1
|
Li Q, Bai H, Yu X, Liu Q, Hu R. Immunogenicity of Rabies Virus G-Protein mRNA Formulated with Muscle-Targeting Lipid Nanoparticles in Mice. Vaccines (Basel) 2025; 13:217. [PMID: 40266088 PMCID: PMC11945611 DOI: 10.3390/vaccines13030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Rabies is a preventable zoonotic disease caused by the rabies virus (RABV) with a high mortality rate. Most vaccines on the market or under development have issues, such as low single-dose neutralization titer, complex processes, and high costs. During the COVID-19 pandemic, the successful development of mRNA vaccines opened up a new avenue for preventive vaccines. As a new technology, mRNA has higher scalability. METHODS In this study, we designed an mRNA encoding the RV-G protein, encapsulated by our own muscle-targeting lipid nanoparticles (LNPs), and evaluated the expression of the RV-G protein in vitro, its immunogenicity, and its protection against virus infection in vivo. RESULTS The results show that RV-G mRNA was significantly expressed in vitro. High Virus-IgG binding titers and virus-neutralizing antibody titers (VNT) were induced by immunization with RV-G mRNA-LNP. Additionally, our results showed that the RV-G mRNA vaccine is better than commercially available vaccines in mice. CONCLUSIONS Our research highlights the potential of the mRNA-LNP platform in developing next-generation rabies vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Rongkuan Hu
- Starna Therapeutics Co., Ltd., Suzhou 215123, China (H.B.)
| |
Collapse
|
2
|
Hung PN, Giang LTH, Anh NT, Anh BDT, Pho DC, Van Hung P. Safety and immunogenicity of an inactivated vero cell-based rabies vaccine (Rabivax-S) in pre-exposure prophylaxis schedule in Vietnam. Clin Exp Vaccine Res 2025; 14:51-58. [PMID: 39927222 PMCID: PMC11799583 DOI: 10.7774/cevr.2025.14.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 12/29/2024] [Indexed: 02/11/2025] Open
Abstract
Purpose We evaluated the immunogenicity and safety of Rabivax-S (Pitman-Moore 3218 strain) by intramuscular (IM) and intradermal (ID) routes in Vietnam. Materials and Methods We conducted an open-label, randomized, phase 4, single-center clinical trial in healthy individuals aged five to 60 years divided into two groups according to age (5-15 years old and 16-60 years old). They were randomized to receive 3 doses of Rabivax-S IM 1 mL) or Rabivax-S ID (0.1 mL) in 1:1 ratio on days 0, 7, and 21. Adverse events (AEs) were collected for 7 days after each dose and rabies-neutralizing antibody levels were measured were measured by RFFIT on days 0, 21 and 42. Results Totally 220 participants aged 5-15 years old (117 participants) and 16-60 years old (103 participants). The seroconversion rates of antibodies among the two groups (IM and ID doses) were all 100.0% on D21 and D42/42. On D21 and D42/42, the geometric mean concentration of the two groups was much higher than the immune protection level of 0.5 IU/mL. There were no AEs or serious AEs recorded in all four visits. Unsolicited AEs were reported by 3% of participants. The most common AEs during seven days after each dose were fever, pain, and erythema. Mostly mild local and systemic AEs were reported across the two groups and all resolved without sequelae. Conclusion The study results conclusively demonstrate that the complete regimen of both the IM and ID 3-dose series Rabivax-S was found to be clinically safe and immunogenic. After this study, Rabivax-S is now available in Vietnam and can be used for pre- and post-exposure prophylaxis. Clinical Trials Registration ClinicalTrials.gov Identifier: NCT05937113.
Collapse
Affiliation(s)
- Pham Ngoc Hung
- Department of Education and Training, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Epidemiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Thi Huong Giang
- The Company for Vaccine and Biological Production No.1 (VABIOTECH), Ministry of Health, Hanoi, Vietnam
| | | | - Bui Dang The Anh
- Department of Epidemiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Cong Pho
- Department of Military Science, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Van Hung
- The Company for Vaccine and Biological Production No.1 (VABIOTECH), Ministry of Health, Hanoi, Vietnam
| |
Collapse
|
3
|
Askri H, Kallèl H, Rourou S, Snoussi MA, Lachheb J. Analytical Methods for Evaluating the Immunogenicity of Recombinant Rabies Virus Glycoprotein Expressed in the Yeast Komagataella phaffii. Immunol Invest 2024; 53:1308-1329. [PMID: 39252192 DOI: 10.1080/08820139.2024.2399589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Rabies is a fatal viral disease preventable by vaccination. The multiple-dose regimens, along with the high production costs of current rabies vaccines, limit their use in rabies-endemic countries with developing economies and consequently there is a need for new efficacious, low-cost rabies vaccines. This study investigates the immunogenicity of recombinant rabies virus glycoprotein (rRABVG), expressed in the yeast Komagataella phaffii (K. phaffii), as a candidate subunit rabies vaccine. METHODS Monoclonal antibodies were used to confirm neutralizing epitopes presence on the rRABVG. The rRABVG potency was estimated by antigen quantification methods using ELISA and SRID. Serological methods, specifically ELISA and RFFIT, were applied to investigate the immune response of mice groups immunized with rRABVG varying doses, with or without adjuvant. RESULTS The potency estimated by antigen quantification was dependent on the method employed. Active immunization assessment using ELISA was effective when the solid-phase antigen is the rRABVG. The RFFIT data indicated that a single adjuvanted dose of 20 µg rRABVG is sufficient for virus-neutralizing antibodies induction at a protective level of 0.5 IU/mL within 10 days post immunization. CONCLUSION These data demonstrate that K. phaffii produced rRABVG is immunoactive and could be an attractive candidate to develop a low-cost subunit rabies vaccine.
