1
|
Scott TA, Baker KS, Trotter C, Jenkins C, Mostowy S, Hawkey J, Schmidt H, Holt KE, Thomson NR, Baker S. Shigella sonnei: epidemiology, evolution, pathogenesis, resistance and host interactions. Nat Rev Microbiol 2025; 23:303-317. [PMID: 39604656 DOI: 10.1038/s41579-024-01126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Shigella sonnei is a major cause of diarrhoea globally and is increasing in prevalence relative to other Shigella because of multiple demographic and environmental influences. This single-serotype species has traditionally received less attention in comparison to Shigella flexneri and Shigella dysenteriae, which were more common in low-income countries and more tractable in the laboratory. In recent years, we have learned that Shigella are highly complex and highly susceptible to environmental change, as exemplified by epidemiological trends and increasing relevance of S. sonnei. Ultimately, methods, tools and data generated from decades of detailed research into S. flexneri have been used to gain new insights into the epidemiology, microbiology and pathogenesis of S. sonnei. In parallel, widespread adoption of genomic surveillance has yielded insights into antimicrobial resistance, evolution and organism transmission. In this Review, we provide an overview of current knowledge of S. sonnei, highlighting recent insights into this globally disseminated antimicrobial-resistant pathogen and assessing how novel data may impact future vaccine development and implementation.
Collapse
Affiliation(s)
- Timothy A Scott
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Kate S Baker
- Department of Clinical Microbiology, Immunology and Infection, University of Liverpool, Liverpool, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jane Hawkey
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hayden Schmidt
- Neutralizing Antibody Center, International AIDS Vaccine Initiative, San Diego, CA, USA
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nicholas R Thomson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- International AIDS Vaccine Initiative, London, UK.
| |
Collapse
|
2
|
Randall AZ, Conti V, Nakakana U, Liang X, Teng AA, Di Pasquale AL, Kapulu M, Frenck R, Launay O, Ferruzzi P, Sciré AS, Marchetti E, Obiero C, Pablo JV, Edgar J, Bejon P, Shandling AD, Campo JJ, Yee A, Martin LB, Podda A, Micoli F. Protein-specific immune response elicited by the Shigella sonnei 1790GAHB GMMA-based candidate vaccine in adults with varying exposure to Shigella. mSphere 2025:e0105724. [PMID: 40237462 DOI: 10.1128/msphere.01057-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 04/18/2025] Open
Abstract
Shigella is a leading cause of diarrheal morbidity and mortality in young children from low- and middle-income countries. Here, we aimed to verify the ability of the generalized modules for membrane antigens (GMMA)-based Shigella sonnei candidate vaccine 1790GAHB to elicit an anti-protein antibody response. Serum samples from previous clinical trials in adults (a dose-escalation study and its extension in France, a vaccine efficacy study after human challenge in the United States, and a study in Kenya) were investigated using pan-proteome microarrays consisting of 3,150 full-length or fragmented Shigella proteins. Pre-/post-vaccination comparisons identified subsets of proteins that were highly immunoreactive and largely overlapped across all trials; the T3SS lipochaperone family protein (expressed on GMMA) was the most reactive in all studies. Responses to several microarray antigens correlated well with S. sonnei LPS serum IgG antibody levels. Overall, we confirmed the ability of GMMA to elicit an anti-protein IgG/IgA response; however, no association with protection against shigellosis was identified. In the challenge study, IgG response to seven antigens (IpaC, IpaB, IpaA, IpaD, IpaH, IpgC, and MxiD; not expressed on GMMA) was associated with a decreased risk of shigellosis. These antigens were observed to also have high IgG responses at baseline in individuals naturally exposed to Shigella and could constitute targets for future vaccine development.IMPORTANCEShigella remains a major cause of diarrheal disease, especially in children aged under 5 years from low-to-middle-income countries. No vaccine against shigellosis is yet widely available despite the high public health need. An ideal vaccine would provide protection against the most prevalent species, Shigella flexneri and Shigella sonnei; therefore, it could be relevant to identify common antigens. We developed a microarray containing 3,150 full-length or fragmented proteins selected across Shigella species. Sera collected in four clinical trials conducted in three countries of varying endemicity to evaluate a S. sonnei GMMA-based candidate vaccine were tested against these proteins. We identified several Shigella proteins (IpaC, IpaB, IpaA, IpaD, IpaH, IpgC, MxiD) that induced robust antibody response following experimental challenge or natural infection. These proteins correlated with a reduced risk of shigellosis after the S. sonnei challenge. We found no apparent role for anti-GMMA proteins' IgG or IgA response in protection against shigellosis.
Collapse
Affiliation(s)
| | | | | | - Xiaowu Liang
- Antigen Discovery, Inc. (ADI), Irvine, California, USA
| | - Andy A Teng
- Antigen Discovery, Inc. (ADI), Irvine, California, USA
| | | | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert Frenck
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Odile Launay
- Université Paris Cité; Assistance Publique Hôpitaux de Paris, CIC Cochin Pasteur; Inserm, Paris, France
| | | | | | | | - Christina Obiero
- Clinical Research Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
| | | | - Joshua Edgar
- Antigen Discovery, Inc. (ADI), Irvine, California, USA
| | - Philip Bejon
- Biosciences Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Angela Yee
- Antigen Discovery, Inc. (ADI), Irvine, California, USA
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | |
Collapse
|
3
|
Sastalla I, Kwon K, Huntley C, Taylor K, Brown L, Samuel T, Zou L. NIAID Workshop Report: Systematic Approaches for ESKAPE Bacteria Antigen Discovery. Vaccines (Basel) 2025; 13:87. [PMID: 39852866 PMCID: PMC11768834 DOI: 10.3390/vaccines13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
On 14-15 November 2023, the National Institute of Allergy and Infectious Diseases (NIAID) organized a workshop entitled "Systematic Approaches for ESKAPE Bacteria Antigen Discovery". The goal of the workshop was to engage scientists from diverse relevant backgrounds to explore novel technologies that can be harnessed to identify and address current roadblocks impeding advances in antigen and vaccine discoveries for the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The workshop consisted of four sessions that addressed ESKAPE infections, antigen discovery and vaccine efforts, and new technologies including systems immunology and vaccinology approaches. Each session was followed by a panel discussion. In total, there were over 260 in-person and virtual attendees, with high levels of engagement. This report provides a summary of the event and highlights challenges and opportunities in the field of ESKAPE vaccine discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lanling Zou
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (I.S.); (K.K.); (C.H.); (K.T.); (L.B.); (T.S.)
