1
|
Quadiri A, Prakash S, Vahed H, Tadros JM, Sun M, Hormi-Carver KK, Patel SJ, BenMohamed L. Therapeutic mucosal vaccination of herpes simplex virus type 2 infected guinea pigs with an adenovirus-based vaccine expressing the ribonucleotide reductase 2 and glycoprotein D induces local tissue-resident CD4+ and CD8+ TRM cells associated with protection against recurrent genital herpes. Front Immunol 2025; 16:1568258. [PMID: 40207227 PMCID: PMC11979635 DOI: 10.3389/fimmu.2025.1568258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction The reactivation of herpes simplex virus 2 (HSV-2) from latency causes viral shedding that develops into recurrent genital lesions. The role of tissue-resident T cells and the nature of viral antigens associated with protection against recurrent genital herpes remain to be fully elucidated. Methods In this preclinical study, we investigated the protective therapeutic efficacy, in the guinea pig model of recurrent genital herpes, of five recombinant adenovirus-based therapeutic vaccine candidates (rAd-Ags), each expressing different HSV-2 envelope and tegument proteins: RR1 (UL39), RR2 (UL40), gD (glycoprotein D), VP16 (UL48), or VP22 (UL49). We compared the frequency and function of dorsal root ganglia (DRG)- and vaginal mucosa (VM)-resident CD4+ and CD8+ T cells induced by each vaccine and their effect on the frequency and severity of recurrent genital herpes. Results HSV-2 latent-infected guinea pigs immunized with rAd-RR2 and rAd-gD vaccines showed high frequencies of DRG- and VM-tissue-resident IFN-g-producing CD4+ and CD8+ TRM cells associated with significant reductions in viral shedding and genital herpetic lesions. Discussion Taken together, these preclinical results provide new insights into the T cell mechanisms of protection against recurrent genital herpes and confirm the tegument RR2 protein and glycoprotein D as viable candidate antigens to be incorporated in future genital herpes therapeutic vaccines.
Collapse
Affiliation(s)
- Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jimmy Medhat Tadros
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swena Jignesh Patel
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA, United States
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| |
Collapse
|
2
|
Wu ZN, Zhang YB, Wang GC, Tang Q, Li YL, Cheng W. Pegaharolines A - I, structurally novel indole alkaloids with anti-HSV-2 virus activities from Peganum harmala L. seeds. Fitoterapia 2024; 179:106237. [PMID: 39321852 DOI: 10.1016/j.fitote.2024.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Leading by the antiviral activities against HSV-2 virus, bioactivity-guided the fraction of crude alkaloids from seeds of Peganum harmala led to the isolation of nine structurally novel indole alkaloids, pegaharolines A - I (1-9), and 11 known ones (10-20). Compound 3 was an unusual 6/5/5/5 spirotetracyclic indole-derived alkaloids featuring a classic bicyclic indole unit fused with an additional pyrrolizine ring via a spiral atom (C-3). Compound 4 was determined as a novel indole alkaloid, characterized with a rare hexacyclic 6/5/6/5-6/6 ring system, by a single-crystal X-ray diffraction. Compounds 5 and 6 were peculiar indole dimers featuring with the rare carbon skeleton of an octacyclic scaffold. Compounds 1-6 were six racemates. Most compounds exhibited different levels of antiviral activities against HSV-2. Especially, the anti-HSV-2 activity of compound 1 (IC50 = 0.90 ± 0.10 μM) was much better than that of the positive control (acyclovir, IC50 = 1.12 ± 0.15 μM). In this study, the discovery of anti-HSV-2 components from the seeds of P. harmala, could benefit development and utilization of this plant in antiviral medicinal products.