Collapse
Affiliation(s)
- Hana Askri
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Hela Kallèl
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Samia Rourou
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed Ali Snoussi
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachheb
- Laboratory of Epidemiology and Veterinary Microbiology LR 16 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
4
|
Fu D, Wang W, Zhang Y, Zhang F, Yang P, Yang C, Tian Y, Yao R, Jian J, Sun Z, Zhang N, Ni Z, Rao Z, Zhao L, Guo Y. Self-assembling nanoparticle engineered from the ferritinophagy complex as a rabies virus vaccine candidate. Nat Commun 2024; 15:8601. [PMID: 39366932 PMCID: PMC11452399 DOI: 10.1038/s41467-024-52908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Over the past decade, there has been a growing interest in ferritin-based vaccines due to their enhanced antigen immunogenicity and favorable safety profiles, with several vaccine candidates targeting various pathogens advancing to phase I clinical trials. Nevertheless, challenges associated with particle heterogeneity, improper assembly and unanticipated immunogenicity due to the bulky protein adaptor have impeded further advancement. To overcome these challenges, we devise a universal ferritin-adaptor delivery platform based on structural insights derived from the natural ferritinophagy complex of the human ferritin heavy chain (FTH1) and the nuclear receptor coactivator 4 (NCOA4). The engineered ferritinophagy (Fagy)-tag peptide demonstrate significantly enhanced binding affinity to the 24-mer ferritin nanoparticle, enabling efficient antigen presentation. Subsequently, we construct a self-assembling rabies virus (RABV) vaccine candidate by noncovalently conjugating the Fagy-tagged glycoprotein domain III (GDIII) of RABV to the ferritin nanoparticle, maintaining superior homogeneity, stability and immunogenicity. This vaccine candidate induces potent, rapid, and durable immune responses, and protects female mice against the authentic RABV challenge after single-dose administration. Furthermore, this universal, ferritin-based antigen conjugating strategy offers significant potential for developing vaccine against diverse pathogens and diseases.
Collapse
Affiliation(s)
- Dan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
- College of Pharmacy, Nankai University, Tianjin, PR China
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, PR China
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin, PR China
| | - Fan Zhang
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China
- Department of Oncology, The Fifth Medical Center, PLA General Hospital, Beijing, PR China
| | - Pinyi Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Jilin, PR China
| | - Yufei Tian
- Changchun Veterinary Research Institute (CVRI), Chinese Academy of Agricultural Sciences (CAAS), Jingyue Economic Development Zone, Changchun, PR China
| | - Renqi Yao
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China
| | - Jingwu Jian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
| | - Zixian Sun
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China
| | - Nan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, PR China
| | - Zhiyu Ni
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, PR China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Lei Zhao
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China.
- Department of Oncology, The Fifth Medical Center, PLA General Hospital, Beijing, PR China.
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China.
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China.
| |
Collapse
|
5
|
Hongtu Q, BoLi L, Jianguo C, Shusheng P, Ming M. Immunogenicity of rabies virus G mRNA formulated with lipid nanoparticles and nucleic acid immunostimulators in mice. Vaccine 2023; 41:7129-7137. [PMID: 37866995 DOI: 10.1016/j.vaccine.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Rabies is a preventable zoonotic disease caused by rabies virus (RABV) with high mortality. Messenger RNA (mRNA) vaccines have opened up new avenues for vaccine development and pandemic preparedness with potent scalability, which may overcome the only licensed rabies inactived vaccine' shortcoming of time and cost wasting. Here, we designed an RABV mRNA vaccines expressed RABV G protein and capsulated with lipid nanoparticle (LNP) and different nucleic acid immunostimulator (CPG 1018, CPG 2395 and Poly I:C) and then assessed the immunogenicity and protective capacity in mice. While RABV mRNA capsulated with LNP and CPG 1018 could induce more potent humoral response with highest and durable RABV-G specific IgG titers and virus neutralizing titers, but also induced stronger RABV G-specific cell-mediated immunity (CMI) responses, including the highest proportions of interferon-γ (IFN-γ) and tumor necrosis factor alpha (TNFα)- producing CD4+/CD8 + T cells according to a flow cytometry assay in mice. In addition, in the pre- and post-exposure challenge assays, LNP + CPG 1018 capsulated RABV G mRNA induced 100 % protection against 25 LD50 of RABV infection with highest inhibition efficacy of viral replication with the decreased virus genome detected by qRT-PCR. These results showed that RABV G mRNA capsulated with LNP immune-stimulating nucleic acids CPG 1018 showed promise as a safe and economical rabies vaccine candidate.