| |
Collapse
|
4
|
Leroux-Roels I, Maes C, Mancini F, Jacobs B, Sarakinou E, Alhatemi A, Joye J, Grappi S, Cilio GL, Serry-Bangura A, Vitali CG, Ferruzzi P, Marchetti E, Necchi F, Rappuoli R, De Ryck I, Auerbach J, Colucci AM, Rossi O, Conti V, Scorza FB, Arora AK, Micoli F, Podda A, Nakakana UN. Safety and Immunogenicity of a 4-Component Generalized Modules for Membrane Antigens Shigella Vaccine in Healthy European Adults: Randomized, Phase 1/2 Study. J Infect Dis 2024; 230:e971-e984. [PMID: 38853614 PMCID: PMC11481318 DOI: 10.1093/infdis/jiae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND We report data from stage 1 of an ongoing 2-staged, phase 1/2 randomized clinical trial with a 4-component generalized modules for membrane antigens-based vaccine against Shigella sonnei and Shigella flexneri 1b, 2a, and 3a (altSonflex1-2-3; GSK). METHODS Europeans aged 18-50 years (N = 102) were randomized (2:1) to receive 2 injections of altSonflex1-2-3 or placebo at 3- or 6-month interval. Safety and immunogenicity were assessed at prespecified time points. RESULTS The most common solicited administration-site event (until 7 days after each injection) and unsolicited adverse event (until 28 days after each injection) were pain (altSonflex1-2-3, 97.1%; placebo, 58.8%) and headache (32.4%; 23.5%), respectively. All serotype-specific functional IgG antibodies peaked 14-28 days after injection 1 and remained substantially higher than prevaccination at 3 or 6 months postvaccination; the second injection did not boost but restored the initial immune response. The highest seroresponse rates (≥4-fold increase in titers over baseline) were obtained against S. flexneri 2a (enzyme-linked immunosorbent assay [ELISA] after injection 1, 91.0%; after injection 2 [day 113; day 197], 100%; 97.0% and serum bactericidal activity [SBA] after injection 1, 94.4%; after injection 2, 85.7%; 88.9%) followed by S. sonnei (ELISA after injection 1, 77.6%; after injection 2, 84.6%; 78.8% and SBA after injection 1, 83.3%; after injection 2, 71.4%; 88.9%). Immune responses against S. flexneri 1b and S. flexneri 3a, as measured by both ELISA and SBA, were numerically lower compared to those against S. sonnei and S. flexneri 2a. CONCLUSIONS No safety signals or concerns were identified. altSonflex1-2-3 induced functional serotype-specific immune responses, allowing further clinical development in the target population. Clinical Trials Registration . NCT05073003.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Cathy Maes
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Bart Jacobs
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Azhar Alhatemi
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | - Anna M Colucci
- GSK Vaccines Institute for Global Health, GSK, Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, GSK, Siena, Italy
| | | | | | | | | | - Audino Podda
- GSK Vaccines Institute for Global Health, GSK, Siena, Italy
| | | |
Collapse
|
5
|
Caradonna V, Pinto M, Alfini R, Giannelli C, Iturriza M, Micoli F, Rossi O, Mancini F. High-Throughput Luminescence-Based Serum Bactericidal Assay Optimization and Characterization to Assess Human Sera Functionality Against Multiple Shigella flexneri Serotypes. Int J Mol Sci 2024; 25:11123. [PMID: 39456904 PMCID: PMC11508014 DOI: 10.3390/ijms252011123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Shigellosis represents a significant global health concern particularly affecting children under 5 years in low- and middle-income countries (LMICs) and is associated with stunting and antimicrobial resistance. There is a critical need for an effective vaccine offering broad protection against the different Shigella serotypes. A correlate of protection has not yet been established but there is a general consensus about the relevant role of anti-O-Antigen-specific IgG and its functionality evaluated by the Serum Bactericidal Assay (SBA). This study aims to characterize a high-throughput luminescence-based SBA (L-SBA) against seven widespread Shigella serotypes. The assay was previously developed and characterized for S. sonnei and S. flexneri 1b, 2a, and 3a and has now been refined and extended to an additional five serotypes (S. flexneri 4a, 5b, 6, X, and Y). The characterization of the assay with human sera confirmed the repeatability, intermediate precision, and linearity of the assays; both homologous and heterologous specificity were verified as well; finally, limit of detection and quantification were established for all assays. Moreover, different sources of baby rabbit complement showed to have no impact on L-SBA output. The results obtained confirm the possibility of extending the L-SBA to multiple Shigella serotypes, thus enabling analysis of the functional response induced by natural exposure to Shigella in epidemiological studies and the ability of candidate vaccines to elicit cross-functional antibodies able to kill a broad panel of prevalent Shigella serotypes in a complement-mediated fashion.
Collapse
Affiliation(s)
- Valentina Caradonna
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Marika Pinto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Miren Iturriza
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy (R.A.); (C.G.)
| |
Collapse
|
6
|
Boerth EM, Gong J, Roffler B, Hancock Z, Berger L, Song B, Malley SF, MacLennan CA, Zhang F, Malley R, Lu YJ. Evaluation of a Quadrivalent Shigella flexneri Serotype 2a, 3a, 6, and Shigella sonnei O-Specific Polysaccharide and IpaB MAPS Vaccine. Vaccines (Basel) 2024; 12:1091. [PMID: 39460258 PMCID: PMC11510904 DOI: 10.3390/vaccines12101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Shigellosis is the leading cause of diarrheal deaths worldwide and is particularly dangerous in children under 5 years of age in low- and middle-income countries. Additionally, the rise in antibiotic resistance has highlighted the need for an effective Shigella vaccine. Previously, we have used the Multiple Antigen-Presenting System (MAPS) technology to generate monovalent and quadrivalent Salmonella MAPS vaccines that induce functional antibodies against Salmonella components. METHODS In this work, we detail the development of several monovalent vaccines using O-specific polysaccharides (OSPs) from four dominant serotypes, S. flexneri 2a, 3a, and 6, and S. sonnei. We tested several rhizavidin (rhavi) fusion proteins and selected a Shigella-specific protein IpaB. Quadrivalent MAPS were made with Rhavi-IpaB protein and tested in rabbits for immunogenicity. RESULTS Individual MAPS vaccines generated robust, functional antibody responses against both IpaB and the individual OSP component. Antibodies to IpaB were effective across Shigella serotypes. We also demonstrate that the OSP antibodies generated are specific to each homologous Shigella O type by performing ELISA and bactericidal assays. We combined the components of each MAPS vaccine to formulate a quadrivalent MAPS vaccine which elicited similar antibody and bactericidal responses compared to their monovalent counterparts. Finally, we show that the quadrivalent MAPS immune sera are functional against several clinical isolates of the serotypes used in the vaccine. CONCLUSIONS This quadrivalent MAPS Shigella vaccine is immunogenicity and warrants further study.
