan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Albany, CA, 94706, USA
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Yamamoto S, Okumura S, Kobayashi R, Maeda Y, Takahashi F, Tanabe T. Bovine respiratory syncytial virus enhances the attachment of Trueperella pyogenes to cells. J Vet Med Sci 2024; 86:1068-1075. [PMID: 39111845 PMCID: PMC11442402 DOI: 10.1292/jvms.24-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes. Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes. Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.
Collapse
Affiliation(s)
- Satomi Yamamoto
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Shiori Okumura
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Risa Kobayashi
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yosuke Maeda
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Fumiaki Takahashi
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Taishi Tanabe
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
11
|
Penney A, Ng C, Sands N, Gaikwad R, Akhter M. A Case of Catheter-Associated Urinary Tract Infection by Pseudomonas mendocina in the Setting of COVID-19. Cureus 2024; 16:e68900. [PMID: 39376831 PMCID: PMC11458280 DOI: 10.7759/cureus.68900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Pseudomonas mendocina, a Gram-negative, aerobic bacillus, has rarely been implicated in human infections. This report details the first documented case of catheter-associated urinary tract infection (CAUTI) caused by P. mendocina in a COVID-19-positive patient. We present the case of a 70-year-old male with obstructive uropathy who presented with altered mental status eight days after testing positive for COVID-19. Urine cultures identified P. mendocina and Enterococcus faecalis. The antibiotic regimen was adjusted to cefepime and fosfomycin for coverage against P. mendocina and E. faecalis, respectively, resulting in the patient's improvement and discharge with an outpatient course of ciprofloxacin. However, the patient was readmitted 12 days later for recurrent symptoms and traumatic catheter removal, requiring nephrostomy tube placement. Follow-up revealed severe bladder and prostate abnormalities, confirming a complex interplay of factors contributing to his infection. P. mendocina is a rare opportunistic pathogen, often occurring in patients with pre-existing health conditions. This case is significant as the first CAUTI caused by P. mendocina and highlights potential links between COVID-19 and increased susceptibility to bacterial infections. The patient's comorbidities, particularly obstructive uropathy, and prolonged catheter use, were likely major factors in his infection. The role of COVID-19 in facilitating bacterial colonization remains speculative but warrants further investigation. This case report underscores the need for heightened clinical awareness and prompt intervention in patients with similar risk factors. The successful treatment regimen provides a valuable reference for managing such infections. Further research is needed to explore the interplay between viral and bacterial infections, particularly in the context of COVID-19.
Collapse
Affiliation(s)
- Angela Penney
- College of Medicine, California Northstate University, Elk Grove, USA
| | - Camille Ng
- College of Medicine, California Northstate University, Elk Grove, USA
| | - Nathaniel Sands
- College of Medicine, California Northstate University, Elk Grove, USA
| | - Ritu Gaikwad
- College of Medicine, California Northstate University, Elk Grove, USA
| | - Mutaal Akhter
- Department of Internal Medicine, Mercy General Hospital, Sacramento, USA
| |
Collapse
|
12
|
Jansåker F, Holm MKA, Knudsen JD, Boel JB. Examining the influence of Covid-19 restrictions, a nurse strike, and SARS-CoV-2 coinfection on bacteremia mortality: A Danish population-based cohort study (2019-2022). Heliyon 2024; 10:e33696. [PMID: 39040231 PMCID: PMC11261871 DOI: 10.1016/j.heliyon.2024.e33696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Objectives Bacteremia is an acute severe infection with high mortality. Changes in healthcare services and coinfections with SARS-CoV-2 may have affected the mortality for bacteremia during the COVID-19 pandemic, which has been reported for other major diseases. In this study we examine the all-cause bacteremia mortality amidst the COVID-19 pandemic. Methods A population-based cohort study comprised of laboratory confirmed bacteremia episodes in the Capital Region, Denmark (March 2019-February 2022). Cox proportional hazards models were used to calculate hazard ratios (HR) and 95 % confidence intervals (CI) for all-cause bacteremia mortality associated with the Covid-19 restriction period, a strike period, and coinfection with SARS-CoV-2, adjusted for possible confounders. Results A total of 14,912 bacteremia episodes were identified in 12,693 patients during the study period. The 30- and 90-day all-cause mortality were 19 % and 27 %, respectively. The fully adjusted HR for 30- and 90-day all-cause mortality associated with the Covid-19 restriction period were 0.91 (95 % CI, 0.84 to 0.99) and 0.90 (95 % CI, 0.84 to 0.96), respectively, compared to the remaining time period. The corresponding HRs associated with SARS-CoV-2 coinfection were 1.29 (95 % CI, 1.11 to 1.50) and 1.36 (95 % CI, 1.20 to 1.55) compared to patients without coinfection. The association between the national nurse strike and all-cause bacteremia mortality was inconclusive. Conclusions In this large population-based cohort study, a significant reduction in all-cause mortality for bacteremia was observed during the Covid-19 restriction period in Denmark, while coinfection with SARS-CoV-2 seem to be a substantial risk factor for all-cause bacteremia mortality.
Collapse
Affiliation(s)
- Filip Jansåker
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Mona Katrine Alberthe Holm
- Department of Clinical Microbiology, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Jenny Dahl Knudsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Jonas Bredtoft Boel
- Department of Clinical Microbiology, Herlev University Hospital, Herlev, Denmark
- Copenhagen University Hospital, The Hospital Pharmacy, Copenhagen, Denmark
| |
Collapse
|
13
|
Fang L, Ning J. Gut virome and diabetes: discovering links, exploring therapies. Arch Microbiol 2024; 206:346. [PMID: 38976078 DOI: 10.1007/s00203-024-04068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
This review offers a comprehensive analysis of the intricate relationship between the gut virome and diabetes, elucidating the mechanisms by which the virome engages with both human cells and the intestinal bacteriome. By examining a decade of scientific literature, we provide a detailed account of the distinct viral variations observed in type 1 diabetes (T1D) and type 2 diabetes (T2D). Our synthesis reveals that the gut virome significantly influences the development of both diabetes types through its interactions, which indirectly modulate immune and inflammatory responses. In T1D, the focus is on eukaryotic viruses that stimulate the host's immune system, whereas T2D is characterized by a broader spectrum of altered phage diversities. Promisingly, in vitro and animal studies suggest fecal virome transplantation as a potential therapeutic strategy to alleviate symptoms of T2D and obesity. This study pioneers a holistic overview of the gut virome's role in T1D and T2D, its interplay with host immunity, and the innovative potential of fecal transplantation therapy in clinical diabetes management.
Collapse
Affiliation(s)
- Lihua Fang
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guanlan Road 187, Shenzhen, 518110, Guangdong Province, China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guanlan Road 187, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
14
|
Featherstone AB, Mathijssen AJTM, Brown A, Chitlapilly Dass S. SARS-CoV-2 Delta variant remains viable in environmental biofilms found in meat packaging plants. PLoS One 2024; 19:e0304504. [PMID: 38870232 PMCID: PMC11175435 DOI: 10.1371/journal.pone.0304504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
To determine why SARS-CoV-2 appears to thrive specifically well in meat packaging plants, we used SARS-CoV-2 Delta variant and meat packaging plant drain samples to develop mixed-species biofilms on materials commonly found within meat packaging plants (stainless steel (SS), PVC, and ceramic tile). Our data provides evidence that SARS-CoV-2 Delta variant remained viable on all the surfaces tested with and without an environmental biofilm after the virus was inoculated with the biofilm for 5 days at 7°C. We observed that SARS-CoV-2 Delta variant was able to remain infectious with each of the environmental biofilms by conducting plaque assay and qPCR experiments, however, we detected a significant reduction in viability post-exposure to Plant B biofilm on SS, PVC, and on ceramic tile chips, and to Plant C biofilm on SS and PVC chips. The numbers of viable SARS-CoV-2 Delta viral particles was 1.81-4.57-fold high than the viral inoculum incubated with the Plant B and Plant C environmental biofilm on SS, and PVC chips. We did not detect a significant difference in viability when SARS-CoV-2 Delta variant was incubated with the biofilm obtained from Plant A on any of the materials tested and SARS-CoV-2 Delta variant had higher plaque numbers when inoculated with Plant C biofilm on tile chips, with a 2.75-fold difference compared to SARS-CoV-2 Delta variant on tile chips by itself. In addition, we detected an increase in the biofilm biovolume in response to SARS-CoV-2 Delta variant which is also a concern for food safety due to the potential for foodborne pathogens to respond likewise when they come into contact with the virus. These results indicate a complex virus-environmental biofilm interaction which correlates to the different bacteria found in each biofilm. Our results also indicate that there is the potential for biofilms to protect SARS-CoV-2 from disinfecting agents and remaining prevalent in meat packaging plants.