Collapse
Affiliation(s)
- Zhong-Nan Wu
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, College of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qing Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen Cheng
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, College of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
3
|
Amrani N, Luk K, Singh P, Shipley M, Isik M, Donadoni M, Bellizzi A, Khalili K, Sariyer IK, Neumann D, Gordon J, Ruan GX. CRISPR-Cas9-mediated genome editing delivered by a single AAV9 vector inhibits HSV-1 reactivation in a latent rabbit keratitis model. Mol Ther Methods Clin Dev 2024; 32:101303. [PMID: 39610766 PMCID: PMC11602521 DOI: 10.1016/j.omtm.2024.101303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/18/2024] [Indexed: 11/30/2024]
Abstract
Herpes simples virus 1 (HSV-1) keratitis is a major cause of blindness globally. During primary infection, HSV-1 travels to the trigeminal ganglia and establishes lifelong latency. Although some treatments can reduce symptom severity and recurrence, there is no cure for HSV-1 keratitis. We used CRISPR-Cas9 to co-target gene sequences encoding two essential HSV-1 proteins, ICP0 and ICP27, as a potential therapy for HSV-1 keratitis. In HSV-1-infected Vero cells, the HSV-1 viral load and titer were significantly reduced by plasmid transfection or AAV2 vector transduction expressing Cas9 nuclease from Staphylococcus aureus (SaCas9) and paired guide RNAs (gRNAs). Off-target assessment showed minimal off-target editing activity from the selected gRNAs. We then tested our CRISPR-Cas9 gene editing approach in a latent rabbit model of HSV-1 keratitis. Corneal scarification with all-in-one AAV8(Y733F)-SaCas9 or AAV9-SaCas9 vector reduced viral shedding by over 50%. Interestingly, intravenous administration of the same AAV9-SaCas9 vector eliminated viral shedding in 92% of treated eyes. In addition, treated trigeminal ganglia showed a reduction in HSV-1 DNA and RNA expression. Our results support the utility of single-dose AAV9 all-in-one CRISPR-Cas9 gene editing as a safe and effective strategy for treating HSV-1 keratitis.
Collapse
Affiliation(s)
- Nadia Amrani
- Excision BioTherapeutics Inc, Watertown, MA, USA
| | - Kevin Luk
- Excision BioTherapeutics Inc, Watertown, MA, USA
| | - Pankaj Singh
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mason Shipley
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Meltem Isik
- Excision BioTherapeutics Inc, Watertown, MA, USA
| | - Martina Donadoni
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Anna Bellizzi
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ilker K. Sariyer
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
4
|
Singer M, Husseiny MI. Immunological Considerations for the Development of an Effective Herpes Vaccine. Microorganisms 2024; 12:1846. [PMID: 39338520 PMCID: PMC11434158 DOI: 10.3390/microorganisms12091846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Research is underway to develop a vaccine to prevent and cure infection from herpes simplex virus (HSV). It emphasizes the critical need for immunization to address public health issues and the shortcomings of existing treatment options. Furthermore, studies on the HSV vaccine advance the field of immunology and vaccine creation, which may help in the battle against other viral illnesses. The current lack of such a vaccine is, in part, due to herpes viral latency in sensory ganglions. Current vaccines rely on tissue-resident memory CD8+ T cells, which are known to provide protection against subsequent HSV reinfection and reactivation without correlating with other immune subsets. For that reason, there is no effective vaccine that can provide protection against latent or recurrent herpes infection. This review focuses on conventional methods for evaluating the efficacy of a herpes vaccine using differential CD8+ T cells and important unaccounted immune aspects for designing an effective vaccine against herpes.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Tyszczuk-Rotko K, Staniec K, Gorylewski D, Keller A. First Acyclovir Determination Procedure via Electrochemically Activated Screen-Printed Carbon Electrode Coupled with Well-Conductive Base Electrolyte. SENSORS (BASEL, SWITZERLAND) 2024; 24:1125. [PMID: 38400283 PMCID: PMC10893355 DOI: 10.3390/s24041125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
In this work, a new voltammetric procedure for acyclovir (ACY) trace-level determination has been described. For this purpose, an electrochemically activated screen-printed carbon electrode (aSPCE) coupled with well-conductive electrolyte (CH3COONH4, CH3COOH and NH4Cl) was used for the first time. A commercially available SPCE sensor was electrochemically activated by conducting cyclic voltammetry (CV) scans in 0.1 mol L-1 NaOH solution and rinsed with deionized water before a series of measurements were taken. This treatment reduced the charge transfer resistance, increased the electrode active surface area and improved the kinetics of the electron transfer. The activation step and high conductivity of supporting electrolyte significantly improved the sensitivity of the procedure. The newly developed differential-pulse adsorptive stripping voltammetry (DPAdSV) procedure is characterized by having the lowest limit of detection among all voltammetric procedures currently described in the literature (0.12 nmol L-1), a wide linear range of the calibration curve (0.5-50.0 and 50.0-1000.0 nmol L-1) as well as extremely high sensitivity (90.24 nA nmol L-1) and was successfully applied in the determination of acyclovir in commercially available pharmaceuticals.