Collapse
Affiliation(s)
- Emily M. Boerth
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce Gong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Becky Roffler
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zoe Hancock
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Berger
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boni Song
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha F. Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Calman A. MacLennan
- Enteric & Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
8
|
Ruamsap N, Imerbsin R, Khanijou P, Gonwong S, Oransathit W, Barnoy S, Venkatesan MM, Chaudhury S, Islam D. A rhesus macaque intragastric challenge model for evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella dysenteriae 1 vaccine candidates. Front Microbiol 2024; 15:1454338. [PMID: 39309527 PMCID: PMC11413625 DOI: 10.3389/fmicb.2024.1454338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Shigellosis remains a significant global health challenge, particularly in Asia and Africa, where it is a major cause of morbidity and mortality among children. Despite the urgent need, the development of a licensed Shigella vaccine has been hindered, partly due to the lack of suitable animal models for preclinical evaluation. In this study, we used an intragastric adult rhesus macaque challenge model to evaluate the safety, immunogenicity, and efficacy of five live-attenuated Shigella dysenteriae 1 vaccine candidates, all derived from the 1617 parent strain. The vaccine strains included WRSd1, a previously tested candidate with deletions in virG(icsA), stxAB, and fnr, and four other strains-WRSd2, WRSd3, WRSd4, and WRSd5-each containing deletions in virG and stxAB, but retaining fnr. Additionally, WRSd3 and WRSd5 had further deletions in the Shigella enterotoxin gene senA and its paralog senB, with WRSd5 having an extra deletion in msbB2. Rhesus monkeys were immunized three times at two-day intervals with a target dose of 2 × 1010 CFU of the vaccine strains. Thirty days after the final immunization, all monkeys were challenged with a target dose of 2 × 109 CFU of the S. dysenteriae 1 1617 wild-type strain. Safety, immunogenicity, and efficacy were assessed through physical monitoring and the evaluation of immunologic and inflammatory markers following immunization and challenge. Initial doses of WRSd1, WRSd3, and WRSd5 led to mild adverse effects, such as vomiting and loose stools, but all five vaccine strains were well tolerated in subsequent doses. All strains elicited significant IgA and IgG antibody responses, as well as the production of antibody-secreting cells. Notably, none of the vaccinated animals exhibited shigellosis symptoms such as vomiting or loose/watery stool post-challenge, in stark contrast to the control group, where 39% and 61% of monkeys exhibited these symptoms, respectively. The aggregate clinical score used to evaluate Shigella attack rates post-challenge revealed a 72% attack rate in control animals, compared to only 13% in vaccinated animals, indicating a relative risk reduction of 81%. This study highlights the potential of this NHP model in evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella vaccine candidates, offering a valuable tool for preclinical assessment before advancing to Phase 1 or more advanced clinical trials.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rawiwan Imerbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Patchariya Khanijou
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriphan Gonwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wilawan Oransathit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Shoshana Barnoy
- Department of Diarrheal Disease Research, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Malabi M. Venkatesan
- Department of Diarrheal Disease Research, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sidhartha Chaudhury
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Dilara Islam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
9
|
Renteria-Flores FI, García-Chagollán M, Jave-Suárez LF. Bactofection, Bacterial-Mediated Vaccination, and Cancer Therapy: Current Applications and Future Perspectives. Vaccines (Basel) 2024; 12:968. [PMID: 39340000 PMCID: PMC11435753 DOI: 10.3390/vaccines12090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
From the first report in 1891 by Dr. Coley of the effective treatment of tumors in 1000 patients with Streptococcus and the first successful use of bacterial vectors for transferring therapeutic genes in 1980 by Dr. Schnaffer, bactofection has been shown to be a promising strategy in the fields of vaccination, gene therapy, and cancer therapy. This review describes the general theory of bactofection and its advantages, disadvantages, challenges, and expectations, compiling the most notable advances in 14 vaccination studies, 27 cancer therapy studies, and 13 clinical trials. It also describes the current scope of bactofection and promising results. The extensive knowledge of Salmonella biology, as well as the multiple adequacies of the Ty21a vaccination platform, has allowed notable developments worldwide that have mainly been reflected in therapeutic efforts against cancer. In this regard, we strongly recommend the creation of a recombinant Ty21a model that constitutively expresses the GtgE protease from S. typhimurium, allowing this vector to be used in animal trials, thus enhancing the likelihood of favorable results that could quickly transition to clinical trials. From the current perspective, it is necessary to explore a greater diversity of bacterial vectors and find the best combination of implemented attenuations, generating personalized models that guarantee the maximum effectiveness in cancer therapy and vaccination.
Collapse
Affiliation(s)
- Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mariel García-Chagollán
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Biomedical Research Centre of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
10
|
Yılmaz Çolak Ç. Bacterial Membrane Vesicles as a Novel Vaccine Platform against SARS-CoV-2. Curr Microbiol 2024; 81:317. [PMID: 39164527 DOI: 10.1007/s00284-024-03846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Throughout history, infectious diseases have plagued humanity, with outbreaks occurring regularly worldwide. Not every outbreak affects people globally; however, in the case of Coronavirus Disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), it reached a pandemic level within a remarkably short period. Fortunately, advancements in medicine and biotechnology have facilitated swift responses to the disease, resulting in the development of therapeutics and vaccines. Nevertheless, the persistent spread of the virus and the emergence of new variants underscore the necessity for protective interventions, leading researchers to seek more effective vaccines. Despite the presence of various types of vaccines, including mRNA and inactivated vaccines against SARS-CoV-2, new platforms have been investigated since the pandemic, and research on bacterial membrane vesicles (BMVs) has demonstrated their potential as a novel COVID-19 vaccine platform. Researchers have explored different strategies for BMV-based COVID-19 vaccines, such as mixing the vesicles with antigenic components of the virus due to their adjuvant capacity or decorating the vesicles with the viral antigens to create adjuvanted delivery systems. These approaches have presented promising results in inducing robust immune responses, but obstacles such as reproducibility in obtaining and homogeneous characterization of BMVs remain in developing vesicle-based vaccines. Overall, the development of BMV-based vaccines represents a novel and promising strategy in the fight against COVID-19. Additional research and clinical trials are needed to further evaluate the potential of these vaccines to offer long-lasting protection against SARS-CoV-2 and its evolving variants.
Collapse
Affiliation(s)
- Çiğdem Yılmaz Çolak
- Life Sciences, Marmara Research Center, TUBITAK, Kocaeli, Türkiye.
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Türkiye.
| |
Collapse
|
11
|
La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and Monoclonal Antibodies as Alternative Strategies to Antibiotics to Fight Antimicrobial Resistance. Int J Mol Sci 2024; 25:5487. [PMID: 38791526 PMCID: PMC11122364 DOI: 10.3390/ijms25105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.
Collapse
Affiliation(s)
- Chiara La Guidara
- Magnetic Resonance Center CERM, University of Florence, 50019 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| |
Collapse
|
12
|
Nompari L, Coccone SS, Sardone GL, Corrado A, Berti S, Biagini M, Rovini M, Magagnoli C, Cianetti S, Orlandini S, Furlanetto S, De Ricco R. Innovative Reversed-Phase Chromatography Platform Approach for the Fast and Accurate Characterization of Membrane Vesicles' Protein Patterns. ACS Pharmacol Transl Sci 2024; 7:1584-1594. [PMID: 38751636 PMCID: PMC11091982 DOI: 10.1021/acsptsci.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Outer membrane vesicles (OMVs) have been widely explored to develop vaccine candidates for bacterial pathogens due to their ability to combine adjuvant properties with immunogenic activity. OMV expresses a variety of proteins and carbohydrate antigens on their surfaces. For this reason, there is an analytical need to thoroughly characterize the species expressed at their surface: we here present a simple and accurate reversed-phase ultrahigh-performance liquid chromatography (RP-UPLC) method developed according to quality by design principles. This work provides an analytical alternative to the classical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) characterization. The higher selectivity and sensitivity of the RP-UHPLC assay allow for the identification of additional protein species with respect to SDS-PAGE and facilitate its precise relative abundance quantification. According to validation results, the assay showed high accuracy, linearity, precision, repeatability, and a limit of quantification of 1% for less abundant proteins. This performance paves the way for improved production campaign consistency while also being analytically simple (no sample pretreatment required), making it suitable for routine quality control testing. In addition, the applicability of the assay to a wider range of vesicle classes (GMMA) was demonstrated.