Collapse
Affiliation(s)
- Qiao Hongtu
- Scientific Research Department, Chengdu Qingbaijiang District People's Hospital, Chengdu, China.
| | - Liu BoLi
- Emergency Department, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Chen Jianguo
- Medical Laboratory, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Peng Shusheng
- Medical Laboratory, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Min Ming
- Medical Laboratory, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| |
Collapse
|
6
|
Podgoreanu P, Petre A, Tănasă RI, Dinu S, Oprea M, Marandiuc IM, Vlase E. Sequencing and Partial Molecular Characterization of BAB-TMP, the Babeș Strain of the Fixed Rabies Virus Adapted for Multiplication in Cell Lines. Viruses 2023; 15:1851. [PMID: 37766258 PMCID: PMC10536377 DOI: 10.3390/v15091851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The rabies virus is a major zoonosis that causes severe nervous disease in humans, leading to paralysis and death. The world's second anti-rabies center was established in 1888 by Victor Babeș, in Bucharest, where an eponymous strain of rabies was isolated and used to develop a method for immunization. The Babeș strain of the rabies virus was used for over 100 years in Romania to produce a rabies vaccine for human use, based on animal nerve tissue, thus having a proven history of prophylactic use. The present study aimed to sequence the whole genome of the Babeș strain and to explore its genetic relationships with other vaccine strains as well as to characterize its relevant molecular traits. After being adapted for multiplication in cell lines and designated BAB-TMP, 99% of the viral genome was sequenced. The overall organization of the genome is similar to that of other rabies vaccine strains. Phylogenetic analysis indicated that the BAB-TMP strain is closely related to the Russian RV-97 vaccine strain, and both seem to have a common ancestor. The nucleoprotein gene of the investigated genome was the most conserved, and the glycoprotein showed several unique amino acid substitutions within the major antigenic sites and linear epitopes.
Collapse
Affiliation(s)
| | | | - Radu Iulian Tănasă
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (P.P.); (A.P.)
| | | | | | | | | |
Collapse
|
7
|
Piamonte BLC, Easton A, Wood GK, Davies NWS, Granerod J, Michael BD, Solomon T, Thakur KT. Addressing vaccine-preventable encephalitis in vulnerable populations. Curr Opin Neurol 2023; 36:185-197. [PMID: 37078664 DOI: 10.1097/wco.0000000000001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Vaccinations have been pivotal in lowering the global disease burden of vaccine-preventable encephalitides, including Japanese encephalitis, tick-borne encephalitis, measles encephalitis, and rabies encephalitis, among others. RECENT FINDINGS Populations vulnerable to vaccine-preventable infections that may lead to encephalitis include those living in endemic and rural areas, military members, migrants, refugees, international travelers, younger and older persons, pregnant women, the immunocompromised, outdoor, healthcare and laboratory workers, and the homeless. There is scope for improving the availability and distribution of vaccinations, vaccine equity, surveillance of vaccine-preventable encephalitides, and public education and information. SUMMARY Addressing these gaps in vaccination strategies will allow for improved vaccination coverage and lead to better health outcomes for those most at risk for vaccine-preventable encephalitis.