Collapse
Affiliation(s)
- Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland (D.G.)
| | | | | | | |
Collapse
|
7
|
Hussain MS, Gupta G, Samuel VP, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Khan R, Altwaijry N, Patel S, Patel A, Singh SK, Dua K. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev Med Virol 2024; 34:e2491. [PMID: 37985599 DOI: 10.1002/rmv.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The immunopathology of herpes simplex virus (HSV)-associated neuroinflammation is a captivating and intricate field of study within the scientific community. HSV, renowned for its latent infection capability, gives rise to a spectrum of neurological expressions, ranging from mild symptoms to severe encephalitis. The enigmatic interplay between the virus and the host's immune responses profoundly shapes the outcome of these infections. This review delves into the multifaceted immune reactions triggered by HSV within neural tissues, intricately encompassing the interplay between innate and adaptive immunity. Furthermore, this analysis delves into the delicate equilibrium between immune defence and the potential for immunopathology-induced neural damage. It meticulously dissects the roles of diverse immune cells, cytokines, and chemokines, unravelling the intricacies of neuroinflammation modulation and its subsequent effects. By exploring HSV's immune manipulation and exploitation mechanisms, this review endeavours to unveil the enigmas surrounding the immunopathology of HSV-associated neuroinflammation. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of HSV infections.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samir Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Archita Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, New South Wales, Australia
| |
Collapse
|
8
|
Preda M, Manolescu LSC, Chivu RD. Advances in Alpha Herpes Viruses Vaccines for Human. Vaccines (Basel) 2023; 11:1094. [PMID: 37376483 DOI: 10.3390/vaccines11061094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Alpha herpes simplex viruses are an important public health problem affecting all age groups. It can produce from common cold sores and chicken pox to severe conditions like encephalitis or newborn mortality. Although all three subtypes of alpha herpes viruses have a similar structure, the produced pathology differs, and at the same time, the available prevention measures, such as vaccination. While there is an available and efficient vaccine for the varicella-zoster virus, for herpes simplex virus 1 and 2, after multiple approaches from trivalent subunit vaccine to next-generation live-attenuated virus vaccines and bioinformatic studies, there is still no vaccine available. Although there are multiple failed approaches in present studies, there are also a few promising attempts; for example, the trivalent vaccine containing herpes simplex virus type 2 (HSV-2) glycoproteins C, D, and E (gC2, gD2, gE2) produced in baculovirus was able to protect guinea pigs against vaginal infection and proved to cross-protect against HSV-1. Another promising vaccine is the multivalent DNA vaccine, SL-V20, tested in a mouse model, which lowered the clinical signs of infection and produced efficient viral eradication against vaginal HSV-2. Promising approaches have emerged after the COVID-19 pandemic, and a possible nucleoside-modified mRNA vaccine could be the next step. All the approaches until now have not led to a successful vaccine that could be easy to administer and, at the same time, offer antibodies for a long period.
Collapse
Affiliation(s)
- Madalina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Research Department, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Virology, Institute of Virology "Stefan S. Nicolau", 030304 Bucharest, Romania
| | - Razvan Daniel Chivu
- Department of Public Health and Health Management, Faculty of Midwifery and Nursing, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
9
|
Moradi M, Vahedi F, Abbassioun A, Ramezanpour Shahi A, Sholeh M, Taheri‐Anganeh M, Dargahi Z, Ghanavati R, Khatami SH, Movahedpour A. Liposomal delivery system/adjuvant for tuberculosis vaccine. Immun Inflamm Dis 2023; 11:e867. [PMID: 37382263 PMCID: PMC10251763 DOI: 10.1002/iid3.867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/30/2023] Open
Abstract
As reported by the World Health Organization, about 10 million individuals were infected with tuberculosis (TB) worldwide. Moreover, approximately 1.5 million people died of TB, of which 214,000 were infected with HIV simultaneously. Due to the high infection rate, the need for effective TB vaccination is highly felt. Until now, various methodologies have been proposed for the development of a protein subunit vaccine for TB. These vaccines have shown higher protection than other vaccines, particularly the Bacillus culture vaccine. The delivery system and safety regulator are common characteristics of effective adjuvants in TB vaccines and the clinical trial stage. The present study investigates the current state of TB adjuvant research focusing on the liposomal adjuvant system. Based on our findings, the liposomal system is a safe and efficient adjuvant from nanosize to microsize for vaccinations against TB, other intracellular infections, and malignancies. Clinical studies can provide valuable feedback for developing novel TB adjuvants, which ultimately enhance the impact of adjuvants on next-generation TB vaccines.
Collapse
Affiliation(s)
- Melika Moradi
- Department of Microbiology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary MediceneUniversity of TehranTehranIran
| | - Arash Ramezanpour Shahi
- Department of Veterinary Clinical Sciences, Poultry diseases and hygiene Resident, Faculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| | - Mohammad Sholeh
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mortaza Taheri‐Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Zahra Dargahi
- Department of Microbiology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | | | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | |
Collapse
|