Collapse
Affiliation(s)
- Luca Nompari
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| | | | - Gian Luca Sardone
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| | - Alessio Corrado
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| | - Stefania Berti
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| | - Massimiliano Biagini
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| | - Michele Rovini
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| | - Claudia Magagnoli
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| | - Simona Cianetti
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| | - Serena Orlandini
- Department
of Chemistry “U. Schiff″, University of Florence, Via U. Schiff 6, Sesto Fiorentino 50019, Florence, Italy
| | - Sandra Furlanetto
- Department
of Chemistry “U. Schiff″, University of Florence, Via U. Schiff 6, Sesto Fiorentino 50019, Florence, Italy
| | - Riccardo De Ricco
- GSK,
Technical Research and Development (TRD), Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
13
|
Conti V, Rossi O, Clarkson KA, Mancini F, Nakakana UN, Sarakinou E, Callegaro A, Ferruzzi P, Acquaviva A, Arora AK, Marchetti E, Necchi F, Frenck RW, Martin LB, Kaminski RW, Podda A, Micoli F. Putative correlates of protection against shigellosis assessing immunomarkers across responses to S. sonnei investigational vaccine. NPJ Vaccines 2024; 9:56. [PMID: 38459072 PMCID: PMC10923941 DOI: 10.1038/s41541-024-00822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/30/2024] [Indexed: 03/10/2024] Open
Abstract
Shigella spp. are a leading bacterial cause of diarrhea. No widely licensed vaccines are available and there is no generally accepted correlate of protection. We tested a S. sonnei Generalized Modules for Membrane Antigen (GMMA)-based vaccine (1790GAHB) in a phase 2b, placebo-controlled, randomized, controlled human infection model study (NCT03527173) enrolling healthy United States adults aged 18-50 years. We report analyses evaluating immune responses to vaccination, with the aim to identify correlates of risk for shigellosis among assessed immunomarkers. We found that 1790GAHB elicited S. sonnei lipopolysaccharide specific α4β7+ immunoglobulin (Ig) G and IgA secreting B cells which are likely homing to the gut, indicating the ability to induce a mucosal in addition to a systemic response, despite parenteral delivery. We were unable to establish or confirm threshold levels that predict vaccine efficacy facilitating the evaluation of vaccine candidates. However, serum anti-lipopolysaccharide IgG and bactericidal activity were identified as potential correlates of risk for shigellosis.
Collapse
Affiliation(s)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - Kristen A Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Horizon Therapeutics, Deerfield, IL, USA
| | | | | | | | | | | | | | | | | | | | - Robert W Frenck
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, Siena, Italy
- US Pharmacopeial Convention, Rockville, MD, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Latham BioPharm Group, Cambridge, MA, USA
| | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
- Independent Consultant, Siena, Italy
| | | |
Collapse
|
14
|
Vannice K, MacLennan CA, Long J, Steele AD. Optimizing Vaccine Trials for Enteric Diseases: The Enterics for Global Health (EFGH) Shigella Surveillance Study. Open Forum Infect Dis 2024; 11:S1-S5. [PMID: 38532964 PMCID: PMC10962720 DOI: 10.1093/ofid/ofad586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
In this introductory article, we describe the rationale for the Enterics for Global Health (EFGH) Shigella surveillance study, which is largely to optimize the design and implementation of pivotal Shigella vaccine trials in the target population of infants and young children living in low- and middle-income countries. Such optimization will ideally lead to a shorter time to vaccine availability in the target population. We also provide a brief description of the articles included in the supplement.
Collapse
Affiliation(s)
- Kirsten Vannice
- Enterics, Diagnostics, Genomics & Epidemiology, The Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Calman Alexander MacLennan
- Enterics, Diagnostics, Genomics & Epidemiology, The Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Jessica Long
- Enterics, Diagnostics, Genomics & Epidemiology, The Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Andrew Duncan Steele
- Enterics, Diagnostics, Genomics & Epidemiology, The Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
15
|
Gasperini G, Massai L, De Simone D, Raso MM, Palmieri E, Alfini R, Rossi O, Ravenscroft N, Kuttel MM, Micoli F. O-Antigen decorations in Salmonella enterica play a key role in eliciting functional immune responses against heterologous serovars in animal models. Front Cell Infect Microbiol 2024; 14:1347813. [PMID: 38487353 PMCID: PMC10937413 DOI: 10.3389/fcimb.2024.1347813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.
Collapse
Affiliation(s)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
16
|
Kapulu MC, Muthumbi E, Otieno E, Rossi O, Ferruzzi P, Necchi F, Acquaviva A, Martin LB, Orindi B, Mwai K, Kibet H, Mwanzu A, Bigogo GM, Verani JR, Mbae C, Nyundo C, Agoti CN, Nakakana UN, Conti V, Bejon P, Kariuki S, Scott JAG, Micoli F, Podda A. Age-dependent acquisition of IgG antibodies to Shigella serotypes-a retrospective analysis of seroprevalence in Kenyan children with implications for infant vaccination. Front Immunol 2024; 15:1340425. [PMID: 38361949 PMCID: PMC10867106 DOI: 10.3389/fimmu.2024.1340425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Background Shigellosis mainly affects children under 5 years of age living in low- and middle-income countries, who are the target population for vaccination. There are, however, limited data available to define the appropriate timing for vaccine administration in this age group. Information on antibody responses following natural infection, proxy for exposure, could help guide vaccination strategies. Methods We undertook a retrospective analysis of antibodies to five of the most prevalent Shigella serotypes among children aged <5 years in Kenya. Serum samples from a cross-sectional serosurvey in three Kenyan sites (Nairobi, Siaya, and Kilifi) were analyzed by standardized ELISA to measure IgG against Shigella sonnei and Shigella flexneri 1b, 2a, 3a, and 6. We identified factors associated with seropositivity to each Shigella serotype, including seropositivity to other Shigella serotypes. Results A total of 474 samples, one for each participant, were analyzed: Nairobi (n = 169), Siaya (n = 185), and Kilifi (n = 120). The median age of the participants was 13.4 months (IQR 7.0-35.6), and the male:female ratio was 1:1. Geometric mean concentrations (GMCs) for each serotype increased with age, mostly in the second year of life. The overall seroprevalence of IgG antibodies increased with age except for S. flexneri 6 which was high across all age subgroups. In the second year of life, there was a statistically significant increase of antibody GMCs against all five serotypes (p = 0.01-0.0001) and a significant increase of seroprevalence for S. flexneri 2a (p = 0.006), S. flexneri 3a (p = 0.006), and S. sonnei (p = 0.05) compared with the second part of the first year of life. Among all possible pairwise comparisons of antibody seropositivity, there was a significant association between S. flexneri 1b and 2a (OR = 6.75, 95% CI 3-14, p < 0.001) and between S. flexneri 1b and 3a (OR = 23.85, 95% CI 11-54, p < 0.001). Conclusion Children living in low- and middle-income settings such as Kenya are exposed to Shigella infection starting from the first year of life and acquire serotype-specific antibodies against multiple serotypes. The data from this study suggest that Shigella vaccination should be targeted to infants, ideally at 6 or at least 9 months of age, to ensure children are protected in the second year of life when exposure significantly increases.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Muthumbi
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | | | | | | - Kennedy Mwai
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Godfrey M. Bigogo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jennifer R. Verani