Collapse
Affiliation(s)
- Bernadeth Lyn C Piamonte
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Ava Easton
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
| | - Greta K Wood
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
| | - Nicholas W S Davies
- The Encephalitis Society, Malton
- Department of Neurology, Chelsea and Westminster Hospital, NHS Trust
| | - Julia Granerod
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- Dr JGW Consulting Ltd., London
| | - Benedict D Michael
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
- Department of Neurology, The Walton Centre NHS Foundation Trust
| | - Tom Solomon
- The Encephalitis Society, Malton
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences
- National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, Liverpool
- Department of Neurology, The Walton Centre NHS Foundation Trust
- Department of Neurological Science, University of Liverpool, Liverpool, United Kingdom
| | - Kiran T Thakur
- The Encephalitis Society, Malton
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, USA
| |
Collapse
|
8
|
Rupprecht CE, Mshelbwala PP, Reeves RG, Kuzmin IV. Rabies in a postpandemic world: resilient reservoirs, redoubtable riposte, recurrent roadblocks, and resolute recidivism. ANIMAL DISEASES 2023; 3:15. [PMID: 37252063 PMCID: PMC10195671 DOI: 10.1186/s44149-023-00078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023] Open
Abstract
Rabies is an ancient disease. Two centuries since Pasteur, fundamental progress occurred in virology, vaccinology, and diagnostics-and an understanding of pathobiology and epizootiology of rabies in testament to One Health-before common terminological coinage. Prevention, control, selective elimination, and even the unthinkable-occasional treatment-of this zoonosis dawned by the twenty-first century. However, in contrast to smallpox and rinderpest, eradication is a wishful misnomer applied to rabies, particularly post-COVID-19 pandemic. Reasons are minion. Polyhostality encompasses bats and mesocarnivores, but other mammals represent a diverse spectrum of potential hosts. While rabies virus is the classical member of the genus, other species of lyssaviruses also cause the disease. Some reservoirs remain cryptic. Although global, this viral encephalitis is untreatable and often ignored. As with other neglected diseases, laboratory-based surveillance falls short of the notifiable ideal, especially in lower- and middle-income countries. Calculation of actual burden defaults to a flux within broad health economic models. Competing priorities, lack of defined, long-term international donors, and shrinking local champions challenge human prophylaxis and mass dog vaccination toward targets of 2030 for even canine rabies impacts. For prevention, all licensed vaccines are delivered to the individual, whether parenteral or oral-essentially 'one and done'. Exploiting mammalian social behaviors, future 'spreadable vaccines' might increase the proportion of immunized hosts per unit effort. However, the release of replication-competent, genetically modified organisms selectively engineered to spread intentionally throughout a population raises significant biological, ethical, and regulatory issues in need of broader, transdisciplinary discourse. How this rather curious idea will evolve toward actual unconventional prevention, control, or elimination in the near term remains debatable. In the interim, more precise terminology and realistic expectations serve as the norm for diverse, collective constituents to maintain progress in the field.
Collapse
Affiliation(s)
- Charles E. Rupprecht
- College of Forestry, Wildlife & Environment, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Philip P. Mshelbwala
- School of Veterinary Science, University of Queensland, Gatton, Australia
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - R. Guy Reeves
- Max Planck Institut Für Evolutionsbiologie, 24306 Plön, Germany
| | - Ivan V. Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
9
|
Natesan K, Isloor S, Vinayagamurthy B, Ramakrishnaiah S, Doddamane R, Fooks AR. Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines (Basel) 2023; 11:vaccines11040756. [PMID: 37112668 PMCID: PMC10147034 DOI: 10.3390/vaccines11040756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Rabies is a disease of antiquity and has a history spanning millennia ever since the first interactions between humans and dogs. The alarming fatalities caused by this disease have triggered rabies prevention strategies since the first century BC. There have been numerous attempts over the past 100 years to develop rabies vaccineswith the goal of preventing rabies in both humans and animals. Thepre-Pasteurian vaccinologists, paved the way for the actual history of rabies vaccines with the development of first generation vaccines. Further improvements for less reactive and more immunogenic vaccines have led to the expansion of embryo vaccines, tissue culture vaccines, cell culture vaccines, modified live vaccines, inactivated vaccines, and adjuvanted vaccines. The adventof recombinant technology and reverse genetics have given insight into the rabies viral genome and facilitated genome manipulations, which in turn led to the emergence of next-generation rabies vaccines, such as recombinant vaccines, viral vector vaccines, genetically modified vaccines, and nucleic acid vaccines. These vaccines were very helpful in overcoming the drawbacks of conventional rabies vaccines with increased immunogenicity and clinical efficacies. The path traversed in the development of rabies vaccines from Pasteur to the modern era vaccines, though, faced numerous challenges;these pioneering works have formed the cornerstone for the generation of thecurrent successful vaccines to prevent rabies. In the future, advancements in the scientific technologies and research focus will definitely lay the path for much more sophisticated vaccine candidates for rabies elimination.
Collapse
Affiliation(s)
- Krithiga Natesan
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Shrikrishna Isloor
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
- Correspondence: ; Tel.: +91-9449992287
| | | | - Sharada Ramakrishnaiah
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Rathnamma Doddamane
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Anthony R. Fooks
- APHA Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
10
|
Abdulhameed Odhar H, Hashim AF, Humadi SS, Ahjel SW. Design and construction of multi epitope- peptide vaccine candidate for rabies virus. Bioinformation 2023; 19:167-177. [PMID: 37814687 PMCID: PMC10560302 DOI: 10.6026/97320630019167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 09/01/2023] Open
Abstract
Rabies virus is a zoonotic pathogen that causes lethal encephalitis with a case fatality rate of almost 100% in unvaccinated individuals. The currently available vaccines against rabies are composed of inactivated viral particles that only confer a short-term immune response. It is well-known that the entry of rabies virus into host cells is mediated by a trimeric glycoprotein presents on the surface of viral envelope. As the sole viral surface protein, this trimeric glycoprotein represents a promising molecular target to design new vaccines and neutralizing antibodies against rabies virus. Epitope mapping studies had identified several antigenic sites on the surface of trimeric pre-fusion glycoprotein of rabies virus. Therefore, it is of interest to screen the rabies virus glycoprotein by different web-based immuno-informatics tools to identify potential B-cells and T-cells linear epitopes. Here, we present a construct of peptide vaccine that consists of these predicted linear epitopes of rabies virus glycoprotein together with appropriate linkers and adjuvant. Various online prediction tools, molecular docking and dynamics simulation assume that the vaccine construct may be stable, safe and effective. However, validation of these in-silico results is necessary both in vitro and in vivo setting.