Collapse
Affiliation(s)
- Austin B. Featherstone
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Arnold J. T. M. Mathijssen
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amanda Brown
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Sapna Chitlapilly Dass
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
15
|
Khan A, Mohammed A, Zhang X. Antiviral Shrimp lncRNA06 Possesses Anti-Tumor Activity by Inducing Apoptosis of Human Gastric Cancer Stem Cells in a Cross-Species Manner. Mar Drugs 2024; 22:221. [PMID: 38786611 PMCID: PMC11123040 DOI: 10.3390/md22050221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Virus infection causes the metabolic disorder of host cells, whereas the metabolic disorder of cells is one of the major causes of tumorigenesis, suggesting that antiviral molecules might possess anti-tumor activities by regulating cell metabolism. As the key regulators of gene expression, long non-coding RNAs (lncRNAs) play vital roles in the regulation of cell metabolism. However, the influence of antiviral lncRNAs on tumorigenesis has not been explored. To address this issue, the antiviral and anti-tumor capacities of shrimp lncRNAs were characterized in this study. The results revealed that shrimp lncRNA06, having antiviral activity in shrimp, could suppress the tumorigenesis of human gastric cancer stem cells (GCSCs) via triggering apoptosis of GCSCs in a cross-species manner. Shrimp lncRNA06 could sponge human miR-17-5p to suppress the stemness of GCSCs via the miR-17-5p-p21 axis. At the same time, shrimp lncRNA06 could bind to ATP synthase subunit beta (ATP5F1B) to enhance the stability of the ATP5F1B protein in GCSCs, thus suppressing the tumorigenesis of GCSCs. The in vivo data demonstrated that shrimp lncRNA06 promoted apoptosis and inhibited the stemness of GCSCs through interactions with ATP5F1B and miR-17-5p, leading to the suppression of the tumorigenesis of GCSCs. Therefore, our findings highlighted that antiviral lncRNAs possessed anti-tumor capacities and that antiviral lncRNAs could be the anti-tumor reservoir for the treatment of human cancers.
Collapse
Affiliation(s)
- Ahmad Khan
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China; (A.K.); (A.M.)
- Government Post Graduate College Miran Shah, Miran Shah 28200, Pakistan
| | - Anas Mohammed
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China; (A.K.); (A.M.)
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China; (A.K.); (A.M.)
| |
Collapse
|
16
|
Ghorbani M, Khoshdoozmasouleh N. Distinct oral DNA viral signatures in rheumatoid arthritis: a Pilot study. J Oral Microbiol 2024; 16:2348260. [PMID: 38698892 PMCID: PMC11064737 DOI: 10.1080/20002297.2024.2348260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Background Despite evidence linking viruses and oral microbiome to rheumatoid arthritis (RA), limited whole genome sequencing research has been conducted on the oral virome (a viral component of the microbiome) of untreated RA patients. This pilot research seeks to address this knowledge gap by comparing the oral virome of untreated rheumatoid arthritis patients (RAs) and healthy individuals (HCs). Method Whole genome DNA sequence of saliva samples from 45 participants including 21 RAs and 24 age and gender matched HCs was obtained from the BioProject: PRJEB6997. Metaphlan3 pipeline and LEfSe analysis were used for the viral signature detection. Wilcoxon pairwise test and ROC analysis were used to validate and predict signatures. Results RA exhibits higher alpha diversity compared to HCs. Callitrichine gammaherpesvirus 3, Human gammaherpesvirus 4 (EBV), Murid betaherpesvirus 8, and Suid alphaherpesvirus 1 were enriched in RAs, while Aotine betaherpesvirus 1 from the Cytomegalovirus genus was enriched in HCs. In addition, Saccharomyces cerevisiae killer virus M1 (ScV-M1) was found to be enriched in RAs, whereas bacteriophage Hk97virus (Siphoviridae) and Cd119virus (Myoviridae) were enriched in HCs. Conclusion This study identifies significant DNA oral viral signatures at species level as potential biomarkers for the early detection and diagnosis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Mahin Ghorbani
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Nooshin Khoshdoozmasouleh
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Roswell Park Comprehensive Cancer Center, Department of Cancer Genomics, Buffalo, NY, USA
| |
Collapse
|
17
|
Raev SA, Kick MK, Chellis M, Amimo JO, Saif LJ, Vlasova AN. Histo-Blood Group Antigen-Producing Bacterial Cocktail Reduces Rotavirus A, B, and C Infection and Disease in Gnotobiotic Piglets. Viruses 2024; 16:660. [PMID: 38793542 PMCID: PMC11125826 DOI: 10.3390/v16050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The suboptimal performance of rotavirus (RV) vaccines in developing countries and in animals necessitates further research on the development of novel therapeutics and control strategies. To initiate infection, RV interacts with cell-surface O-glycans, including histo-blood group antigens (HBGAs). We have previously demonstrated that certain non-pathogenic bacteria express HBGA- like substances (HBGA+) capable of binding RV particles in vitro. We hypothesized that HBGA+ bacteria can bind RV particles in the gut lumen protecting against RV species A (RVA), B (RVB), and C (RVC) infection in vivo. In this study, germ-free piglets were colonized with HBGA+ or HBGA- bacterial cocktail and infected with RVA/RVB/RVC of different genotypes. Diarrhea severity, virus shedding, immunoglobulin A (IgA) Ab titers, and cytokine levels were evaluated. Overall, colonization with HBGA+ bacteria resulted in reduced diarrhea severity and virus shedding compared to the HBGA- bacteria. Consistent with our hypothesis, the reduced severity of RV disease and infection was not associated with significant alterations in immune responses. Additionally, colonization with HBGA+ bacteria conferred beneficial effects irrespective of the piglet HBGA phenotype. These findings are the first experimental evidence that probiotic performance in vivo can be improved by including HBGA+ bacteria, providing decoy epitopes for broader/more consistent protection against diverse RVs.
Collapse
Affiliation(s)
- Sergei A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| | - Maryssa K. Kick
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| | - Maria Chellis
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| | | | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| |
Collapse
|
18
|
Wan Y, Zhang L, Xu Z, Su Q, Leung TF, Chan D, Wong OWH, Chan S, Chan FKL, Tun HM, Ng SC. Alterations in fecal virome and bacteriome virome interplay in children with autism spectrum disorder. Cell Rep Med 2024; 5:101409. [PMID: 38307030 PMCID: PMC10897546 DOI: 10.1016/j.xcrm.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Emerging evidence suggests autism spectrum disorder (ASD) is associated with altered gut bacteria. However, less is known about the gut viral community and its role in shaping microbiota in neurodevelopmental disorders. Herein, we perform a metagenomic analysis of gut-DNA viruses in 60 children with ASD and 64 age- and gender-matched typically developing children to investigate the effect of the gut virome on host bacteria in children with ASD. ASD is associated with altered gut virome composition accompanied by the enrichment of Clostridium phage, Bacillus phage, and Enterobacteria phage. These ASD-enriched phages are largely associated with disrupted viral ecology in ASD. Importantly, changes in the interplay between the gut bacteriome and virome seen in ASD may influence the encoding capacity of microbial pathways for neuroactive metabolite biosynthesis. These findings suggest an impaired bacteriome-virome ecology in ASD, which sheds light on the importance of bacteriophages in pathogenesis and the development of microbial therapeutics in ASD.
Collapse
Affiliation(s)
- Yating Wan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dorothy Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China; The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Lalbiaktluangi C, Yadav MK, Singh PK, Singh A, Iyer M, Vellingiri B, Zomuansangi R, Zothanpuia, Ram H. A cooperativity between virus and bacteria during respiratory infections. Front Microbiol 2023; 14:1279159. [PMID: 38098657 PMCID: PMC10720647 DOI: 10.3389/fmicb.2023.1279159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Respiratory tract infections remain the leading cause of morbidity and mortality worldwide. The burden is further increased by polymicrobial infection or viral and bacterial co-infection, often exacerbating the existing condition. Way back in 1918, high morbidity due to secondary pneumonia caused by bacterial infection was known, and a similar phenomenon was observed during the recent COVID-19 pandemic in which secondary bacterial infection worsens the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) condition. It has been observed that viruses paved the way for subsequent bacterial infection; similarly, bacteria have also been found to aid in viral infection. Viruses elevate bacterial infection by impairing the host's immune response, disrupting epithelial barrier integrity, expression of surface receptors and adhesion proteins, direct binding of virus to bacteria, altering nutritional immunity, and effecting the bacterial biofilm. Similarly, the bacteria enhance viral infection by altering the host's immune response, up-regulation of adhesion proteins, and activation of viral proteins. During co-infection, respiratory bacterial and viral pathogens were found to adapt and co-exist in the airways of their survival and to benefit from each other, i.e., there is a cooperative existence between the two. This review comprehensively reviews the mechanisms involved in the synergistic/cooperativity relationship between viruses and bacteria and their interaction in clinically relevant respiratory infections.