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | | | | | - Philip Bejon
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - J. Anthony G. Scott
- KEMRI-Wellcome Trust Programme, Kilifi, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
17
|
Abstract
Outer membrane vesicles (OMVs) are spontaneously released by many gram-negative bacteria during their growth and constitute an important virulence factor for bacteria, helping them to survive through harsh environmental conditions. Native OMVs, naturally-released from bacteria, are produced at a level too low for vaccine manufacturing, requiring chemical treatment (detergent-extracted) or genetic manipulation, resulting in generalized modules for membrane antigens (GMMAs). Over the years, the nature and properties of OMVs have made them a viable platform for vaccine development. There are a few licensed OMV vaccines mainly for the prevention of meningitis caused by Neisseria meningitidis serogroup B (MenB) and Haemophilus influenzae type b (Hib). There are several candidates in clinical development against other gram-negative organisms from which the OMVs are derived, but also against heterologous targets in which the OMVs are used as carriers (e.g. coronavirus disease 2019 [COVID-19]). The use of OMVs for targets other than those from which they are derived is a major advancement in OMV technology, improving its versatility by being able to deliver protein or polysaccharide antigens. Other advances include the range of genetic modifications that can be made to improve their safety, reduce reactogenicity, and increase immunogenicity and protective efficacy. However, significant challenges remain, such as identification of general tools for high-content surface expression of heterologous proteins on the OMV surface. Here, we outline the progress of OMV vaccines to date, particularly discussing licensed OMV-based vaccines and candidates in clinical development. Recent trends in preclinical research are described, mainly focused on genetic manipulation and chemical conjugation for the use of OMVs as carriers for heterologous protein and polysaccharide antigens. Remaining challenges with the use of OMVs and directions for future research are also discussed.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy.
| | | | - Usman Nakakana
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
18
|
Di Benedetto R, Mancini F, Caradonna V, Aruta MG, Giannelli C, Rossi O, Micoli F. Comparison of Shigella GMMA and glycoconjugate four-component formulations in animals. Front Mol Biosci 2023; 10:1284515. [PMID: 38046812 PMCID: PMC10690372 DOI: 10.3389/fmolb.2023.1284515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Shigellosis is leading bacterial cause of diarrhea with high prevalence in children younger than 5 years in low- and middle-income countries, and increasing number of reports of Shigella cases associated to anti-microbial resistance. No vaccines against Shigella are still licensed, but different candidates based on the O-antigen portion of lipopolysaccharides are in clinic. Generalized Modules for Membrane Antigens (GMMA) have been proposed as an alternative delivery system for the O-antigen, and a 4-component vaccine candidate (altSonflex1-2-3), containing GMMA from S. sonnei and S. flexneri 1b, 2a and 3a is being tested in a phase 1/2 clinical trial, with the aim to elicit broad protection against the most prevalent Shigella serotypes. Here, the 4-component GMMA vaccine candidate has been compared to a more traditional glycoconjugate formulation for the ability to induce functional antibodies in mice and rabbits. In mice, in the absence of Alhydrogel, GMMA induce higher IgG antibodies than glycoconjugates and stronger bactericidal titers against all Shigella serotypes. In the presence of Alhydrogel, GMMA induce O-antigen specific IgG levels similar to traditional glycoconjugates, but with a broader range of IgG subclasses, resulting in stronger bactericidal activity. In rabbits, GMMA elicit higher functional antibodies than glycoconjugates against S. sonnei, and similar responses to S. flexneri 1b, 2a and 3a, independently from the presence of Alhydrogel. Different O-antigen based vaccines against Shigella are now in clinical stage and it will be of particular interest to understand how the preclinical findings in the different animal models translate in humans.
Collapse
Affiliation(s)
- Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | |
Collapse
|
19
|
Giersing BK, Isbrucker R, Kaslow DC, Cavaleri M, Baylor N, Maiga D, Pavlinac PB, Riddle MS, Kang G, MacLennan CA. Clinical and regulatory development strategies for Shigella vaccines intended for children younger than 5 years in low-income and middle-income countries. Lancet Glob Health 2023; 11:e1819-e1826. [PMID: 37858591 PMCID: PMC10603611 DOI: 10.1016/s2214-109x(23)00421-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Shigellosis causes considerable public health burden, leading to excess deaths as well as acute and chronic consequences, particularly among children living in low-income and middle-income countries (LMICs). Several Shigella vaccine candidates are advancing in clinical trials and offer promise. Although multiple target populations might benefit from a Shigella vaccine, the primary strategic goal of WHO is to accelerate the development and accessibility of safe, effective, and affordable Shigella vaccines that reduce mortality and morbidity in children younger than 5 years living in LMICs. WHO consulted with regulators and policy makers at national, regional, and global levels to evaluate pathways that could accelerate regulatory approval in this priority population. Special consideration was given to surrogate efficacy biomarkers, the role of controlled human infection models, and the establishment of correlates of protection. A field efficacy study in children younger than 5 years in LMICs is needed to ensure introduction in this priority population.
Collapse
Affiliation(s)
- Birgitte K Giersing
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| | - Richard Isbrucker
- Norms and Standards for Biologicals, World Health Organization, Geneva, Switzerland
| | - David C Kaslow
- Essential Medicines and PATH Center for Vaccines Innovation and Access, PATH, Seattle, WA, USA
| | - Marco Cavaleri
- Office of Health Threats and Vaccine Strategy, European Medicines Agency, Amsterdam, Netherlands
| | | | - Diadié Maiga
- Vaccine Regulation, World Health Organization, Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Patricia B Pavlinac
- Global Center for Integrated Health of Women, Adolescents, and Children (Global WACh), Department of Global Health and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mark S Riddle
- Department of Internal Medicine (Community Faculty), University of Nevada, Reno, NV, USA
| | - Gagandeep Kang
- Department of Gastrointestinal Sciences, CMC Vellore, Vellore, India
| | - Calman A MacLennan
- Enterics, Diagnostics, Genomics & Epidemiology, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
20
|
Ma X, Zhao C, Xu Y, Zhang H. Roles of host SUMOylation in bacterial pathogenesis. Infect Immun 2023; 91:e0028323. [PMID: 37725062 PMCID: PMC10580907 DOI: 10.1128/iai.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Bacteria frequently interfere with the post-translational modifications of host cells to facilitate their survival and growth after invasion. SUMOylation, a reversible post-translational modification process, plays an important role in biological life activities. In addition to being critical to host cell metabolism and survival, SUMOylation also regulates gene expression and cell signal transmission. Moreover, SUMOylation in eukaryotic cells can be used by a variety of bacterial pathogens to advance bacterial invasion. In this minireview, we focused on the role and mechanism of host SUMOylation in the pathogenesis of six important clinical bacterial pathogens (Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Escherichia coli). Taken together, this review provided new insights for understanding the unique pathogen-host interaction based on host SUMOylation and provided a novel perspective on the development of new strategies to combat bacterial infections in the future.
