1
|
Ahmed M, Kurungottu P, Swetha K, Atla S, Ashok N, Nagamalleswari E, Bonam SR, Sahu BD, Kurapati R. Role of NLRP3 inflammasome in nanoparticle adjuvant-mediated immune response. Biomater Sci 2025; 13:2164-2178. [PMID: 38867716 DOI: 10.1039/d4bm00439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is pivotal in orchestrating the immune response induced by nanoparticle adjuvants. Understanding the intricate mechanisms underlying the activation of NLRP3 inflammasome by these adjuvants is crucial for deciphering their immunomodulatory properties. This review explores the involvement of the NLRP3 inflammasome in mediating immune responses triggered by nanoparticle adjuvants. It delves into the signaling pathways and cellular mechanisms involved in NLRP3 activation, highlighting its significance in modulating the efficacy and safety of nanoparticle-based adjuvants. A comprehensive grasp of the interplay between NLRP3 inflammasome and nanoparticle adjuvants holds promise for optimizing vaccine design and advancing immunotherapeutic strategies.
Collapse
Affiliation(s)
- Momitul Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| | - Pavithra Kurungottu
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - K Swetha
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - Sandeep Atla
- Texas A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Nivethitha Ashok
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - Easa Nagamalleswari
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| |
Collapse
|
2
|
Song L, Cui Y, Wang Q, Tan R, Wen Y, Meng C, Jiao X, Pan Z. Enhanced Humoral and Cellular Immune Responses Elicited by Salmonella Flagellin-Adjuvanted SARS-CoV-2 S1 Subunit Vaccine. Viral Immunol 2025; 38:88-95. [PMID: 40127244 DOI: 10.1089/vim.2024.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, has been spreading and changing globally. Adjuvant-based vaccines can improve vaccine protection by enhancing the immune response. Bacterial flagellin is a potent adjuvant and promotes protective immune responses. Here, we successfully expressed and purified the S1 subunit of SARS-CoV-2. The adjuvanticity of flagellin (FliC) of Salmonella Typhimurium in mice was determined by combining it with the recombinant S1 subunit vaccine. FliC-adjuvanted S1 vaccine could induce significantly enhanced S1-specific Immunoglobulin G (IgG), IgG1 and IgG2a titers, SARS-CoV-2-neutralizing antibodies, and levels of Th1 type (TNF-α and IFN-γ) and Th2 type (Interleukin-5 (IL-5), IL-4, IL-10, and IL-13) cytokines in splenocytes compared with the S1 alone group. Additionally, the titers of S1-specific IgG antibodies in the FliC adjuvant group could maintain a high level for at least 2 months. These results indicated that the FliC-adjuvanted S1 subunit vaccine could trigger strong humoral and cellular immune responses, which could promote the ongoing development of COVID-19 vaccines.
Collapse
MESH Headings
- Animals
- Flagellin/immunology
- Mice
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Immunity, Cellular
- Antibodies, Viral/blood
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Immunoglobulin G/blood
- Immunity, Humoral
- Adjuvants, Immunologic/administration & dosage
- Mice, Inbred BALB C
- Cytokines
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Salmonella typhimurium/immunology
- Adjuvants, Vaccine/administration & dosage
- Humans
Collapse
Affiliation(s)
- Li Song
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yaodan Cui
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qiaoju Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ruimeng Tan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Yaya Wen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Arrazola P, Fernández Prada M, Gil Á, Gómez Rial J, Hernán C, Menéndez R, Trilla A, Ortiz de Lejarazu R. New COVID-19 vaccination recommendations in Spain: Optimizing for next seasons. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2025; 43:36-46. [PMID: 39755408 DOI: 10.1016/j.eimce.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 01/06/2025]
Abstract
Despite high initial vaccination rates, Spain's current COVID-19 vaccination coverage in recommended groups does not meet WHO targets. For the upcoming season, challenges include revising vaccination age, updating risk groups, and unifying criteria with flu vaccine co-administration. European Commission's advance purchase agreements limit access to certain vaccines, and the need for vaccines effective against current variants adds administrative complexities. Spain's COVID-19 vaccination recommendations should adapt to these specific circumstances. Using vaccines effective against predominant variants with appropriate response duration is crucial to protect at-risk populations. Enhancing training and health education campaigns for health professionals and the general public, alongside utilizing tools to simplify vaccination recommendations, can promote higher vaccination rates in Spain. Addressing these challenges is essential to ensure adequate protection and improve vaccination coverage, ultimately achieving better public health outcomes in the face of evolving COVID-19 threats.