Collapse
Affiliation(s)
- C. Lalbiaktluangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ruth Zomuansangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| |
Collapse
|
20
|
Li H, Wu X, Zeng H, Chang B, Cui Y, Zhang J, Wang R, Ding T. Unique microbial landscape in the human oropharynx during different types of acute respiratory tract infections. MICROBIOME 2023; 11:157. [PMID: 37482605 PMCID: PMC10364384 DOI: 10.1186/s40168-023-01597-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Secondary bacterial infections and pneumonia are major mortality causes of respiratory viruses, and the disruption of the upper respiratory tract (URT) microbiota is a crucial component of this process. However, whether this URT dysbiosis associates with the viral species (in other words, is viral type-specific) is unclear. RESULTS Here, we recruited 735 outpatients with upper respiratory symptoms, identified the infectious virus types in 349 participants using multiplex RT-PCR, and profiled their upper respiratory microbiome using the 16S ribosomal RNA gene and metagenomic gene sequencing. Microbial and viral data were subsequently used as inputs for multivariate analysis aimed at revealing viral type-specific disruption of the upper respiratory microbiota. We found that the oropharyngeal microbiota shaped by influenza A virus (FluA), influenza B virus (FluB), respiratory syncytial virus (RSV), and human rhinovirus (HRV) infections exhibited three distinct patterns of dysbiosis, and Veillonella was identified as a prominent biomarker for any type of respiratory viral infections. Influenza virus infections are significantly correlated with increased oropharynx microbiota diversity and enrichment of functional metabolic pathways such as L-arginine biosynthesis and tetracycline resistance gene tetW. We used the GRiD algorithm and found the predicted growth rate of common respiratory pathogens was increased upon influenza virus infection, while commensal bacteria, such as Streptococcus infantis and Streptococcus mitis, may act as a colonization resistance to the overgrowth of these pathogens. CONCLUSIONS We found that respiratory viral infections are linked with viral type-specific disruption of the upper respiratory microbiota, particularly, influenza infections uniquely associated with increased microbial diversity and growth rates of specific pathogens in URT. These findings are essential for clarifying the differences and dynamics of respiratory microbiota in healthy participants and acute respiratory viral infections, which contribute to elucidating the pathogenesis of viral-host-bacterial interactions to provide insights into future studies on effective prevention and treatment of respiratory tract infections. Video Abstract.
Collapse
Affiliation(s)
- Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiaorong Wu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Hong Zeng
- Center for Disease Control and Prevention of Nanhai District, Foshan, 528200, China
| | - Bozhen Chang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Cui
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Jingxiang Zhang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ruixia Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Featherstone A, Brown AC, Chitlapilly Dass S. Understanding how different surfaces and environmental biofilms found in food processing plants affect the spread of COVID-19. PLoS One 2023; 18:e0286659. [PMID: 37285373 PMCID: PMC10246802 DOI: 10.1371/journal.pone.0286659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
Meat processing plants have been at the center of the SARS-CoV-2 pandemic, with a recent report citing 90% of US facilities having multiple outbreaks during 2020 and 2021. We explored the potential for biofilms to act as a reservoir in protecting, harboring, and dispersing SARS-CoV-2 throughout the meat processing facility environment. To do this, we used Murine Hepatitis Virus (MHV), as a surrogate for SARS-CoV-2, and meat processing facility drain samples to develop mixed-species biofilms on materials found in meat processing facilities (stainless steel (SS), PVC, and ceramic tiles). After exposure to the biofilm organisms for five days post-inoculation at 7°C we conducted quantitative PCR (qPCR) and plaque assays to determine whether MHV could remain both detectable and viable. Our data provides evidence that coronaviruses can remain viable on all the surfaces tested and are also able to integrate within an environmental biofilm. Although a portion of MHV was able to remain infectious after incubation with the environmental biofilm, a large reduction in plaque numbers was identified when compared with the viral inoculum incubated without biofilm on all test surfaces, which ranged from 6.45-9.27-fold higher. Interestingly, we observed a 2-fold increase in the virus-environmental biofilm biovolume when compared to biofilm without virus, indicating that the biofilm bacteria both detected and reacted to the virus. These results indicate a complex virus-environmental biofilm interaction. Although we observed better survival of MHV on a variety of surfaces commonly found in meat processing plants alone than with the biofilm, there is the potential for biofilms to protect virions from disinfecting agents, which has implications for the potential of SARS-CoV-2 prevalence within the meat processing plant environment. Also given the highly infectious nature of SARS-CoV-2, particularly for some of the variant strains such as omicron, having even a residual level of virus present represents a serious health hazard. The increase in biofilm biovolume in response to virus is also a concern for food safety due to the potential of the same being seen with organisms associated with food poisoning and food spoilage.
Collapse
Affiliation(s)
- Austin Featherstone
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Amanda Claire Brown
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Sapna Chitlapilly Dass
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
22
|
Arumairaj A, Safavi A, Amin H, Poor A, Trenard N. Methicillin-Resistant Staphylococcus aureus (MRSA) Empyema Post-COVID Infection Causing Severe Septic Shock and Multiorgan Failure. Cureus 2023; 15:e41054. [PMID: 37519525 PMCID: PMC10374408 DOI: 10.7759/cureus.41054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Secondary bacterial infections post-COVID infection posed a major challenge to the healthcare settings during the COVID pandemic. We present the case of an 81-year-old patient who was initially admitted for COVID pneumonia in a tertiary care hospital and was managed with a course of dexamethasone and had a good outcome. However, post-discharge, the patient developed symptoms of productive cough, hemoptysis and shortness of breath. Evaluation of the patient revealed that the patient had developed a secondary bacterial infection with Methicillin-resistant Staphylococcus aureus (MRSA), resulting in MRSA pneumonia and empyema. The patient was started on appropriate antibiotics and underwent thoracocentesis followed by video-assisted thoracoscopic surgery (VATS) and decortication. MRSA infection resulted in severe septic shock, acute respiratory distress syndrome (ARDS) and multiorgan failure. Successful intensive care unit (ICU) management of the life-threatening complications resulted in the remarkable recovery of the patient.
Collapse
Affiliation(s)
- Antony Arumairaj
- Internal Medicine, Metropolitan Hospital Center/New York Medical College, New York City, USA
| | - Ali Safavi
- Surgery, Division of Thoracic Surgery, Metropolitan Hospital Center/New York Medical College, New York City, USA
| | - Hossam Amin
- Internal Medicine/Division of Pulmonary Critical Care Medicine, Metropolitan Hospital Center/New York Medical College, New York City, USA
| | - Armeen Poor
- Internal Medicine/Division of Pulmonary Critical Care Medicine, Metropolitan Hospital Center/New York Medical College, New York City, USA
| | - Natoushka Trenard
- Internal Medicine/Division of Pulmonary Critical Care Medicine, Metropolitan Hospital Center/New York Medical College, New York City, USA
| |
Collapse
|
23
|
Shishkova K, Gergova R, Tasheva E, Shishkov S, Sirakov I. Molecular Screening for High-Risk Human Papillomaviruses in Patients with Periodontitis. Viruses 2023; 15:v15030809. [PMID: 36992516 PMCID: PMC10059129 DOI: 10.3390/v15030809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Members of the Papillomaviridae family account for 27.9-30% of all infectious agents associated with human cancer. The aim of our study was to investigate the presence of high-risk HPV (human papilloma virus) genotypes in patients with periodontitis and a pronounced clinical picture. To achieve this goal, after proving the bacterial etiology of periodontitis, the samples positive for bacteria were examined for the presence of HPV. The genotype of HPV is also determined in samples with the presence of the virus proven by PCR (polymerase chain reaction). All positive tests for bacteria associated with the development of periodontitis indicated the presence of HPV. There was a statistically significant difference in HPV positive results between the periodontitis positive target group and the control group. The higher presence of high-risk HPV genotypes in the target group, which was also positive for the presence of periodontitis-causing bacteria, has been proven. A statistically significant relationship was established between the presence of periodontitis-causing bacteria and high-risk strains of HPV. The most common HPV genotype that tests positive for bacteria associated with the development of periodontitis is HPV58.
Collapse
Affiliation(s)
- Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, University of Sofia "St. Kl. Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" Str., 1431 Sofia, Bulgaria
- G-Lab Ltd., 2 "Hristo Belchev", 1000 Sofia, Bulgaria
| | - Elena Tasheva
- Department of Zoology and Anthropology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Stoyan Shishkov
- Laboratory of Virology, Faculty of Biology, University of Sofia "St. Kl. Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Ivo Sirakov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" Str., 1431 Sofia, Bulgaria
| |
Collapse
|
24
|
High Burden of Co-Infection with Multiple Enteric Pathogens in Children Suffering with Diarrhoea from Rural and Peri-Urban Communities in South Africa. Pathogens 2023; 12:pathogens12020315. [PMID: 36839587 PMCID: PMC9959912 DOI: 10.3390/pathogens12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Infectious diarrhoea contributes to high morbidity and mortality in young children from sub-Saharan Africa. The aim of this study was to assess the prevalence of single and multiple diarrhoeal-causing pathogen combinations in children suffering from diarrhoea from rural and peri-urban communities in South Africa. A total of 275 diarrhoea stool specimens were collected between 2014 and 2016 from Hospitals and Primary Health Care clinics. The BioFire® FilmArray® Gastrointestinal panel was used to simultaneously detect 22 diarrhoea pathogens (viruses, bacteria, parasites) known to cause diarrhoea. A total of 82% (226/275) enteric pathogens were detected in the stool specimens. The two most detected bacterial, viral and parasitic pathogens each included: EAEC (42%), EPEC (32%), Adenovirus F40/41 (19%), Norovirus (15%), Giardia (8%) and Cryptosporidium (6%), respectively. Single enteric pathogen infections were recorded in 24% (65/275) specimens with EAEC, and Norovirus was found in 26% (17/65) and 14% (9/65) of the specimens, respectively. Multiple enteric pathogen combinations were recorded in 59% (161/275) of the stool specimens with 53% (85/161) containing two pathogens, 22% (35/161) containing three pathogens and 25% (41/161) containing four or more pathogens. The results from this study demonstrated the complex nature of pathogen co-infections in diarrhoeal episodes which could have an impact on treatment effectiveness.