Collapse
Affiliation(s)
- Xin Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuyao Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
21
|
Van der Ley P, Schijns VE. Outer membrane vesicle-based intranasal vaccines. Curr Opin Immunol 2023; 84:102376. [PMID: 37598549 DOI: 10.1016/j.coi.2023.102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Delivery of vaccines via the mucosal route is regarded as the most effective mode of immunization to counteract infectious diseases that enter via mucosal tissues, including oral, nasal, pulmonary, intestinal, and urogenital surfaces. Mucosal vaccines not only induce local immune effector elements, such as secretory Immunoglobulin A (IgA) reaching the luminal site of the mucosa, but also systemic immunity. Moreover, mucosal vaccines may trigger immunity in distant mucosal tissues because of the homing of primed antigen-specific immune cells toward local and distant mucosal tissue via the common mucosal immune system. While most licensed intramuscular vaccines induce only systemic immunity, next-generation mucosal vaccines may outperform parenteral vaccination strategies by also eliciting protective mucosal immune responses that block infection and/or transmission. Especially the nasal route of vaccination, targeting the nasal-associated lymphoid tissue, is attractive for local and distant mucosal immunization. In numerous studies, bacterial outer membrane vesicles (OMVs) have proved attractive as vaccine platform for homologous bacterial strains, but also as antigen delivery platform for heterologous antigens of nonbacterial diseases, including viruses, parasites, and cancer. Their application has also been extended to mucosal delivery. Here, we will summarize the characteristics and clinical potential of (engineered) OMVs as vaccine platform for mucosal, especially intranasal delivery.
Collapse
|
22
|
Rossi O, Citiulo F, Giannelli C, Cappelletti E, Gasperini G, Mancini F, Acquaviva A, Raso MM, Sollai L, Alfini R, Aruta MG, Vitali CG, Pizza M, Necchi F, Rappuoli R, Martin LB, Berlanda Scorza F, Colucci AM, Micoli F. A next-generation GMMA-based vaccine candidate to fight shigellosis. NPJ Vaccines 2023; 8:130. [PMID: 37670042 PMCID: PMC10480147 DOI: 10.1038/s41541-023-00725-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Shigellosis is a leading cause of diarrheal disease in low-middle-income countries (LMICs). Effective vaccines will help to reduce the disease burden, exacerbated by increasing antibiotic resistance, in the most susceptible population represented by young children. A challenge for a broadly protective vaccine against shigellosis is to cover the most epidemiologically relevant serotypes among >50 Shigella serotypes circulating worldwide. The GMMA platform has been proposed as an innovative delivery system for Shigella O-antigens, and we have developed a 4-component vaccine against S. sonnei, S. flexneri 1b, 2a and 3a identified among the most prevalent Shigella serotypes in LMICs. Driven by the immunogenicity results obtained in clinic with a first-generation mono-component vaccine, a new S. sonnei GMMA construct was generated and combined with three S. flexneri GMMA in a 4-component Alhydrogel formulation (altSonflex1-2-3). This formulation was highly immunogenic, with no evidence of negative antigenic interference in mice and rabbits. The vaccine induced bactericidal antibodies also against heterologous Shigella strains carrying O-antigens different from those included in the vaccine. The Monocyte Activation Test used to evaluate the potential reactogenicity of the vaccine formulation revealed no differences compared to the S. sonnei mono-component vaccine, shown to be safe in several clinical trials in adults. A GLP toxicology study in rabbits confirmed that the vaccine was well tolerated. The preclinical study results support the clinical evaluation of altSonflex1-2-3 in healthy populations, and a phase 1-2 clinical trial is currently ongoing.
Collapse
Affiliation(s)
- Omar Rossi
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | | | | | | | - Gianmarco Gasperini
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- GSK Vaccines Srl, Siena, Italy
| | | | | | | | - Luigi Sollai
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | - Renzo Alfini
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | | | | | - Mariagrazia Pizza
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- GSK Vaccines Srl, Siena, Italy
- Imperial College, London, United Kingdom
| | | | - Rino Rappuoli
- GSK Vaccines Srl, Siena, Italy
- Fondazione Biotecnopolo, Siena, Italy
| | - Laura B Martin
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- US Pharmacopoeia, Rockville, Maryland, USA
| | | | | | | |
Collapse
|
23
|
Berzosa M, Delgado-López A, Irache JM, Gamazo C. Optimization of Enterotoxigenic Escherichia coli (ETEC) Outer Membrane Vesicles Production and Isolation Method for Vaccination Purposes. Microorganisms 2023; 11:2088. [PMID: 37630648 PMCID: PMC10458947 DOI: 10.3390/microorganisms11082088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The study addresses Enterotoxigenic Escherichia coli (ETEC), a significant concern in low-income countries. Despite its prevalence, there is no licensed vaccine against ETEC. Bacterial vesicle-based vaccines are promising due to their safety and diverse virulence factors. However, cost-effective production requires enhancing vesicle yield while considering altered properties due to isolation methods. The proposed method involves heat treatment and ultrafiltration to recover vesicles from bacterial cultures. Two vesicle types, collected from heat-treated (HT-OMV) or untreated (NT-OMV) cultures, were compared. Vesicles were isolated via ultrafiltration alone ("complete") or with ultracentrifugation ("sediment"). Preliminary findings suggest complete HT-OMV vesicles are suitable for an ETEC vaccine. They express important proteins (OmpA, OmpX, OmpW) and virulence factors (adhesin TibA). Sized optimally (50-200 nm) for mucosal vaccination, they activate macrophages, inducing marker expression (CD40, MHCII, CD80, CD86) and Th1/Th2 cytokine release (IL-6, MCP-1, TNF-α, IL12p70, IL-10). This study confirms non-toxicity in RAW 264.7 cells and the in vivo ability of complete HT-OMV to generate significant IgG2a/IgG1 serum antibodies. Results suggest promise for a cost-effective ETEC vaccine, requiring further research on in vivo toxicity, pathogen-specific antibody detection, and protective efficacy.
Collapse
Affiliation(s)
- Melibea Berzosa
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Alberto Delgado-López
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
24
|
Tognetti F, Biagini M, Denis M, Berti F, Maione D, Stranges D. Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. Int J Mol Sci 2023; 24:12054. [PMID: 37569427 PMCID: PMC10418901 DOI: 10.3390/ijms241512054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.