Collapse
Affiliation(s)
- Pilar Arrazola
- Servicio de Medicina Preventiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Fernández Prada
- Servicio Medicina Preventiva y Salud Pública, Hospital Vital Álvarez Buylla, Asturias, Spain
| | - Ángel Gil
- Departamento de Especialidades Médicas y Salud Pública, Universidad Rey Juan Carlos, Madrid, Spain
| | - José Gómez Rial
- Servicio de Inmunología, Hospital Clínico Universitario de Santiago de Compostela, Servicio Galego de Saúde (SERGAS), Galicia, Spain
| | - Cristina Hernán
- Servicio de Medicina Preventiva y Salud Pública, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | | - Antoni Trilla
- Hospital Clínic, Universitat de Barcelona, ISGlobal, Barcelona, Spain; Servicio de Medicina Preventiva y Epidemiología, Hospital Clínic, Universitat de Barcelona, Spain
| | | |
Collapse
|
4
|
Arrazola P, Fernández Prada M, Gil Á, Gómez Rial J, Hernán C, Menéndez R, Trilla A, Ortiz de Lejarazu R. New COVID-19 vaccination recommendations in Spain: Optimizing for next seasons. Enferm Infecc Microbiol Clin 2025; 43:36-46. [PMID: 39845334 PMCID: PMC11752446 DOI: 10.1016/j.eimc.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 01/24/2025]
Abstract
Despite high initial vaccination rates, Spain's current COVID-19 vaccination coverage in recommended groups does not meet WHO targets. For the upcoming season, challenges include revising vaccination age, updating risk groups, and unifying criteria with flu vaccine co-administration. European Commission's advance purchase agreements limit access to certain vaccines, and the need for vaccines effective against current variants adds administrative complexities. Spain's COVID-19 vaccination recommendations should adapt to these specific circumstances. Using vaccines effective against predominant variants with appropriate response duration is crucial to protect at-risk populations. Enhancing training and health education campaigns for health professionals and the general public, alongside utilizing tools to simplify vaccination recommendations, can promote higher vaccination rates in Spain. Addressing these challenges is essential to ensure adequate protection and improve vaccination coverage, ultimately achieving better public health outcomes in the face of evolving COVID-19 threats.
Collapse
Affiliation(s)
- Pilar Arrazola
- Servicio de Medicina Preventiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Fernández Prada
- Servicio Medicina Preventiva y Salud Pública, Hospital Vital Álvarez Buylla, Asturias, Spain
| | - Ángel Gil
- Departamento de Especialidades Médicas y Salud Pública, Universidad Rey Juan Carlos, Madrid, Spain
| | - José Gómez Rial
- Servicio de Inmunología, Hospital Clínico Universitario de Santiago de Compostela, Servicio Galego de Saúde (SERGAS), Galicia, Spain
| | - Cristina Hernán
- Servicio de Medicina Preventiva y Salud Pública, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | | - Antoni Trilla
- Hospital Clínic, Universitat de Barcelona, ISGlobal, Barcelona, Spain
- Servicio de Medicina Preventiva y Epidemiología, Hospital Clínic, Universitat de Barcelona, Spain
| | | |
Collapse
|
5
|
Bhangde S, Fresnay-Murray S, Garretson T, Ashraf A, O’Hagan DT, Amiji MM, Lodaya RN. Microfluidic-Chip-Based Formulation and In Vivo Evaluations of Squalene Oil Emulsion Adjuvants for Subunit Vaccines. Vaccines (Basel) 2024; 12:1343. [PMID: 39772005 PMCID: PMC11680198 DOI: 10.3390/vaccines12121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Adjuvants play a crucial role in improving the immunogenicity of various antigens in vaccines. Squalene-in-water emulsions are clinically established vaccine adjuvants that improve immune responses, particularly during a pandemic. Current manufacturing processes for these emulsion adjuvants include microfluidizers and homogenizers and these processes have been used to produce emulsion adjuvants to meet global demands during a