Collapse
|
25
|
Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol 2023; 205:e0029522. [PMID: 36409130 PMCID: PMC9879096 DOI: 10.1128/jb.00295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral-bacterial coinfections of the respiratory tract have long been associated with worsened disease outcomes. Clinical and basic research studies demonstrate that these infections are driven via complex interactions between the infecting pathogens, microbiome, and host immune response, although how these interactions contribute to disease progression is still not fully understood. Research over the last decade shows that the gut has a significant role in mediating respiratory outcomes, in a phenomenon known as the "gut-lung axis." Emerging literature demonstrates that acute respiratory viruses can modulate the gut-lung axis, suggesting that dysregulation of gut-lung cross talk may be a contributing factor during respiratory coinfection. This review will summarize the current literature regarding modulation of the gut-lung axis during acute respiratory infection, with a focus on the role of the microbiome, secondary infections, and the host immune response.
Collapse
Affiliation(s)
- Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yasmin Hilliam
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Andersone A, Janceva S, Lauberte L, Ramata-Stunda A, Nikolajeva V, Zaharova N, Rieksts G, Telysheva G. Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020863. [PMID: 36677921 PMCID: PMC9861313 DOI: 10.3390/molecules28020863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
It has now been proven that many pathogens that cause infections and inflammation gradually mutate and become resistant to antibiotics. Chemically synthesized drugs treating inflammation most often only affect symptoms, but side effects could lead to the failure of human organs' functionality. On the other hand, plant-derived natural compounds have a long-term healing effect. It was shown that sea buckthorn (SBT) twigs are a rich source of biologically active compounds, including oligomeric proanthocyanidins (PACs). This study aimed to assess the anti-pathogenic and anti-inflammatory activity of water/ethanol extracts and PACs obtained from the lignocellulosic biomass of eight SBT cultivars. The anti-pathogenic activity of extracts and PACs was studied against pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus cereus and fungus Candida albicans in 96-well plates by the two-fold serial broth microdilution method. The anti-bacterial activity of purified PACs was 4 and 10 times higher than for water and water/ethanol extracts, respectively, but the extracts had higher anti-fungal activity. Purified PACs showed the ability to reduce IL-8 and IL-6 secretion from poly-I:C-stimulated peripheral blood mononuclear cells. For the extracts and PACs of SBT cultivar 'Maria Bruvele' in the concentration range 0.0313-4.0 mg/mL, no toxic effect was observed.
Collapse
Affiliation(s)
- Anna Andersone
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Sarmite Janceva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Correspondence: ; Tel.: +371-25148850
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradins University, LV-1007 Riga, Latvia
| | - Anna Ramata-Stunda
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| | - Vizma Nikolajeva
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| | - Natalija Zaharova
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Gints Rieksts
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Laboratory of Heat and Mass Transfer, The Institute of Physics of University of Latvia, LV-2169 Salaspils, Latvia
| | - Galina Telysheva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| |
Collapse
|
27
|
Maleki E, Iranmanesh K, Najafzadeh MJ, Baniasad A. Streptococcus-related acute suppurative thyroiditis in a COVID-19-positive child: A rare case report. Clin Case Rep 2023; 11:e6812. [PMID: 36619488 PMCID: PMC9811061 DOI: 10.1002/ccr3.6812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
In this case report, we present a 10-year-old girl with acute suppurative thyroiditis (AST) symptoms, such as fever, sore throat, and swelling in the suprasternal region, who had a positive PCR test for COVID-19. The result of the secretions culture obtained from the abscess drainage was positive for nonhemolytic Streptococcus.
Collapse
Affiliation(s)
- Elham Maleki
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology Science, Kerman University of Medical SciencesKermanIran
| | - Kimia Iranmanesh
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology Science, Kerman University of Medical SciencesKermanIran
| | | | - Amir Baniasad
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology Science, Kerman University of Medical SciencesKermanIran
| |
Collapse
|
28
|
Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS, Nath VS, Kavitha TR, Mishra AK. Mechanisms of Microbial Plant Protection and Control of Plant Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3449. [PMID: 36559558 PMCID: PMC9785281 DOI: 10.3390/plants11243449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Plant viral diseases are major constraints causing significant yield losses worldwide in agricultural and horticultural crops. The commonly used methods cannot eliminate viral load in infected plants. Many unconventional methods are presently being employed to prevent viral infection; however, every time, these methods are not found promising. As a result, it is critical to identify the most promising and sustainable management strategies for economically important plant viral diseases. The genetic makeup of 90 percent of viral diseases constitutes a single-stranded RNA; the most promising way for management of any RNA viruses is through use ribonucleases. The scope of involving beneficial microbial organisms in the integrated management of viral diseases is of the utmost importance and is highly imperative. This review highlights the importance of prokaryotic plant growth-promoting rhizobacteria/endophytic bacteria, actinomycetes, and fungal organisms, as well as their possible mechanisms for suppressing viral infection in plants via cross-protection, ISR, and the accumulation of defensive enzymes, phenolic compounds, lipopeptides, protease, and RNase activity against plant virus infection.
Collapse
Affiliation(s)
- Lakshmaiah Manjunatha
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research (IIHR), Bengaluru 560089, Karnataka, India
| | - Hosahatti Rajashekara
- Division of Crop Protection, ICAR-Directorate of Cashew Research (DCR), Dakshina Kannada 574202, Karnataka, India
| | - Leela Saisree Uppala
- Cranberry Station, East Wareham, University of Massachusetts, Amherst, MA 02538, USA
| | - Dasannanamalige Siddesh Ambika
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | - Balanagouda Patil
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga 577255, Karnataka, India
| | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | | | - Tiptur Rooplanaik Kavitha
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, Karnataka, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
29
|
Platt MP, Lin YH, Penix T, Wiscovitch-Russo R, Vashee I, Mares CA, Rosch JW, Yu Y, Gonzalez-Juarbe N. A multiomics analysis of direct interkingdom dynamics between influenza A virus and Streptococcus pneumoniae uncovers host-independent changes to bacterial virulence fitness. PLoS Pathog 2022; 18:e1011020. [PMID: 36542660 PMCID: PMC9815659 DOI: 10.1371/journal.ppat.1011020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/05/2023] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.
Collapse
Affiliation(s)
- Maryann P. Platt
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Trevor Penix
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Isha Vashee
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Chris A. Mares
- Department of Life Sciences, Texas A&M University-San Antonio, Texas, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
30
|
Gagné MJ, Savard T, Brassard J. Interactions Between Infectious Foodborne Viruses and Bacterial Biofilms Formed on Different Food Contact Surfaces. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:267-279. [PMID: 36030359 PMCID: PMC9458689 DOI: 10.1007/s12560-022-09534-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Bacterial biofilms contribute to contamination, spoilage, persistence, and hygiene failure in the food industry, but relatively little is known about the behavior of foodborne viruses evolving in the complex communities that make up biofilm. The aim of this study was to evaluate the association between enteric viruses and biofilms on food contact surfaces. Formed biofilms of mono- and multispecies cultures were prepared on glass, stainless steel, and polystyrene coupons and 105 pfu/ml of murine norovirus, rotavirus, and hepatitis A virus were added and incubated for 15 min, 90 min, and 24 h. The data obtained clearly demonstrate that the presence of biofilms generally influences the adhesion of enteric viruses to different surfaces. Many significant increases in attachment rates were observed, particularly with rotavirus whose rate of viral infectious particles increased 7000 times in the presence of Pseudomonas fluorescens on polystyrene after 24 h of incubation and with hepatitis A virus, which seems to have an affinity for the biofilms formed by lactic acid bacteria. Murine norovirus seems to be the least influenced by the presence of biofilms with few significant increases. However, the different factors surrounding this association are unknown and seem to vary according to the viruses, the environmental conditions, and the composition of the biofilm.