Collapse
Affiliation(s)
- Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Higham SL, Baker S, Flight KE, Krishna A, Kellam P, Reece ST, Tregoning JS. Intranasal immunization with outer membrane vesicles (OMV) protects against airway colonization and systemic infection with Acinetobacter baumannii. J Infect 2023; 86:563-573. [PMID: 36858180 DOI: 10.1016/j.jinf.2023.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVES The multidrug-resistant bacteria Acinetobacter baumannii is a major cause of hospital-associated infection; a vaccine could significantly reduce this burden. The aim was to develop a clinically relevant model of A. baumannii respiratory tract infection and to test the impact of different immunization routes on protective immunity provided by an outer membrane vesicle (OMV) vaccine. METHODS BALB/c mice were intranasally challenged with isolates of oxa23-positive global clone GC2 A. baumannii from the lungs of patients with ventilator-associated pneumonia. Mice were immunized with OMVs by the intramuscular, subcutaneous or intranasal routes; protection was determined by measuring local and systemic bacterial load. RESULTS Infection with A. baumannii clinical isolates led to a more disseminated infection than the prototype A. baumannii strain ATCC17978; with bacteria detectable in upper and lower airways and the spleen. Intramuscular immunization induced an antibody response but did not protect against bacterial infection. However, intranasal immunization significantly reduced airway colonization and prevented systemic bacterial dissemination. CONCLUSIONS Use of clinically relevant isolates of A. baumannii provides stringent model for vaccine development. Intranasal immunization with OMVs was an effective route for providing protection, demonstrating that local immunity is important in preventing A. baumannii infection.
Collapse
Affiliation(s)
- Sophie L Higham
- Department of Infectious Disease, Imperial College London, St Marys Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Katie E Flight
- Department of Infectious Disease, Imperial College London, St Marys Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Aishwarya Krishna
- Infectious Diseases and Vaccines, Kymab, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Paul Kellam
- Department of Infectious Disease, Imperial College London, St Marys Campus, Norfolk Place, London W2 1PG, United Kingdom; Infectious Diseases and Vaccines, Kymab, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom; RQ Biotechnology Ltd, 7-12 Tavistock Square, London WC1H 9LT, United Kingdom
| | - Stephen T Reece
- Infectious Diseases and Vaccines, Kymab, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, St Marys Campus, Norfolk Place, London W2 1PG, United Kingdom.
| |
Collapse
|
26
|
Boero E, Vezzani G, Micoli F, Pizza M, Rossi O. Functional assays to evaluate antibody-mediated responses against Shigella: a review. Front Cell Infect Microbiol 2023; 13:1171213. [PMID: 37260708 PMCID: PMC10227456 DOI: 10.3389/fcimb.2023.1171213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.
Collapse
Affiliation(s)
- Elena Boero
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
27
|
Meron-Sudai S, Asato V, Adler A, Bialik A, Goren S, Ariel-Cohen O, Reizis A, Mulard LA, Phalipon A, Cohen D. A Shigella flexneri 2a synthetic glycan-based vaccine induces a long-lasting immune response in adults. NPJ Vaccines 2023; 8:35. [PMID: 36894570 PMCID: PMC9998260 DOI: 10.1038/s41541-023-00624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Shigella is a leading cause of moderate to severe diarrhea worldwide and of diarrhea-associated deaths in children under 5 years of age in low-and middle-income countries. A vaccine against shigellosis is in high demand. SF2a-TT15, a synthetic carbohydrate-based conjugate vaccine candidate against Shigella flexneri 2a (SF2a) was found safe and strongly immunogenic in adult volunteers. Here, SF2a-TT15 at 10 µg oligosaccharide (OS) vaccine dose is shown to induce a sustained immune response in magnitude and functionality in the majority of volunteers followed up 2 and 3 years post-vaccination. High levels of either one of the humoral parameters as well as the number of specific-IgG memory B-cells determined 3 months after vaccination were good predictors of the durability of the immune response. This study is the first to examine the long-term durability of antibody functionality and memory B-cell response induced by a Shigella vaccine candidate.
Collapse
Affiliation(s)
- Shiri Meron-Sudai
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Valeria Asato
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Amos Adler
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.,Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv, 6423906, Israel
| | - Anya Bialik
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Sophy Goren
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Ortal Ariel-Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Arava Reizis
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, F-75015, Paris, France
| | - Armelle Phalipon
- Institut Pasteur, Innovation Lab. Vaccines, F-75015, Paris, France
| | - Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
28
|
Toward a Shigella Vaccine: Opportunities and Challenges to Fight an Antimicrobial-Resistant Pathogen. Int J Mol Sci 2023; 24:ijms24054649. [PMID: 36902092 PMCID: PMC10003550 DOI: 10.3390/ijms24054649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Shigellosis causes more than 200,000 deaths worldwide and most of this burden falls on Low- and Middle-Income Countries (LMICs), with a particular incidence in children under 5 years of age. In the last decades, Shigella has become even more worrisome because of the onset of antimicrobial-resistant strains (AMR). Indeed, the WHO has listed Shigella as one of the priority pathogens for the development of new interventions. To date, there are no broadly available vaccines against shigellosis, but several candidates are being evaluated in preclinical and clinical studies, bringing to light very important data and information. With the aim to facilitate the understanding of the state-of-the-art of Shigella vaccine development, here we report what is known about Shigella epidemiology and pathogenesis with a focus on virulence factors and potential antigens for vaccine development. We discuss immunity after natural infection and immunization. In addition, we highlight the main characteristics of the different technologies that have been applied for the development of a vaccine with broad protection against Shigella.
Collapse
|
29
|
A Pentavalent Shigella flexneri LPS-Based Vaccine Candidate Is Safe and Immunogenic in Animal Models. Vaccines (Basel) 2023; 11:vaccines11020345. [PMID: 36851223 PMCID: PMC9966156 DOI: 10.3390/vaccines11020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
A multivalent vaccine is much needed to achieve protection against predominant Shigella serotypes. Recently, we demonstrated the clinical applicability and immunogenic potential of tri-acylated S. flexneri 2a lipopolysaccharide (Ac3-S-LPS). Using a similar approach, we designed a pentavalent LPS candidate vaccine against S. flexneri 1b, 2a, 3a, 6, and Y (PLVF). In this study, we performed molecular and antigenic characterization of the vaccine candidate and its preclinical evaluation. There were no signs of acute toxicity after subcutaneous administration of PLVF in rabbits at a proposed human dose of 125 μg. No pyrogenic reactions and adverse effects associated with chronic toxicity after repeated administration of PLVF were revealed either. The immunization of mice with PLVF led to ≥16-fold increase in S. flexneri 1b-, 2a-, 3a-, 6-, and Y-specific antibodies. In a serum bactericidal antibody (SBA) assay, we registered 54%, 66%, 35%, 60%, and 60% killing of S. flexneri 1b, 2a, 3a, 6, and Y, respectively. In the guinea pig keratoconjunctivitis model, the efficacy was 50% to 75% against challenge with all five S. flexneri serotypes. These studies demonstrate that PLVF is safe, immunogenic over a wide range of doses, and provides protection against challenge with homologous S. flexneri strains, thus confirming the validity of pentavalent design of the combined vaccine.