pandemic. These processes, however, are complex and expensive and may not meet the global needs based on the growing populations in low- and middle-income countries. At the forefront of adjuvant research, there is a pressing need to manufacture emulsion adjuvants using novel approaches that balance efficacy, scalability, speed of production, and cost-effectiveness. METHODS In this study, we explored the feasibility of a microfluidic chip platform to address these challenges and evaluated the adjuvanticity of the emulsion adjuvant prepared using the microfluidic chip process in CB6F1 mice model, and compared it with a control formulation. We developed and optimized the process parameters to produce emulsion adjuvants with characteristics similar to SEA160 (control formulation). RESULTS The resulting emulsion prepared using the microfluidic chip process (MC160) when mixed with ovalbumin, maintained antigen structural integrity. Immunogenicity studies in a CB6F1 mouse model, with the Cytomegalovirus glycoprotein B (CMV gB) antigen, resulted in humoral responses that were non-inferior between MC160 and SEA160, thereby validating the microfluidic chip approach for manufacturing emulsion adjuvants. CONCLUSIONS These findings demonstrate a proof of concept for using microfluidic chip platforms for formulating emulsion adjuvants, offering a simpler manufacturing platform that can be deployed to low- and middle-income countries for rapid production, improving adjuvant access and aiding in pandemic preparedness.
Collapse
Affiliation(s)
- Shashank Bhangde
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA (M.M.A.)
| | | | - Tyler Garretson
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Asma Ashraf
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Derek T. O’Hagan
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA (M.M.A.)
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Rushit N. Lodaya
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| |
Collapse
|
6
|
Miskovic R, Radovic S, Arandjelovic S, Plavsic A, Reljic V, Peric J, Brkovic V, Stojanovic M. Onset of leukocytoclastic vasculitis following covid-19 vaccination: case based comprehensive review. Rheumatol Int 2024; 44:2621-2635. [PMID: 39284920 DOI: 10.1007/s00296-024-05718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024]
Abstract
With the global introduction and widespread administration of COVID-19 vaccines, there have been emerging reports of associated vasculitis, including leukocytoclastic cutaneous vasculitis (LCV). In this paper, we present a case of a 68-year-old female patient who developed painful purpuric skin lesions on her feet 12 days after administration of the inactivated COVID-19 vaccine BBIBP Cor-V with histopathological confirmation of LCV and no signs of systemic involvement. The case is followed by a comprehensive literature review of documented LCV cases associated with COVID-19 vaccination with overall 39 articles and 48 cases of LCV found in total. In the majority of cases (56.3%) the first symptom occurred after the first dose of the COVID-19 vaccine, with symptoms manifesting within an average of seven days (6.8 ± 4.8) post-vaccination. The adenoviral vaccine Oxford-AstraZeneca (41.7%) and the mRNA vaccine Pfizer-BioNTech (27.1%) were most frequently associated with LCV occurrences. On average, LCV resolved within 2.5 (± 1.5) weeks. The preferred treatment modality were glucocorticoids, used in 70.8% of cases, resulting in a positive outcome in most cases, including our patient. While the safety of a subsequent dose appears favorable based on our review, individual risk-benefit assessment is crucial. This review emphasis the importance of considering COVID-19 vaccination as a potential trigger for the development of cutaneous vasculitis. Despite rare adverse events, the benefits of the COVID-19 vaccination outweigh the risks, highlighting the importance of immunization programs.