Collapse
Affiliation(s)
- Marie-Josée Gagné
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Tony Savard
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada
| | - Julie Brassard
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC, J2S 8E3, Canada.
| |
Collapse
|
31
|
Aktaş E, Özdemir Özgentürk N. Revealing In Silico that Bacteria's Outer Membrane Proteins may Help our Bodies Replicate and Carry Severe Acute Respiratory Syndrome Coronavirus 2. Bioinform Biol Insights 2022; 16:11779322221116320. [PMID: 35966808 PMCID: PMC9364190 DOI: 10.1177/11779322221116320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/10/2022] [Indexed: 10/31/2022] Open
Abstract
Some studies in the literature show that viruses can affect bacteria directly or indirectly, and viruses use their own specific ways to do these interactions. Furthermore, it is said that bacteria are prone to attachment mammalian cells during a viral illness using their surface proteins that bind to host extracellular matrix proteins such as fibronectin, fibrinogen, vitronectin, and elastin. A recent study identified the cooperation between bacteria and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in silico, in vitro, and in vivo. Like this study, we hypothesized that more bacteria protein might help SARS-CoV-2 transport and attach to angiotensin-converting enzyme 2 (ACE2). The bacteria's outer membrane proteins (OMPs) we chose were not random; they had to be on the outer surface of the bacteria because these proteins on the outer surface should have a high probability of interacting with both the spike protein and ACE2. We obtained by using bioinformatics tools that there may be binding between both ACE2 and spike protein of these bacteria's OMPs. Protein-protein interaction results also supported our hypothesis. Therefore, based on our predicted results, these bacteria OMPs may help SARS-CoV-2 move in our body, and both find and attach to ACE2. It is expected that these inferences obtained from the bioinformatics results may play a role in the SARS-CoV-2 virus reaching host cells. Thus, it may bring a different perspective to studies on how the virus can infect host cells.
Collapse
Affiliation(s)
- Emre Aktaş
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
32
|
Stein RA, Bianchini EC. Bacterial-Viral Interactions: A Factor That Facilitates Transmission Heterogeneities. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The transmission of infectious diseases is characterized by heterogeneities that are shaped by the host, the pathogen, and the environment. Extreme forms of these heterogeneities are called super-spreading events. Transmission heterogeneities are usually identified retrospectively, but their contribution to the dynamics of outbreaks makes the ability to predict them valuable for science, medicine, and public health. Previous studies identified several factors that facilitate super-spreading; one of them is the interaction between bacteria and viruses within a host. The heightened dispersal of bacteria colonizing the nasal cavity during an upper respiratory viral infection, and the increased shedding of HIV-1 from the urogenital tract during a sexually transmitted bacterial infection, are among the most extensively studied examples of transmission heterogeneities that result from bacterial-viral interactions. Interrogating these transmission heterogeneities, and elucidating the underlying cellular and molecular mechanisms, are part of much-needed efforts to guide public health interventions, in areas that range from predicting or controlling the population transmission of respiratory pathogens, to limiting the spread of sexually transmitted infections, and tailoring vaccination initiatives with live attenuated vaccines.
Collapse
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| | - Emilia Claire Bianchini
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| |
Collapse
|
33
|
Delić N, Matetic A, Domjanović J, Kljaković-Gašpić T, Šarić L, Ilić D, Došenović S, Domazet J, Kovač R, Runjić F, Stipić SS, Duplančić B. Effects of Different Inhalation Therapy on Ventilator-Associated Pneumonia in Ventilated COVID-19 Patients: A Randomized Controlled Trial. Microorganisms 2022; 10:1118. [PMID: 35744636 PMCID: PMC9228146 DOI: 10.3390/microorganisms10061118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of routine inhalation therapy on ventilator-associated pneumonia (VAP) in mechanically ventilated patients with the coronavirus disease (COVID-19) has not been well-defined. This randomized controlled trial included 175 eligible adult patients with COVID-19 who were treated with mechanical ventilation at the University Hospital of Split between October 2020 and June 2021. Patients were randomized and allocated to a control group (no routine inhalation) or one of the treatment arms (inhalation of N-acetylcysteine; 5% saline solution; or 8.4% sodium bicarbonate). The primary outcome was the incidence of VAP, while secondary outcomes included all-cause mortality. Routine inhalation therapy had no effect on the incidence of bacterial or fungal VAP nor on all-cause mortality (p > 0.05). Secondary analyses revealed a significant reduction of Gram-positive and methicillin-resistant Staphylococcus aureus (MRSA) VAP in the treatment groups. Specifically, the bicarbonate group had a statistically significantly lower incidence of Gram-positive bacterial VAP (4.8%), followed by the N-acetylcysteine group (10.3%), 5% saline group (19.0%), and control group (34.6%; p = 0.001). This difference was driven by a lower incidence of MRSA VAP in the bicarbonate group (2.4%), followed by the N-acetylcysteine group (7.7%), 5% saline group (14.3%), and control group (34.6%; p < 0.001). Longer duration of ventilator therapy was the only significant, independent predictor of any bacterial or fungal VAP in the multivariate analysis (aOR 1.14, 95% CI 1.01−1.29, p = 0.038 and aOR 1.05, 95% CI 1.01−1.10, p = 0.028, respectively). In conclusion, inhalation therapy had no effect on the overall VAP incidence or all-cause mortality. Further studies should explore the secondary findings of this study such as the reduction of Gram-positive or MRSA-caused VAP in treated patients.
Collapse
Affiliation(s)
- Nikola Delić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Andrija Matetic
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia; (A.M.); (F.R.)
| | - Josipa Domjanović
- Department of Nephrology, University Hospital of Split, 21000 Split, Croatia;
| | - Toni Kljaković-Gašpić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Lenko Šarić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Darko Ilić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Svjetlana Došenović
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Josipa Domazet
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Ruben Kovač
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Frane Runjić
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia; (A.M.); (F.R.)
| | - Sanda Stojanović Stipić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| | - Božidar Duplančić
- Department of Anesthesiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; (T.K.-G.); (L.Š.); (D.I.); (S.D.); (J.D.); (R.K.); (S.S.S.); (B.D.)
| |
Collapse
|
34
|
Li M, Wang C, Guo Q, Xu C, Xie Z, Tan J, Wu S, Wang P, Guo J, Fang Z, Zhu S, Duan L, Jiang X, Zhu H. More Positive or More Negative? Metagenomic Analysis Reveals Roles of Virome in Human Disease-Related Gut Microbiome. Front Cell Infect Microbiol 2022; 12:846063. [PMID: 35493727 PMCID: PMC9040671 DOI: 10.3389/fcimb.2022.846063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Viruses are increasingly viewed as vital components of the human gut microbiota, while their roles in health and diseases remain incompletely understood. Here, we first sequenced and analyzed the 37 metagenomic and 18 host metabolomic samples related to irritable bowel syndrome (IBS) and found that some shifted viruses between IBS and controls covaried with shifted bacteria and metabolites. Especially, phages that infect beneficial lactic acid bacteria depleted in IBS covaried with their hosts. We also retrieved public whole-genome metagenomic datasets of another four diseases (type 2 diabetes, Crohn’s disease, colorectal cancer, and liver cirrhosis), totaling 438 samples including IBS, and performed uniform analysis of the gut viruses in diseases. By constructing disease-specific co-occurrence networks, we found viruses actively interacting with bacteria, negatively correlated with possible dysbiosis-related and inflammation-mediating bacteria, increasing the connectivity between bacteria modules, and contributing to the robustness of the networks. Functional enrichment analysis showed that phages interact with bacteria through predation or expressing genes involved in the transporter and secretion system, metabolic enzymes, etc. We further built a viral database to facilitate systematic functional classification and explored the functions of viral genes on interacting with bacteria. Our analyses provided a systematic view of the gut virome in the disease-related microbial community and suggested possible positive roles of viruses concerning gut health.