Collapse
Affiliation(s)
| | | | - Suhad Sami Humadi
- Department of pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
11
|
Leme J, Guardalini LGO, Bernardino TC, Astray RM, Tonso A, Núñez EGF, Jorge SAC. Sf9 Cells Metabolism and Viability When Coinfected with Two Monocistronic Baculoviruses to Produce Rabies Virus-like Particles. Mol Biotechnol 2022; 65:970-982. [PMCID: PMC9672645 DOI: 10.1007/s12033-022-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
|
12
|
Guardalini LGO, da Silva Cavalcante PE, Leme J, de Mello RG, Bernardino TC, Astray RM, Tonso A, Jorge SAC, Núñez NGF. Oxygen uptake and transfer rates throughout production of recombinant baculovirus and rabies virus-like particles. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
Ng WM, Fedosyuk S, English S, Augusto G, Berg A, Thorley L, Haselon AS, Segireddy RR, Bowden TA, Douglas AD. Structure of trimeric pre-fusion rabies virus glycoprotein in complex with two protective antibodies. Cell Host Microbe 2022; 30:1219-1230.e7. [PMID: 35985336 PMCID: PMC9605875 DOI: 10.1016/j.chom.2022.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
Rabies virus (RABV) causes lethal encephalitis and is responsible for approximately 60,000 deaths per year. As the sole virion-surface protein, the rabies virus glycoprotein (RABV-G) mediates host-cell entry. RABV-G's pre-fusion trimeric conformation displays epitopes bound by protective neutralizing antibodies that can be induced by vaccination or passively administered for post-exposure prophylaxis. We report a 2.8-Å structure of a RABV-G trimer in the pre-fusion conformation, in complex with two neutralizing and protective monoclonal antibodies, 17C7 and 1112-1, that recognize distinct epitopes. One of these antibodies is a licensed prophylactic (17C7, Rabishield), which we show locks the protein in pre-fusion conformation. Targeted mutations can similarly stabilize RABV-G in the pre-fusion conformation, a key step toward structure-guided vaccine design. These data reveal the higher-order architecture of a key therapeutic target and the structural basis of neutralization by antibodies binding two key antigenic sites, and this will facilitate the development of improved vaccines and prophylactic antibodies.
Collapse
Affiliation(s)
- Weng M Ng
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sofiya Fedosyuk
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Solomon English
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Gilles Augusto
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Adam Berg
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Luke Thorley
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anna-Sophie Haselon
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rameswara R Segireddy
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Alexander D Douglas
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
14
|
Thavorasak T, Chulanetra M, Glab-ampai K, Mahasongkram K, Sae-lim N, Teeranitayatarn K, Songserm T, Yodsheewan R, Nilubol D, Chaicumpa W, Sookrung N. Enhancing epitope of PEDV spike protein. Front Microbiol 2022; 13:933249. [PMID: 35935230 PMCID: PMC9355140 DOI: 10.3389/fmicb.2022.933249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the causative agent of a highly contagious enteric disease of pigs characterized by diarrhea, vomiting, and severe dehydration. PEDV infects pigs of all ages, but neonatal pigs during the first week of life are highly susceptible; the mortality rates among newborn piglets may reach 80–100%. Thus, PEDV is regarded as one of the most devastating pig viruses that cause huge economic damage to pig industries worldwide. Vaccination of sows and gilts at the pre-fertilization or pre-farrowing stage is a good strategy for the protection of suckling piglets against PEDV through the acquisition of the lactating immunity. However, vaccination of the mother pigs for inducing a high level of virus-neutralizing antibodies is complicated with unstandardized immunization protocol and unreliable outcomes. Besides, the vaccine may also induce enhancing antibodies that promote virus entry and replication, so-called antibody-dependent enhancement (ADE), which aggravates the disease upon new virus exposure. Recognition of the virus epitope that induces the production of the enhancing antibodies is an existential necessity for safe and effective PEDV vaccine design. In this study, the enhancing epitope of the PEDV spike (S) protein was revealed for the first time, by using phage display technology and mouse monoclonal antibody (mAbG3) that bound to the PEDV S1 subunit of the S protein and enhanced PEDV entry into permissive Vero cells that lack Fc receptor. The phages displaying mAbG3-bound peptides derived from the phage library by panning with the mAbG3 matched with several regions in the S1-0 sub-domain of the PEDV S1 subunit, indicating that the epitope is discontinuous (conformational). The mAbG3-bound phage sequence also matched with a linear sequence of the S1-BCD sub-domains. Immunological assays verified the phage mimotope results. Although the molecular mechanism of ADE caused by the mAbG3 via binding to the newly identified S1 enhancing epitope awaits investigation, the data obtained from this study are helpful and useful in designing a safe and effective PEDV protein subunit/DNA vaccine devoid of the enhancing epitope.