Collapse
Affiliation(s)
- Rada Miskovic
- Clinic of Allergy and Immunology, University Clinical Centre of Serbia, Koste Todorovica 2, 11000, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia.
| | - Sara Radovic
- Clinic of Allergy and Immunology, University Clinical Centre of Serbia, Koste Todorovica 2, 11000, Belgrade, Serbia
| | - Snezana Arandjelovic
- Clinic of Allergy and Immunology, University Clinical Centre of Serbia, Koste Todorovica 2, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
| | - Aleksandra Plavsic
- Clinic of Allergy and Immunology, University Clinical Centre of Serbia, Koste Todorovica 2, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
| | - Vesna Reljic
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
- Clinic of Dermatovenereology, University Clinical Centre of Serbia, Koste Todorovica 2, 11000, Belgrade, Serbia
| | - Jelena Peric
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
- Clinic of Dermatovenereology, University Clinical Centre of Serbia, Koste Todorovica 2, 11000, Belgrade, Serbia
| | - Voin Brkovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
- Clinic of Nephrology, University Clinical Centre of Serbia, Koste Todorovica 2, 11000, Belgrade, Serbia
| | - Maja Stojanovic
- Clinic of Allergy and Immunology, University Clinical Centre of Serbia, Koste Todorovica 2, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
| |
Collapse
|
7
|
Umeda L, Torres A, Kunihiro BP, Rubas NC, Wells RK, Phankitnirundorn K, Peres R, Juarez R, Maunakea AK. Immuno-Microbial Signature of Vaccine-Induced Immunity against SARS-CoV-2. Vaccines (Basel) 2024; 12:637. [PMID: 38932366 PMCID: PMC11209251 DOI: 10.3390/vaccines12060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Although vaccines address critical public health needs, inter-individual differences in responses are not always considered in their development. Understanding the underlying basis for these differences is needed to optimize vaccine effectiveness and ultimately improve disease control. In this pilot study, pre- and post-antiviral immunological and gut microbiota features were characterized to examine inter-individual differences in SARS-CoV-2 mRNA vaccine response. Blood and stool samples were collected before administration of the vaccine and at 2-to-4-week intervals after the first dose. A cohort of 14 adults was separated post hoc into two groups based on neutralizing antibody levels (high [HN] or low [LN]) at 10 weeks following vaccination. Bivariate correlation analysis was performed to examine associations between gut microbiota, inflammation, and neutralization capacity at that timepoint. These analyses revealed significant differences in gut microbiome composition and inflammation states pre-vaccination, which predicted later viral neutralization capacity, with certain bacterial taxa, such as those in the genus Prevotella, found at higher abundance in the LN vs HN group that were also negatively correlated with a panel of inflammatory factors such as IL-17, yet positively correlated with plasma levels of the high mobility group box 1 (HMGB-1) protein at pre-vaccination. In particular, we observed a significant inverse relationship (Pearson = -0.54, p = 0.03) between HMGB-1 pre-vaccination and neutralization capacity at 10 weeks post-vaccination. Consistent with known roles as mediators of inflammation, our results altogether implicate HMGB-1 and related gut microbial signatures as potential biomarkers in predicting SARS-CoV-2 mRNA vaccine effectiveness measured by the production of viral neutralization antibodies.
Collapse
Affiliation(s)
- Lesley Umeda
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA; (L.U.); (B.P.K.); (N.C.R.); (R.K.W.)
| | - Amada Torres
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; (A.T.); (K.P.); (R.P.)
| | - Braden P. Kunihiro
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA; (L.U.); (B.P.K.); (N.C.R.); (R.K.W.)
| | - Noelle C. Rubas
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA; (L.U.); (B.P.K.); (N.C.R.); (R.K.W.)
| | - Riley K. Wells
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA; (L.U.); (B.P.K.); (N.C.R.); (R.K.W.)
| | - Krit Phankitnirundorn
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; (A.T.); (K.P.); (R.P.)
| | - Rafael Peres
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; (A.T.); (K.P.); (R.P.)
| | - Ruben Juarez
- Department of Economics and UHERO, University of Hawaii, Honolulu, HI 96822, USA;
- Hawaii Integrated Analytics, LLC, Honolulu, HI 96822, USA
| | - Alika K. Maunakea
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; (A.T.); (K.P.); (R.P.)