Collapse
Affiliation(s)
- Mo Li
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Ph.D. Program, School of Life Sciences, Peking University, Beijing, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Chunhui Wang
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Ph.D. Program, School of Life Sciences, Peking University, Beijing, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Qian Guo
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Congmin Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Zhongjie Xie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jie Tan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Shufang Wu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Peihong Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jinyuan Guo
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Zhencheng Fang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiaoqing Jiang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
- *Correspondence: Huaiqiu Zhu, ; Xiaoqing Jiang,
| | - Huaiqiu Zhu
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Ph.D. Program, School of Life Sciences, Peking University, Beijing, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- *Correspondence: Huaiqiu Zhu, ; Xiaoqing Jiang,
| |
Collapse
|
35
|
Cozorici D, Măciucă RA, Stancu C, Tihăuan BM, Uță RB, Codrea CI, Matache R, Pop CE, Wolff R, Fendrihan S. Microbial Contamination and Survival Rate on Different Types of Banknotes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074310. [PMID: 35409990 PMCID: PMC8998619 DOI: 10.3390/ijerph19074310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
Abstract
In the COVID-19 pandemic context, numerous concerns have been raised regarding the hygienic status of certain objects we interact with on a daily basis, and especially cash money and their potential to harbor and transmit pathogenic bacteria. Therefore, in the present study, we analyzed different currency bills represented by British pounds (5 £, 10 £ and 20 £), Romanian lei (1 leu, 5 lei and 10 lei), U.S. dollars (1 $, 5 $ and 10 $) and Euros (5 €, 10 € and 20 €) in order to evaluate the bacterial survival rate and bacterial adherence. We used five reference microorganisms by American Type Culture Collection (ATCC, Manassas, VA, USA): Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, Enterococcus sp. ATCC 19952, Salmonella enterica subsp. enterica serovar Typhi ATCC 6539, and Listeria monocytogenes ATCC 7644. Microorganisms were selected in accordance with the criteria of prevalence, pathogenicity, opportunism, and incidence. However, Maldi-TOF analysis from samples taken from the banknotes revealed only a few of the common pathogens that are traditionally thought to be found on banknotes. Some of the most important factors for the survival of pathogenic agents on surfaces are the presence of organic matter, temperature and humidity. Our data showed that Salmonella enterica survived 72 h on every banknote tested, while L. monocytogenes tended to improve persistence in humid conditions. Survival rate is also influenced by the substrate composition, being lower for polymer-based banknotes especially for Salmonella enterica, Listeria monocytogenes and Enterococcus sp. The adherence of bacterial strains was lower for polymer-based banknotes British pounds and Romanian Leu, in contrast to the cotton-based U.S dollars and Euro banknotes. The risk of bacterial contamination from the banknote bills is high as indicated by both a strong survival capacity and low adherence of tested bacteria with differences between the two types of materials used for the tested banknotes.
Collapse
Affiliation(s)
- Derniza Cozorici
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania or (C.S.); (R.B.U.); (S.F.)
- Department of Bioengineering and Biotechnologies, Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Roxana-Alexandra Măciucă
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania or (C.S.); (R.B.U.); (S.F.)
- Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței, 050095 Bucharest, Romania;
| | - Costel Stancu
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania or (C.S.); (R.B.U.); (S.F.)
| | - Bianca-Maria Tihăuan
- Research Institute of the University of Bucharest—ICUB, 91-95 Splaiul Independenței, 050567 Bucharest, Romania;
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
| | - Robert Bogdan Uță
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania or (C.S.); (R.B.U.); (S.F.)
| | - Cosmin Iulian Codrea
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Răzvan Matache
- National Institute for Research and Development in Environmental Protection, 294 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Cristian-Emilian Pop
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania or (C.S.); (R.B.U.); (S.F.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței, 050095 Bucharest, Romania
- Correspondence:
| | - Robert Wolff
- College of Nursing and Public Health, South University, 9 Science Ct., Columbia, SC 29203, USA;
| | - Sergiu Fendrihan
- Non-Governmental Research Organization Biologic, 14 Schitului Str., 032044 Bucharest, Romania or (C.S.); (R.B.U.); (S.F.)
- Faculty of Medicine, “Vasile Goldis” University, Revoluției Blvd. 94, 310025 Arad, Romania
| |
Collapse
|
36
|
Shahin K, Zhang L, Mehraban MH, Collard JM, Hedayatkhah A, Mansoorianfar M, Soleimani-Delfan A, Wang R. Clinical and experimental bacteriophage studies: Recommendations for possible approaches for standing against SARS-CoV-2. Microb Pathog 2022; 164:105442. [PMID: 35151823 PMCID: PMC8830156 DOI: 10.1016/j.micpath.2022.105442] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022]
Abstract
In 2019, the world faced a serious health challenge, the rapid spreading of a life-threatening viral pneumonia, coronavirus disease 2019 (COVID-19) caused by a betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 2022 WHO statistics shows more than 5.6 million death and about 350 million infection by SARS-CoV-2. One of the life threatening aspects of COVID-19 is secondary infections and reduced efficacy of antibiotics against them. Since the beginning of COVID-19 many researches have been done on identification, treatment, and vaccine development. Bacterial viruses (bacteriophages) could offer novel approaches to detect, treat and control COVID-19. Phage therapy and in particular using phage cocktails can be used to control or eliminate the bacterial pathogen as an alternative or complementary therapeutic agent. At the same time, phage interaction with the host immune system can regulate the inflammatory response. In addition, phage display and engineered synthetic phages can be utilized to develop new vaccines and antibodies, stimulate the immune system, and elicit a rapid and well-appropriate defense response. The emergence of SARS-CoV-2 new variants like delta and omicron has proved the urgent need for precise, efficient and novel approaches for vaccine development and virus detection techniques in which bacteriophages may be one of the plausible solutions. Therefore, phages with similar morphology and/or genetic content to that of coronaviruses can be used for ecological and epidemiological modeling of SARS-CoV-2 behavior and future generations of coronavirus, and in general new viral pathogens. This article is a comprehensive review/perspective of potential applications of bacteriophages in the fight against the present pandemic and the post-COVID era.
Collapse
Affiliation(s)
- Khashayar Shahin
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China; Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Lili Zhang
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Mohammad Hossein Mehraban
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jean-Marc Collard
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China
| | | | | | - Abbas Soleimani-Delfan
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ran Wang
- Key Laboratory of Phage Research, International Phage Research Center, Jiangsu Academy of Agricultural, China; Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
37
|
Lian S, Liu J, Wu Y, Xia P, Zhu G. Bacterial and Viral Co-Infection in the Intestine: Competition Scenario and Their Effect on Host Immunity. Int J Mol Sci 2022; 23:ijms23042311. [PMID: 35216425 PMCID: PMC8877981 DOI: 10.3390/ijms23042311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria and viruses are both important pathogens causing intestinal infections, and studies on their pathogenic mechanisms tend to focus on one pathogen alone. However, bacterial and viral co-infections occur frequently in clinical settings, and infection by one pathogen can affect the severity of infection by another pathogen, either directly or indirectly. The presence of synergistic or antagonistic effects of two pathogens in co-infection can affect disease progression to varying degrees. The triad of bacterial–viral–gut interactions involves multiple aspects of inflammatory and immune signaling, neuroimmunity, nutritional immunity, and the gut microbiome. In this review, we discussed the different scenarios triggered by different orders of bacterial and viral infections in the gut and summarized the possible mechanisms of synergy or antagonism involved in their co-infection. We also explored the regulatory mechanisms of bacterial–viral co-infection at the host intestinal immune interface from multiple perspectives.
Collapse
Affiliation(s)
- Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
38
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Lawrence D, Campbell DE, Schriefer LA, Rodgers R, Walker FC, Turkin M, Droit L, Parkes M, Handley SA, Baldridge MT. Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry. Gut Microbes 2022; 14:2029673. [PMID: 35130125 PMCID: PMC8824198 DOI: 10.1080/19490976.2022.2029673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
As our understanding of the importance of the human microbiota in health and disease grows, so does our need to carefully resolve and delineate its genomic content. 16S rRNA gene-based analyses yield important insights into taxonomic composition, and metagenomics-based approaches reveal the functional potential of microbial communities. However, these methods generally fail to directly link genetic features, including bacterial genes and mobile genetic elements, to each other and to their source bacterial genomes. Further, they are inadequate to capture the microdiversity present within a genus, species, or strain of bacteria within these complex communities. Here, we present a method utilizing fluorescence-activated cell sorting for isolation of single bacterial cells, amplifying their genomes, screening them by 16S rRNA gene analysis, and selecting cells for genomic sequencing. We apply this method to both a cultured laboratory strain of Escherichia coli and human stool samples. Our analyses reveal the capacity of this method to provide nearly complete coverage of bacterial genomes when applied to isolates and partial genomes of bacterial species recovered from complex communities. Additionally, this method permits exploration and comparison of conserved and variable genomic features between individual cells. We generate assemblies of novel genomes within the Ruminococcaceae family and the Holdemanella genus by combining several 16S rRNA gene-matched single cells, and report novel prophages and conjugative transposons for both Bifidobacterium and Ruminococcaceae. Thus, we demonstrate an approach for flow cytometric separation and sequencing of single bacterial cells from the human microbiota, which yields a variety of critical insights into both the functional potential of individual microbes and the variation among those microbes. This method definitively links a variety of conserved and mobile genomic features, and can be extended to further resolve diverse elements present in the human microbiota.
Collapse
Affiliation(s)
- Dylan Lawrence
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Forrest C. Walker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marissa Turkin
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miles Parkes
- Division of Gastroenterology Addenbrooke’s Hospital and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
40
|
Abstract
Aside from nutritional components, human milk is rich in microorganisms. Through breastfeeding these microorganisms are introduced to the infant gut where they may transiently or persistently colonize it. Therefore, the human milk microbiota may be an important factor which shapes the infant gut microbiota further influencing infant health and disease. In the current review we aim to give a brief updated insight into the putative origin of the human milk microbiota, its constituents and the possible factors that shape it. Understanding the factors that determine the human milk microbiota composition and function will aid developing optimal postnatal feeding and intervention strategies to reduce the risk of communicable and noncommunicable diseases.