Collapse
|
30
|
Mancini F, Alfini R, Caradonna V, Monaci V, Carducci M, Gasperini G, Piccioli D, Biagini M, Giannelli C, Rossi O, Pizza M, Micoli F. Exploring the Role of GMMA Components in the Immunogenicity of a 4-Valent Vaccine against Shigella. Int J Mol Sci 2023; 24:2742. [PMID: 36769063 PMCID: PMC9916818 DOI: 10.3390/ijms24032742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Shigellosis is the leading cause of diarrheal disease, especially in children of low- and middle-income countries, and is often associated with anti-microbial resistance. Currently, there are no licensed vaccines widely available against Shigella, but several candidates based on the O-antigen (OAg) portion of lipopolysaccharides are in development. We have proposed Generalized Modules for Membrane Antigens (GMMA) as an innovative delivery system for OAg, and a quadrivalent vaccine candidate containing GMMA from S. sonnei and three prevalent S. flexneri serotypes (1b, 2a and 3a) is moving to a phase II clinical trial, with the aim to elicit broad protection against Shigella. GMMA are able to induce anti-OAg-specific functional IgG responses in animal models and healthy adults. We have previously demonstrated that antibodies against protein antigens are also generated upon immunization with S. sonnei GMMA. In this work, we show that a quadrivalent Shigella GMMA-based vaccine is able to promote a humoral response against OAg and proteins of all GMMA types contained in the investigational vaccine. Proteins contained in GMMA provide T cell help as GMMA elicit a stronger anti-OAg IgG response in wild type than in T cell-deficient mice. Additionally, we observed that only the trigger of Toll-like Receptor (TLR) 4 and not of TLR2 contributed to GMMA immunogenicity. In conclusion, when tested in mice, GMMA of a quadrivalent Shigella vaccine candidate combine both adjuvant and carrier activities which allow an increase in the low immunogenic properties of carbohydrate antigens.
Collapse
Affiliation(s)
- Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Valentina Caradonna
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Valentina Monaci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | | | | | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
31
|
MacLennan CA, Steele AD. Frontiers in Shigella Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10091536. [PMID: 36146614 PMCID: PMC9503259 DOI: 10.3390/vaccines10091536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, there has been a resurgence of interest in the development of vaccines against Shigella driven by the growing awareness of the impact of this pathogen on global health [...]
Collapse
|
32
|
Kapulu MC, Nakakana U, Sciré AS, Sarakinou E, Conti V, Rossi O, Acquaviva A, Necchi F, Obiero CW, Martin LB, Bejon P, Njuguna P, Micoli F, Podda A. Complement-mediated serum bactericidal activity of antibodies elicited by the Shigella sonnei GMMA vaccine in adults from a shigellosis-endemic country: Exploratory analysis of a Phase 2a randomized study. Front Immunol 2022; 13:971866. [PMID: 36203568 PMCID: PMC9531247 DOI: 10.3389/fimmu.2022.971866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Shigella is associated with a significant burden of disease worldwide among individuals of all ages and is the major cause of moderate and severe diarrhea in children under five years of age in low- and middle-income countries. Several candidate vaccines against Shigella species are currently under clinical development. The investigational 1790GAHB vaccine against Shigella sonnei is based on GMMA (Generalized Modules for Membrane Antigens) technology. The vaccine was well tolerated and induced high antibody levels in early-phase clinical trials in both Shigella-endemic and non-endemic settings. The present analysis assessed the bactericidal activity of antibodies induced by 1790GAHB in healthy Kenyan adults during a phase 2a, controlled, randomized study (NCT02676895). Participants received two doses of 1790GAHB 4 weeks apart containing either 1.5/25 µg or 6/100 µg O antigen/protein, or active comparator vaccines (Control). Serum bactericidal activity (SBA) against S. sonnei was assessed at pre-vaccination (D1), 28 days post-first dose (D29) and 28 days post-second dose (D57), using a luminescence-based assay. Most participants had SBA titers above the lower limit of quantification of the assay at D1. SBA geometric mean titers increased 3.4-fold in the 1.5/25 µg group and 6.3-fold in the 6/100 µg group by D29 and were maintained at D57. There was no increase in SBA geometric mean titers in the Control group. A strong correlation was observed between SBA titers and anti-S. sonnei lipopolysaccharide serum immunoglobulin G antibody concentrations (Pearson correlation coefficient = 0.918), indicating that SBA can effectively complement enzyme-linked immunosorbent assay data by indicating the functionality of 1790GAHB-induced antibodies.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Nakakana
- GSK Vaccines Institute for Global Health, Siena, Italy
- *Correspondence: Usman Nakakana,
| | | | | | | | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | | | | - Philip Bejon
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Patricia Njuguna
- Clinical Research Department, KEMRI-Wellcome Trust Programme, Kilifi, Kenya
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
33
|
MacLennan CA, Grow S, Ma LF, Steele AD. The Shigella Vaccines Pipeline. Vaccines (Basel) 2022; 10:vaccines10091376. [PMID: 36146457 PMCID: PMC9504713 DOI: 10.3390/vaccines10091376] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Shigella is the leading cause of global diarrheal deaths that currently lacks a licensed vaccine. Shigellosis drives antimicrobial resistance and leads to economic impact through linear growth faltering. Today, there is a robust pipeline of vaccines in clinical development which are broadly divided into parenteral glycoconjugate vaccines, consisting of O-antigen conjugated to carrier proteins, and oral live attenuated vaccines, which incorporate targeted genetic mutations seeking to optimize the balance between reactogenicity, immunogenicity and ultimately protection. Proof of efficacy has previously been shown with both approaches but for various reasons no vaccine has been licensed to date. In this report, we outline the requirements for a Shigella vaccine and describe the current pipeline in the context of the many candidates that have previously failed or been abandoned. The report refers to papers from individual vaccine developers in this special supplement of Vaccines which is focused on Shigella vaccines. Once readouts of safety and immunogenicity from current trials of lead candidate vaccines among the target population of young children in low- and middle-income countries are available, the likely time to licensure of a first Shigella vaccine will become clearer.
Collapse
|
34
|
Mancini F, Micoli F, Rossi O. Setup and Characterization of a High-Throughput Luminescence-Based Serum Bactericidal Assay (L-SBA) to Determine Functionality of Human Sera against Shigella flexneri. BIOTECH 2022; 11:biotech11030029. [PMID: 35997337 PMCID: PMC9396978 DOI: 10.3390/biotech11030029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Shigellosis represents a major public health problem worldwide. The morbidity of the disease, especially in children in developing countries, together with the increase of antimicrobial resistance make a vaccine against Shigella an urgent medical need. Several vaccines under development are targeting Shigella lipopolysaccharide (LPS), whose extreme diversity renders necessary the development of multivalent vaccines. Immunity against Shigella LPS can elicit antibodies capable of killing bacteria in a serotype-specific manner. Therefore, although a correlation of protection against shigellosis has not been established, demonstration of vaccine-elicited antibody bactericidal activity may provide one means of vaccine protection against Shigella. To facilitate Shigella vaccine development, we have set up a high-throughput serum bactericidal assay based on luminescence readout (L-SBA), which has been already used to determine the functionality of antibodies against S. sonnei in multiple clinical trials. Here we present the setup and intra-laboratory characterization of L-SBA against three epidemiologically relevant Shigella flexneri serotypes using human sera. We assessed the linearity, repeatability and reproducibility of the method, demonstrating high assay specificity to detect the activity of antibodies against each homologous strain without any heterologous aspecificity against species-related and non-species-related strains; this assay is ready to be used to determine bactericidal activity of clinical sera raised by multivalent vaccines and in sero-epidemiological studies.
Collapse
|