- Hawaii Integrated Analytics, LLC, Honolulu, HI 96822, USA
| |
Collapse
|
8
|
Ramos-Duarte VA, Orlowski A, Jaquenod de Giusti C, Corigliano MG, Legarralde A, Mendoza-Morales LF, Atela A, Sánchez MA, Sander VA, Angel SO, Clemente M. Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen. Vaccine 2024; 42:3355-3364. [PMID: 38631949 DOI: 10.1016/j.vaccine.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy "protein mixture" (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Vaccine
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- HSP90 Heat-Shock Proteins/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
Collapse
Affiliation(s)
- Victor A Ramos-Duarte
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" (CONICET), Universidad Nacional de La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Carolina Jaquenod de Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" (CONICET), Universidad Nacional de La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Mariana G Corigliano
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Ariel Legarralde
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Luisa F Mendoza-Morales
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Biotecnologías en Bovinos y Ovinos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Provincia de Buenos Aires, Argentina
| | - Agustín Atela
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Manuel A Sánchez
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Valeria A Sander
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Biotecnologías en Bovinos y Ovinos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Provincia de Buenos Aires, Argentina
| | - Sergio O Angel
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Parasitología Molecular-UB2, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires, Argentina
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina.
| |
Collapse
|
9
|
Zhu C, Pang S, Liu J, Duan Q. Current Progress, Challenges and Prospects in the Development of COVID-19 Vaccines. Drugs 2024; 84:403-423. [PMID: 38652356 DOI: 10.1007/s40265-024-02013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/25/2024]
Abstract
The COVID-19 pandemic has resulted in over 772 million confirmed cases, including nearly 7 million deaths, according to the World Health Organization (WHO). Leveraging rapid development, accelerated vaccine approval processes, and large-scale production of various COVID-19 vaccines using different technical platforms, the WHO declared an end to the global health emergency of COVID-19 on May 5, 2023. Current COVID-19 vaccines encompass inactivated, live attenuated, viral vector, protein subunit, nucleic acid (DNA and RNA), and virus-like particle (VLP) vaccines. However, the efficacy of these vaccines is diminishing due to the constant mutation of SARS-CoV-2 and the heightened immune evasion abilities of emerging variants. This review examines the impact of the COVID-19 pandemic, the biological characteristics of the virus, and its diverse variants. Moreover, the review underscores the effectiveness, advantages, and disadvantages of authorized COVID-19 vaccines. Additionally, it analyzes the challenges, strategies, and future prospects of developing a safe, broad-spectrum vaccine that confers sufficient and sustainable immune protection against new variants of SARS-CoV-2. These discussions not only offer insight for the development of next-generation COVID-19 vaccines but also summarize experiences for combating future emerging viruses.
Collapse
Affiliation(s)
- Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Shengmei Pang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiaqi Liu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qiangde Duan
- Department of Veterinary Microbiology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
10
|
White CL, Glover MA, Gandhapudi SK, Richards KA, Sant AJ. Flublok Quadrivalent Vaccine Adjuvanted with R-DOTAP Elicits a Robust and Multifunctional CD4 T Cell Response That Is of Greater Magnitude and Functional Diversity Than Conventional Adjuvant Systems. Vaccines (Basel) 2024; 12:281. [PMID: 38543915 PMCID: PMC10975948 DOI: 10.3390/vaccines12030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
It is clear that new approaches are needed to promote broadly protective immunity to viral pathogens, particularly those that are prone to mutation and escape from antibody-mediated immunity. CD4+ T cells, known to target many viral proteins and highly conserved peptide epitopes, can contribute greatly to protective immunity through multiple mechanisms. Despite this potential, CD4+ T cells are often poorly recruited by current vaccine strategies. Here, we have analyzed a promising new adjuvant (R-DOTAP), as well as conventional adjuvant systems AddaVax with or without an added TLR9 agonist CpG, to promote CD4+ T cell responses to the licensed vaccine Flublok containing H1, H3, and HA-B proteins. Our studies, using a preclinical mouse model of vaccination, revealed that the addition of R-DOTAP to Flublok dramatically enhances the magnitude and functionality of CD4+ T cells specific for HA-derived CD4+ T cell epitopes, far outperforming conventional adjuvant systems based on cytokine EliSpot assays and multiparameter flow cytometry. The elicited CD4+ T cells specific for HA-derived epitopes produce IL-2, IFN-γ, IL-4/5, and granzyme B and have multifunctional potential. Hence, R-DOTAP, which has been verified safe by human studies, can offer exciting opportunities as an immune stimulant for next-generation prophylactic recombinant protein-based vaccines.