Collapse
Affiliation(s)
- Anastasia Mantziari
- Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4A, 20520 Turku, Finland
| | - Samuli Rautava
- University of Helsinki and Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland.
| |
Collapse
|
41
|
Shi X, Zhang Y, Zhu T, Li N, Sun S, Zhu M, Pan J, Shen Z, Hu X, Zhang X, Gong C. Response to Bombyx mori nucleopolyhedrovirus infection in silkworm: Gut metabolites and microbiota. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104227. [PMID: 34363835 DOI: 10.1016/j.dci.2021.104227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The diversity of microbiota and metabolites in the digestive tract gut is important in physiology and homeostasis, nutrient uptake and virus infection. In lepidopteran insect model silkworms, little is known about how microbiota and metabolites are altered after oral infection with BmNPV. Herein, we used 16S rDNA sequencing and metabolomics to show that the gut microbiota and metabolites of silkworm midgut are significantly altered after BmNPV infection. Kyoto Encyclopedia of Genes and Genomes analysis revealed enrichment of flavone and flavonol biosynthesis, glycosyltransferases, and electron transfer carriers signaling pathways, suggesting potential roles in viral infection. Infection also changed the abundance of metabolites in the digestive tract gut, where most pathways were related to metabolism of amino acids, fatty acids and other pathways (e.g., citrate cycle). In addition, a correlation was observed between digestive tract gut microbiota and metabolites. These results shed light on the interaction between digestive tract gut microbiota, metabolites and host-virus interaction, and enhance our understanding of viral infection links to midgut microbiota and metabolic activity in the silkworm.
Collapse
Affiliation(s)
- Xiu Shi
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yaxin Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Tianchen Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Nan Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Sufei Sun
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
42
|
Rüger N, Sid H, Meens J, Szostak MP, Baumgärtner W, Bexter F, Rautenschlein S. New Insights into the Host-Pathogen Interaction of Mycoplasma gallisepticum and Avian Metapneumovirus in Tracheal Organ Cultures of Chicken. Microorganisms 2021; 9:microorganisms9112407. [PMID: 34835532 PMCID: PMC8618481 DOI: 10.3390/microorganisms9112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory pathogens are a health threat for poultry. Co-infections lead to the exacerbation of clinical symptoms and lesions. Mycoplasma gallisepticum (M. gallispeticum) and Avian Metapneumovirus (AMPV) are two avian respiratory pathogens that co-circulate worldwide. The knowledge about the host-pathogen interaction of M. gallispeticum and AMPV in the chicken respiratory tract is limited. We aimed to investigate how co-infections affect the pathogenesis of the respiratory disease and whether the order of invading pathogens leads to changes in host-pathogen interaction. We used chicken tracheal organ cultures (TOC) to investigate pathogen invasion and replication, lesion development, and selected innate immune responses, such as interferon (IFN) α, inducible nitric oxide synthase (iNOS) and IFNλ mRNA expression levels. We performed mono-inoculations (AMPV or M. gallispeticum) or dual-inoculations in two orders with a 24-h interval between the first and second pathogen. Dual-inoculations compared to mono-inoculations resulted in more severe host reactions. Pre-infection with AMPV followed by M. gallispeticum resulted in prolonged viral replication, more significant innate immune responses, and lesions (p < 0.05). AMPV as the secondary pathogen impaired the bacterial attachment process. Consequently, the M. gallispeticum replication was delayed, the innate immune response was less pronounced, and lesions appeared later. Our results suggest a competing process in co-infections and offer new insights in disease processes.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Munich, Germany;
| | - Jochen Meens
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Michael P. Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
- Correspondence: ; Tel.: +49-511-953-8779
| |
Collapse
|
43
|
Paley EL. Induction of Gut Microbial Tryptamine by SARS-CoV-2 in Nonhuman Primate Model Consistent with Tryptamine-Induced Model of Neurodegeneration. J Alzheimers Dis Rep 2021; 5:733-738. [PMID: 34755047 PMCID: PMC8543377 DOI: 10.3233/adr-210032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 11/22/2022] Open
Abstract
The author discussed recently the possible molecular mechanisms that cause the COVID-19 disease symptoms. Here the analysis of the recent experimental data supports the hypothesis that production of the gut microbial tryptamine can be induced by the SARS-CoV-2 fecal viral activity due to the selective pressure or positive selection of tryptamine-producing microorganisms. In this report, the author suggests that the mechanism of microbial selection bases on the abilities of tryptamine to affect the viral nucleic acid. In other words, the gut microorganisms producing tryptamine are more resistant to SARS-CoV-2 fecal viral activity than microorganisms producing no tryptamine. Earlier we demonstrated the induction of neurodegeneration by tryptamine in human cells and mouse brain. Furthermore, we were able to uncover the human gut bacteria associated with Alzheimer’s disease (AD) using PCR testing of human fecal samples with the new-designed primers targeting the tryptophan-tryptamine pathway. Likely, SARS-CoV-2 is one of the selective pressure factors in the cascade accelerating the neurodegenerative process in AD. This suggestion is consistent with a higher proportion of AD patients among COVID-19 related victims. Gut microbial tryptamine increase due to the viral infection-induced dysbiosis can synergize and potentiate the tryptamine cytotoxicity, necrotizing ability and other properties as a virulence factor.
Collapse
Affiliation(s)
- Elena L Paley
- Expert BioMed, Inc. and Nonprofit Public Charity Stop Alzheimers Corp., Miami-Dade, FL, USA
| |
Collapse
|
44
|
Yang K, Niu J, Zuo T, Sun Y, Xu Z, Tang W, Liu Q, Zhang J, Ng EKW, Wong SKH, Yeoh YK, Chan PKS, Chan FKL, Miao Y, Ng SC. Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology 2021; 161:1257-1269.e13. [PMID: 34175280 DOI: 10.1053/j.gastro.2021.06.056] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Obesity and type 2 diabetes mellitus (T2DM) are associated with changes in the gut bacterial composition, but little is known about the role of the viral community (virome) in disease development. This study aims to characterize the gut virome alterations in obese subjects with or without T2DM. METHODS There were 128 obese subjects (body mass index ≥28 kg/m2) and 101 lean controls (body mass index ≥18.5 and <23 kg/m2) recruited from 2 regions in China (Hong Kong and Kunming). Fecal virome and bacteriome were profiled by shotgun metagenomic sequencing. Gut virome, bacteriome, and viral-bacterial correlations were compared between obese subjects and lean controls. RESULTS Obese subjects, especially those with T2DM (ObT2), had a decreased gut viral richness and diversity compared with lean controls in the Hong Kong cohort (P < .05), while no significant differences were observed in the Kunming cohort. Eleven viruses, including Escherichia phage, Geobacillus phage, and Lactobacillus phage were enriched in obese subjects (q < .1). Besides, 17 differentially abundant viruses were identified between ObT2 and lean controls (q < .1). Further ecologic analysis revealed that intensive transkingdom correlations between viruses and bacteria observed in lean controls were significantly decreased in ObT2 subjects (P < .001). CONCLUSIONS Obesity is characterized by altered viral taxonomic composition and weakened viral-bacterial correlations compared with lean controls. Obesity accompanied with T2DM may aggravate the obesity-associated virus signatures, signifying that the gut virome may play an important role in the development of obesity and T2DM. Geographic factors also contributed to the variations of gut virome in obesity and T2DM.
Collapse
Affiliation(s)
- Keli Yang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zhilu Xu
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Whitney Tang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Qin Liu
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Jingwan Zhang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Enders K W Ng
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K H Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China; Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China; Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China.
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China.
| |
Collapse
|
45
|
Xu Z, Liu Z, Chen J, Zou S, Jin Y, Zhang R, Sheng Y, Liao N, Hu B, Cheng D. Effect of Direct Viral-Bacterial Interactions on the Removal of Norovirus From Lettuce. Front Microbiol 2021; 12:731379. [PMID: 34557176 PMCID: PMC8453150 DOI: 10.3389/fmicb.2021.731379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Norovirus (NoV) is the main non-bacterial pathogen causing outbreaks of gastroenteritis and is considered to be the leading cause of foodborne illness. This study aims to determine whether lettuce-encapsulated bacteria can express histo-blood group antigen (HBGA)–like substances to bind to NoV and, if so, to explore its role in protecting NoV from disinfection practices. Fifteen bacterial strains (HBGA-SEBs) were isolated from the lettuce microbiome and studied as they were proved to have the ability to express HBGA-like substances through indirect ELISA detection. By using attachment assay, HBGA-SEBs showed great abilities in carrying NoVs regarding the evaluation of binding capacity, especially for the top four strains from genera Wautersiella, Sphingobacterium, and Brachybacterium, which could absorb more than 60% of free-flowing NoVs. Meanwhile, the direct viral–bacterial binding between HBGA-like substance-expressing bacteria (HBGA-SEB) and NoVs was observed by TEM. Subsequently, results of simulated environmental experiments showed that the binding of NoVs with HBGA-SEBs did have detrimental effects on NoV reduction, which were evident in short-time high-temperature treatment (90°C) and UV exposure. Finally, by considering the relative abundance of homologous microorganisms of HBGA-SEBs in the lettuce microbiome (ca. 36.49%) and the reduction of NoVs in the simulated environments, we suggested putting extra attention on the daily disinfection of foodborne-pathogen carriers to overcome the detrimental effects of direct viral–bacterial interactions on the reduction of NoVs.