Collapse
Affiliation(s)
- Techit Thavorasak
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nawannaporn Sae-lim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Thaweesak Songserm
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Rungrueang Yodsheewan
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Swine Viral Evolution and Vaccine Development Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubation Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Nitat Sookrung,
| |
Collapse
|
15
|
Liang M, Wang Z, Wu C, Xiong S, Zhao L, Dong C. A single dose of recombinant VSV-RABV G vaccine provides full protection against RABV challenge. Virol Sin 2022; 37:455-458. [PMID: 35618603 PMCID: PMC9243626 DOI: 10.1016/j.virs.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
•A replication-competent recombinant VSV with RABV-G protein replacement was generated. •Single dose of VSV-RABVG immunization induces potent anti-RABVG immune response, including viral neutralizing antibodies. •Mice intranasally immunized with single dose of VSV-RABVG were 100% protected upon RABV challenge.
Collapse
Affiliation(s)
- Minglong Liang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanjian Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
16
|
Aly NI, Elnaker YF, Salama ZTS, Diab MS, Saber EA, Sotohy SA, Elfeil WK, Khodeir MH. Preparation and the assessed efficacy of oral baits for the vaccination of free-roaming dogs against rabies. Vet World 2022; 15:1383-1390. [PMID: 35765489 PMCID: PMC9210852 DOI: 10.14202/vetworld.2022.1383-1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Rabies is considered a highly fatal zoonotic disease and many deaths in humans have been associated with dog bites. This study was designed to prepare an oral anti-rabies vaccine in the form of baits to eliminate the disease in free-roaming dogs and subsequently protect humans from dog bites. Materials and Methods: The Evelyn Rokintniki Abelseth (ERA) rabies virus strain was propagated in baby hamster kidney cell cultures and adjusted to the recommended dose for application. Four forms of oral baits were employed with the rabies vaccine, which was evaluated for safety, acceptability, and potency in different dog groups. Enzyme-Linked Immunosorbent Assay (ELISA) and the serum neutralization test (SNT) were used to determine the protective rabies antibody titer in the sera of vaccinated dogs. Results: According to the results, a dose of 3 mL of the ERA strain, containing a viral titer of 107.6 TCID50/mL, induced a mean antibody titer of 25.6 by SNT, and the PI% was 75.7 by Block ELISA, providing a protective level of the rabies antibody in 100% of vaccinated dogs. All used baits were found to be safe, inducing no abnormal general post-vaccination signs (the signs are limited to mild fever, mild loss of appetite, and mild-to-moderate loss of energy for 24-36 h after vaccination). Conclusion: It was found that most of the accepted and highly potent bait types consisted of a mixture of wheat flour, vegetable oil, sodium alginate, corn starch, meat meal, cellulose gum, and water. This dog meal was covered with bran and edible wax to seal the bait cavity after inserting the vaccine sachet. This bait was able to induce a protective level of rabies antibodies in 100% of vaccinated dogs after receiving one bait/dog. Hence, such a bait could be recommended for use in the protection of free-roaming dogs and the elimination of the disease.