Collapse
Affiliation(s)
- Chantelle L. White
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Maryah A. Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Siva K. Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40508, USA;
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| |
Collapse
|
11
|
Cheng MQ, Weng ZY, Li R, Song G. Efficacy of adjuvant-associated COVID-19 vaccines against SARS-CoV-2 variants of concern in randomized controlled trials: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e35201. [PMID: 38363919 PMCID: PMC10869057 DOI: 10.1097/md.0000000000035201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/23/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Adjuvants may enhance the efficacy of vaccines. however, the efficacy of adjuvant-associated COVID-19 vaccines (ACVs) remains unclear since the emergence of the COVID-19 pandemic. This study aimed to address this gap by conducting a systematic review and meta-analysis of the efficacy of ACVs against Severe Acute Respiratory Syndrome Coronavirus 2 CoV (SARS-CoV-2) variants of concern (VOC). METHODS A systematic search was conducted of randomized controlled trials (RCTs) evaluating the vaccine efficacy (VE) of ACVs against VOC (alpha, beta, gamma, delta, or Omicron), up to May 27, 2023. The DerSimonian-Laird random-effects model was used to assess VE with 95% confidence intervals (CI) through meta-analysis. Cochrane Risk of Bias tools were used to assess the risk of bias in RCTs. RESULTS Eight RCTs with 113,202 participants were included in the analysis, which incorporated 4 ACVs [Matrix-M (NVX-CoV2373), Alum (BBV152), CpG-1018/Alum (SCB-2019), and AS03 (CoVLP]). The pooled efficacy of full vaccination with ACVs against VOC was 88.0% (95% CI: 83.0-91.5). Full vaccination was effective against Alpha, Beta, Delta, and Gamma variants, with VE values of 93.66% (95% CI: 86.5-100.74), 64.70% (95% CI: 41.87-87.54), 75.95% (95% CI: 67.9-83.99), and 91.26% (95% CI: 84.35-98.17), respectively. Currently, there is a lack of RCT evidence regarding the efficacy of ACVs against the Omicron variant. CONCLUSION In this meta-analysis, it should be that full vaccination with ACVs has high efficacy against Alpha or Gamma variants and moderate efficacy against Beta and Delta variants. Notably, with the exception of the aluminum-adjuvanted vaccine, the other ACVs had moderate to high efficacy against the SARS-CoV-2 variant. This raises concerns about the effectiveness of ACVs booster vaccinations against Omicron.