Collapse
Affiliation(s)
- Zhangkai Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songyan Zou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yaqi Sheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ningbo Liao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Zhao D, Yang B, Yuan X, Shen C, Zhang D, Shi X, Zhang T, Cui H, Yang J, Chen X, Hao Y, Zheng H, Zhang K, Liu X. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine. Front Vet Sci 2021; 8:699561. [PMID: 34513970 PMCID: PMC8426627 DOI: 10.3389/fvets.2021.699561] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen causing epidemics of porcine reproductive and respiratory syndrome (PRRS), and is present in every major swine-farming country in the world. Previous studies have demonstrated that PRRSV infection leads to a range of consequences, such as persistent infection, secondary infection, and co-infection, and is common among pigs in the field. In recent years, coinfection of PRRSV and other porcine pathogens has occurred often, making it more difficult to define and diagnose PRRSV-related diseases. The study of coinfections may be extremely suitable for the current prevention and control in the field. However, there is a limited understanding of coinfection. Therefore, in this review, we have focused on the epidemiology of PRRSV coinfection with other pathogens in swine, both in vivo and in vitro.
Collapse
Affiliation(s)
- Dengshuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Chaochao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| |
Collapse
|
47
|
Altinli M, Schnettler E, Sicard M. Symbiotic Interactions Between Mosquitoes and Mosquito Viruses. Front Cell Infect Microbiol 2021; 11:694020. [PMID: 34527601 PMCID: PMC8435781 DOI: 10.3389/fcimb.2021.694020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes not only transmit human and veterinary pathogens called arboviruses (arthropod-borne viruses) but also harbor mosquito-associated insect-specific viruses (mosquito viruses) that cannot infect vertebrates. In the past, studies investigating mosquito viruses mainly focused on highly pathogenic interactions that were easier to detect than those without visible symptoms. However, the recent advances in viral metagenomics have highlighted the abundance and diversity of viruses which do not generate mass mortality in host populations. Over the last decade, this has facilitated the rapid growth of virus discovery in mosquitoes. The circumstances around the discovery of mosquito viruses greatly affected how they have been studied so far. While earlier research mainly focused on the pathogenesis caused by DNA and some double-stranded RNA viruses during larval stages, more recently discovered single-stranded RNA mosquito viruses were heavily studied for their putative interference with arboviruses in female adults. Thus, many aspects of mosquito virus interactions with their hosts and host-microbiota are still unknown. In this context, considering mosquito viruses as endosymbionts can help to identify novel research areas, in particular in relation to their long-term interactions with their hosts (e.g. relationships during all life stages, the stability of the associations at evolutionary scales, transmission routes and virulence evolution) and the possible context-dependent range of interactions (i.e. beneficial to antagonistic). Here, we review the symbiotic interactions of mosquito viruses considering different aspects of their ecology, such as transmission, host specificity, host immune system and interactions with other symbionts within the host cellular arena. Finally, we highlight related research gaps in mosquito virus research.
Collapse
Affiliation(s)
- Mine Altinli
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Esther Schnettler
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
48
|
Cytokine expression patterns in hospitalized children with Bordetella pertussis, Rhinovirus or co-infection. Sci Rep 2021; 11:10948. [PMID: 34040002 PMCID: PMC8154898 DOI: 10.1038/s41598-021-89538-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
Mechanisms of interaction between Bordetella pertussis and other viral agents are yet to be fully explored. We studied the inflammatory cytokine expression patterns among children with both viral-bacterial infections. Nasopharyngeal aspirate (NPA) samples were taken from children, aged < 1 year, positive for Rhinovirus, Bordetella pertussis and for Rhinovirus and Bordetella pertussis. Forty cytokines were evaluated in NPA by using human cytokine protein arrays and a quantitative analysis was performed on significantly altered cytokines. Forty cytokines were evaluated in NPA by using human cytokine protein arrays and a quantitative analysis was performed on significantly altered cytokines. Our results show that co-infections display a different inflammatory pattern compared to single infections, suggesting that a chronic inflammation caused by one of the two pathogens could be the trigger for exacerbation in co-infections.
Collapse
|
49
|
Hammond A, Khalid T, Thornton HV, Woodall CA, Hay AD. Should homes and workplaces purchase portable air filters to reduce the transmission of SARS-CoV-2 and other respiratory infections? A systematic review. PLoS One 2021; 16:e0251049. [PMID: 33914823 PMCID: PMC8084223 DOI: 10.1371/journal.pone.0251049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Respiratory infections, including SARS-CoV-2, are spread via inhalation or ingestion of airborne pathogens. Airborne transmission is difficult to control, particularly indoors. Manufacturers of high efficiency particulate air (HEPA) filters claim they remove almost all small particles including airborne bacteria and viruses. This study investigates whether modern portable, commercially available air filters reduce the incidence of respiratory infections and/or remove bacteria and viruses from indoor air. We systematically searched Medline, Embase and Cochrane for studies published between January 2000 and September 2020. Studies were eligible for inclusion if they included a portable, commercially available air filter in any indoor setting including care homes, schools or healthcare settings, investigating either associations with incidence of respiratory infections or removal and/or capture of aerosolised bacteria and viruses from the air within the filters. Dual data screening and extraction with narrative synthesis. No studies were found investigating the effects of air filters on the incidence of respiratory infections. Two studies investigated bacterial capture within filters and bacterial load in indoor air. One reported higher numbers of viable bacteria in the HEPA filter than in floor dust samples. The other reported HEPA filtration combined with ultraviolet light reduced bacterial load in the air by 41% (sampling time not reported). Neither paper investigated effects on viruses. There is an important absence of evidence regarding the effectiveness of a potentially cost-efficient intervention for indoor transmission of respiratory infections, including SARS-CoV-2. Two studies provide ‘proof of principle’ that air filters can capture airborne bacteria in an indoor setting. Randomised controlled trials are urgently needed to investigate effects of portable HEPA filters on incidence of respiratory infections.
Collapse
Affiliation(s)
- Ashley Hammond
- Centre for Academic Primary Care, NIHR School for Primary Care Research, Bristol Medical School: Population Health Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Tanzeela Khalid
- Centre for Academic Primary Care, NIHR School for Primary Care Research, Bristol Medical School: Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Hannah V. Thornton
- Centre for Academic Primary Care, NIHR School for Primary Care Research, Bristol Medical School: Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Claire A. Woodall
- Centre for Academic Primary Care, NIHR School for Primary Care Research, Bristol Medical School: Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Alastair D. Hay
- Centre for Academic Primary Care, NIHR School for Primary Care Research, Bristol Medical School: Population Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
50
|
Kheur S, Kulkarni M, Mahajan PG, Kheur M, Raj AT, Patil S, Awan KH. Comparing the sub-gingival levels of Cytomegalovirus, Epstein-Barr virus, Porphyromonas gingivalis in human immunodeficiency virus-1 seropositive patients with and without antiretroviral therapy. Dis Mon 2021; 67:101166. [PMID: 33663798 DOI: 10.1016/j.disamonth.2021.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The effect of antiretroviral therapy (ART) on the oral pathogenic microbes in human immunodeficiency virus-1 seropositive patients remains relatively unexplored. Thus, the present study assessed the effect of ART on the sub-gingival levels of 3 pathogenic microbes. MATERIALS AND METHODS The study groups consisted of 60 human immunodeficiency virus-1 seropositive patients divided into 3 groups of 20 each. Group 1 had periodontitis and did not start with the ART. Group 2 had periodontitis and started with ART (Tenofovir Disoproxil Fumarate 300 mg + Lamivudine 300 mg + Efavirenz 600 mg) at least 6 months before the study. Group 3 with normal periodontium, and have not started ART. The sub-gingival loads of Cytomegalovirus, Epstein-Barr virus, and the Porphyromonas gingivalis levels were assessed, along with the CD4 counts. RESULTS The cytomegalovirus load was highest in group 1, followed by groups 2, and 3 (p-value of 0.271). The Epstein-Barr load was highest for group 2, followed by group 3, and 1 (p-value of 0.022). The P.gingivalis load was highest in group 2, followed by groups 1 and 3, (p-value of 0.028). The Epstein-Barr and Cytomegalovirus counts were significantly higher (p-value < 0.02) when the CD4 counts were less than 500 cells/cu3. CONCLUSION ART did not cause any significant reduction in the sub-gingival levels of any of the 3 examined microbes. Given the lack of any significant effect on the sub-gingival microbial loads by the ART, human immunodeficiency virus patients may require additional anti-microbial agents and regular mechanical plaque removal to maintain their periodontal status.
Collapse
Affiliation(s)
- Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India.
| | - Meena Kulkarni
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Pratiksha G Mahajan
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences & Research Centre, Pune, India
| | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA.
| |
Collapse
|