Collapse
Affiliation(s)
- Naglaa I. Aly
- Department of Pet Animal Vaccine Research Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Ministry of Agriculture, Abassia, Cairo, Egypt
| | - Yasser F. Elnaker
- Department of Infectious Diseases, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Zeinab T. S. Salama
- Department of Pet Animal Vaccine Research Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Ministry of Agriculture, Abassia, Cairo, Egypt
| | - Mohamed S. Diab
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Eman A. Saber
- Department of Infectious Diseases, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Sotohy A. Sotohy
- Department of Animal, Poultry and Environmental Hygiene, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Wael K. Elfeil
- Department of Avian and Rabbit, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed H. Khodeir
- Department of Pet Animal Vaccine Research Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Ministry of Agriculture, Abassia, Cairo, Egypt
| |
Collapse
|
17
|
Park JE, Shin HJ. Immunogenicity of replication-deficient vesicular stomatitis virus based rabies vaccine in mice. Vet Q 2021; 41:202-209. [PMID: 33985418 PMCID: PMC8172215 DOI: 10.1080/01652176.2021.1930277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rabies is a viral disease that causes severe neurological manifestations both in humans and various mammals. Although inactivated and/or attenuated vaccines have been developed and widely used around the world, there are still concerns with regard to their safety, efficacy, and costs. OBJECTIVE As demand has grown for a new rabies vaccine, we have developed a new vesicular stomatitis viruses (VSVs) based rabies vaccine that replaces glycoproteins with rabies virus (RABV) glycoprotein (GP), or so-called VSV/RABV-GP. METHODS VSV/RABV-GP production was measured by sandwich ELISA. The generation of VSV/RABV-GP was evaluated with GP-specific antibodies and reduced transduction with GP-specific neutralizing antibodies. Virus entry was quantified by measuring the luciferase levels at 18-h post-transduction. BALB/c mice (three groups of six mice each) were intraperitoneally immunized with PBS, RABA, or VSV/RABV-GP at 0 and 14 days. At 28 days post-immunization serology was performed. Statistical significance was calculated using the Holm-Sidak multiple Student's t test. RESULTS Mice immunized with VSV/RABV-GP produced IgM and IgG antibodies, whereas IgM titers were significantly higher in mice immunized with VSV/RABV-GP compared to inactivated RABV. The secretion profiles of IgG1 and IgG2a production suggested that VSV/RAVB-GP induces the T helper cell type-2 immune bias. In addition, the average (±SD; n = 3) serum neutralization titers of the inactivated RABV and VSV/RABV-GP groups were 241 ± 40 and 103 ± 54 IU/mL, respectively. CONCLUSION Our results confirm that VSV/RABV-GP could be a new potential vaccination platform for RABV.
Collapse
Affiliation(s)
- Jung-Eun Park
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Jin Shin
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
19
|
Abstract
Efforts to produce vaccines against SARS and MERS were prematurely halted since their scope was perceived to be geographically restricted and they were subsequently categorized as neglected diseases. However, when a similar virus spread globally triggering the COVID-19 pandemic, we were harshly reminded that several other neglected diseases might also be waiting for the perfect opportunity to become mainstream. As climate change drives urbanization, natural selection of pathogens and their intermediate vectors and reservoirs, the risk of neglected diseases emerging within a larger susceptible pool becomes an even greater threat. Availability of a vaccine for COVID-19 is widely considered the only way to end this pandemic. Similarly, vaccines are also seen as the best tools available to control the spread of neglected (sometimes referred to as emerging or re-emerging) diseases, until the water, hygiene and sanitation infrastructure is improved in areas of their prevalence. Vaccine production is usually cost and labour intensive and thus minimal funding is directed towards controlling and eliminating neglected diseases (NDs). A customised but sustainable approach is needed to develop and deploy vaccines against NDs. While safety, efficacy and public trust are the three main success pillars for most vaccines, affordability is vital when formulating vaccines for neglected diseases.
Collapse
|
20
|
Debnath A, Pathak DC, D'silva AL, Batheja R, Ramamurthy N, Vakharia VN, Chellappa MM, Dey S. Newcastle disease virus vectored rabies vaccine induces strong humoral and cell mediated immune responses in mice. Vet Microbiol 2020; 251:108890. [PMID: 33074114 DOI: 10.1016/j.vetmic.2020.108890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Rabies is a devastating disease affecting almost all mammalian animal species including humans. Vaccines are available to combat the disease. Protection against the disease is rendered by assessing the humoral immune response. Recent reports suggest the role of cell mediated immune response (CMI) in assessing vaccine efficacy. In the present study, two live vectored vaccine candidates containing glycoprotein G of rabies virus were generated using the mesogenic Newcastle disease virus (NDV) strain R2B and another with NDV with an altered fusion protein cleavage site as backbones. The efficacy of these vaccine candidates on testing in experimental mouse model indicated generation of robust humoral and CMI responses. The recombinant NDV containing the altered fusion protein cleavage site with glycoprotein G showed the highest CMI response in mice indicating its usage as a potential live vectored vaccine candidate against the disease.
Collapse
Affiliation(s)
- Ashis Debnath
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Dinesh C Pathak
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Ajai Lawrence D'silva
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Rahul Batheja
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Narayan Ramamurthy
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Vikram N Vakharia
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, USA
| | - Madhan Mohan Chellappa
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India.
| | - Sohini Dey
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India.