Collapse
Affiliation(s)
- Meng-qun Cheng
- Department of Reproductive Medicine, The Pu’er People’s Hospital, Pu’er, China
| | - Zhi-Ying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Rong Li
- Department of Pharmacy, The Pu’er People’s Hospital, Pu’er, China
| | - Gao Song
- Department of Pharmacy, The Pu’er People’s Hospital, Pu’er, China
| |
Collapse
|
12
|
Kanuri SH, Sirrkay PJ. Adjuvants in COVID-19 vaccines: innocent bystanders or culpable abettors for stirring up COVID-heart syndrome. Ther Adv Vaccines Immunother 2024; 12:25151355241228439. [PMID: 38322819 PMCID: PMC10846003 DOI: 10.1177/25151355241228439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
COVID-19 infection is a multi-system clinical disorder that was associated with increased morbidity and mortality. Even though antiviral therapies such as Remdesvir offered modest efficacy in reducing the mortality and morbidity, they were not efficacious in reducing the risk of future infections. So, FDA approved COVID-19 vaccines which are widely administered in the general population worldwide. These COVID-19 vaccines offered a safety net against future infections and re-infections. Most of these vaccines contain inactivated virus or spike protein mRNA that are primarily responsible for inducing innate and adaptive immunity. These vaccines were also formulated to contain supplementary adjuvants that are beneficial in boosting the immune response. During the pandemic, clinicians all over the world witnessed an uprise in the incidence and prevalence of cardiovascular diseases (COVID-Heart Syndrome) in patients with and without cardiovascular risk factors. Clinical researchers were not certain about the underlying reason for the upsurge of cardiovascular disorders with some blaming them on COVID-19 infections while others blaming them on COVID-19 vaccines. Based on the literature review, we hypothesize that adjuvants included in the COVID-19 vaccines are the real culprits for causation of cardiovascular disorders. Operation of various pathological signaling events under the influence of these adjuvants including autoimmunity, bystander effect, direct toxicity, anti-phospholipid syndrome (APS), anaphylaxis, hypersensitivity, genetic susceptibility, epitope spreading, and anti-idiotypic antibodies were partially responsible for stirring up the onset of cardiovascular disorders. With these mechanisms in place, a minor contribution from COVID-19 virus itself cannot be ruled out. With that being said, we strongly advocate for careful selection of vaccine adjuvants included in COVID-19 vaccines so that future adverse cardiac disorders can be averted.
Collapse
Affiliation(s)
- Sri Harsha Kanuri
- Research Fellow, Stark Neurosciences Institute, Indiana University School of Medicine, 320 W 15 ST, Indianapolis, IN 46202, USA
| | | |
Collapse
|
13
|
Safitri IA, Sugijo Y, Puspasari F, Masduki FF, Ihsanawati, Giri-Rachman EA, Artarini AA, Tan MI, Natalia D. Immunogenicity studies of recombinant RBD SARS-CoV-2 as a COVID-19 vaccine candidate produced in Escherichia coli. Vaccine X 2024; 16:100443. [PMID: 38304876 PMCID: PMC10832452 DOI: 10.1016/j.jvacx.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 -related global COVID-19 pandemic has been impacting millions of people since its outbreak in 2020. COVID-19 vaccination has proven highly efficient in reducing illness severity and preventing infection-related fatalities. The World Health Organization has granted emergency use approval to multiple, including protein subunit technology-based, COVID-19 vaccines. Foreseeably, additional COVID-19 subunit vaccine development would be essential to meet the accessible and growing demand for effective vaccines, especially for Low-Middle-Income Countries (LMIC). The SARS-CoV-2 spike protein receptor binding domain (RBD), as the primary target for neutralizing antibodies, holds significant potential for future COVID-19 subunit vaccine development. In this study, we developed a recombinant Escherichia coli-expressed RBD (rRBD) as a vaccine candidate and evaluated its immunogenicity and preliminary toxicity in BALB/c mice. The rRBD induced humoral immune response from day 7 post-vaccination and, following the booster doses, the IgG levels increased dramatically in mice. Interestingly, our vaccine candidate also significantly induced cellular immune response, indicated by the incrased IFN-ɣ-producing cell numbers. We observed no adverse effect or local reactogenicity either in control or treated mice. Taken together, our discoveries could potentially support efficient and cost-effective vaccine antigen production, from which LMICs could particularly benefit.
Collapse
Affiliation(s)
- Intan Aghniya Safitri
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
| | - Yovin Sugijo
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Fernita Puspasari
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Fifi Fitriyah Masduki
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Ihsanawati
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
| | - Ernawati Arifin Giri-Rachman
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Aluicia Anita Artarini
- Pharmaceutical Biotechnology Laboratory, Pharmaceutics Department, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Marselina Irasonia Tan
- Biology Department, School of Life Science and Technology, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| | - Dessy Natalia
- Biochemistry Group, Department of Chemistry, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Centre, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|