| |
Collapse
|
21
|
Recombinant Rabies Virus Overexpressing OX40-Ligand Enhances Humoral Immune Responses by Increasing T Follicular Helper Cells and Germinal Center B Cells. Vaccines (Basel) 2020; 8:vaccines8010144. [PMID: 32210183 PMCID: PMC7157680 DOI: 10.3390/vaccines8010144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rabies, caused by the rabies virus (RABV), remains a serious threat to public health in most countries. Development of a single-dose and efficacious rabies vaccine is the most important method to restrict rabies virus transmission. Costimulatory factor OX40-ligand (OX40L) plays a crucial role in the T cell-dependent humoral immune responses through T-B cell interaction. In this work, a recombinant RABV overexpressing mouse OX40L (LBNSE-OX40L) was constructed, and its effects on immunogenicity were evaluated in a mouse model. LBNSE-OX40L-immunized mice generated a larger number of T follicular helper (Tfh) cells, germinal center (GC) B cells, and plasma cells (PCs) than the parent virus LBNSE-immunized mice. Furthermore, LBNSE-OX40L induced significantly higher levels of virus-neutralizing antibodies (VNA) as early as seven days post immunization (dpi), which lasted for eight weeks, resulting in better protection for mice than LBNSE (a live-attenuated rabies vaccine strain). Taken together, our data in this study suggest that OX40L can be a novel and potential adjuvant to improve the induction of protective antibody responses post RABV immunization by triggering T cell-dependent humoral immune responses, and that LBNSE-OX40L can be developed as an efficacious and nonpathogenic vaccine for animals.
Collapse
|
22
|
Towards rabies elimination in the Asia-Pacific region: From theory to practice. Biologicals 2020; 64:83-95. [PMID: 32089431 DOI: 10.1016/j.biologicals.2020.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Rabies is a major neglected zoonotic disease and causes a substantial burden in the Asian region. Currently, Pacific Oceania is free of rabies but enzootic areas throughout southeast Asia represent a major risk of disease introduction to this region. On September 25-26, 2019, researchers, government officials and related stakeholders met at an IABS conference in Bangkok, Thailand to engage on the topic of human rabies mediated by dogs. The objective of the meeting was focused upon snowballing efforts towards achieving substantial progress in rabies prevention, control and elimination within Asia by 2030, and thereby to safeguard the Pacific region. Individual sessions focused upon domestic animal, wildlife and human vaccination; the production and evaluation of quality, safety and efficacy of existing rabies biologics; and the future development of new products. Participants reviewed the progress to date in eliminating canine rabies by mass vaccination, described supportive methods to parenteral administration by oral vaccine application, considered updated global and local approaches at human prophylaxis and discussed the considerable challenges ahead. Such opportunities provide continuous engagement on disease management among professionals at a trans-disciplinary level and promote new applied research collaborations in a modern One Health context.
Collapse
|
23
|
de Rezende AG, Fernández Núñez EG, Astray RM, Puglia ALP, Pereira CA, Jorge SAC. An optimization study for expression of the rabies virus glycoprotein (RVGP) in mammalian cell lines using the Semliki Forest virus (SFV). J Biotechnol 2019; 304:63-69. [PMID: 31442500 DOI: 10.1016/j.jbiotec.2019.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022]
Abstract
The Semliki Forest virus (SFV) viral vector has been widely used for transient protein expression. This study aimed to analyze comprehensively the capacity of SFV vector to express rabies lyssavirus glycoprotein (RVGP) in mammalian cells. The assessed parameters were transfection strategy, multiplicity of infection (MOI), harvest time and mammalian cell host. Two transfection approaches, electroporation and lipofection were evaluated to obtain the recombinant SFV, and the electroporation was found to be the most effective. Viral quantification by RT-qPCR was performed to elucidate the relation between the amount of recombinant virus utilized in the infection process and the production levels of the heterologous protein. Four different multiplicities of infection (MOIs = 1; 10; 15; 50) were evaluated using five mammalian cell lines: BHK-21, HuH-7, Vero, L929, and HEK-293T. Protein expression was assessed at two harvest times after infection (24 and 48 h). The recombinant protein generated was characterized by western blot, dot blot, and indirect immunofluorescence (IIF), while its concentration was determined by enzyme-linked immunosorbent assay (ELISA). Similar expression patterns were observed in cell lines BHK-21, HEK-293T, L929, and Vero, with higher RVGP production in the first 24 h. The BHK-21 cells showed yields of up to 4.3 μg per 106 cells when lower MOIs (1 and 10) were used. The HEK-293 T cells also showed similar production (4.3 μg per 106 cells) with MOI of 1, while the L929 and Vero cell lines showed lower expression rates of 2.82 and 1.26 μg per 106 cells, respectively. These cell lines showed lower expression levels at 48 h after infection compared to 24 h. Controversially, in the case of the HuH-7 cell line, RVGP production was higher at 48 h after infection (4.0 μg per 106 cells) and using MOIs of 15 and 50. This work may contribute to optimize the RVGP production using SFV system in mammalian cells. This study can also substantiate for example, the development of approaches that use of SFV for applications for other protein expressions and suggests values for relevant parameters and cell lines of this biotechnique.
Collapse
Affiliation(s)
| | - Eutimio Gustavo Fernández Núñez
- Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil; Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|