1
|
Liu X, Luo C, Yang Z, Zhao T, Yuan L, Xie Q, Liao Q, Liao X, Wang L, Yuan J, Wu N, Sun C, Yan H, Luo H, Shu Y. A Recombinant Mosaic HAs Influenza Vaccine Elicits Broad-Spectrum Immune Response and Protection of Influenza a Viruses. Vaccines (Basel) 2024; 12:1008. [PMID: 39340038 PMCID: PMC11435869 DOI: 10.3390/vaccines12091008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The annual co-circulation of two influenza A subtypes, H1N1 and H3N2, viruses in humans poses significant public health threats worldwide. However, the continuous antigenic drift and shift of influenza viruses limited the effectiveness of current seasonal influenza vaccines, necessitating the development of new vaccines against both seasonal and pandemic viruses. One potential solution to this challenge is to improve inactivated vaccines by including multiple T-cell epitopes. In this study, we designed stabilized trimeric recombinant mosaic HA proteins named HAm, which contain the most potential HA T-cell epitopes of seasonal influenza A virus. We further evaluated the antigenicity, hemagglutinin activity, and structural integrity of HAm and compared its immunogenicity and efficacy to a commercial quadrivalent inactivated influenza vaccine (QIV) in mice. Our results demonstrated that the HAm vaccine was able to induce broadly cross-reactive antibodies and T-cell responses against homologous, heterologous, and heterosubtypic influenza-naive mice. Additionally, the HAm antigens outperformed QIV vaccine antigens by eliciting protective antibodies against panels of antigenically drifted influenza vaccine strains from 2009 to 2024 and protecting against ancestral viruses' lethal challenge. These results suggest that the HAm vaccine is a promising potential candidate for future universal seasonal and pandemic influenza vaccine development.
Collapse
Affiliation(s)
- Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhuolin Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianyi Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Liangliang Wang
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianhui Yuan
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huacheng Yan
- Center for Disease Control and Prevention of Southern Military Theatre, Guangzhou 510610, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College, Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/Peking Union Medical College (PUMC), Beijing 100730, China
| |
Collapse
|
2
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
3
|
Li J, Zhang Y, Zhang X, Liu L. Influenza and Universal Vaccine Research in China. Viruses 2022; 15:116. [PMID: 36680158 PMCID: PMC9861666 DOI: 10.3390/v15010116] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Influenza viruses usually cause seasonal influenza epidemics and influenza pandemics, resulting in acute respiratory illness and, in severe cases, multiple organ complications and even death, posing a serious global and human health burden. Compared with other countries, China has a large population base and a large number of influenza cases and deaths. Currently, influenza vaccination remains the most cost-effective and efficient way to prevent and control influenza, which can significantly reduce the risk of influenza virus infection and serious complications. The antigenicity of the influenza vaccine exhibits good protective efficacy when matched to the seasonal epidemic strain. However, when influenza viruses undergo rapid and sustained antigenic drift resulting in a mismatch between the vaccine strain and the epidemic strain, the protective effect is greatly reduced. As a result, the flu vaccine must be reformulated and readministered annually, causing a significant drain on human and financial resources. Therefore, the development of a universal influenza vaccine is necessary for the complete fight against the influenza virus. By statistically analyzing cases related to influenza virus infection and death in China in recent years, this paper describes the existing marketed vaccines, vaccine distribution and vaccination in China and summarizes the candidate immunogens designed based on the structure of influenza virus, hoping to provide ideas for the design and development of new influenza vaccines in the future.
Collapse
Affiliation(s)
| | | | | | - Longding Liu
- Key Laboratory of Systemic Innovative Research on Virus Vaccine, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
4
|
Rasquinha MT, Lasrado N, Petro-Turnquist E, Weaver E, Venkataraman T, Anderson D, Laserson U, Larman HB, Reddy J. PhIP-Seq Reveals Autoantibodies for Ubiquitously Expressed Antigens in Viral Myocarditis. BIOLOGY 2022; 11:biology11071055. [PMID: 36101433 PMCID: PMC9312229 DOI: 10.3390/biology11071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Myocarditis is the inflammation of the heart muscle, and viral infections are a common cause of this disease. Myocarditis in some patients can progress to dilated cardiomyopathy (DCM). The mouse model of coxsackievirus B3 (CVB3) is commonly used to understand this disease progression in DCM patients. In this paper, we have attempted to analyze antibodies for heart antigens that could be produced as a result of heart damage in animals infected with CVB3 using a technique called Phage ImmunoPrecipitation Sequencing (PhIP-Seq). The analyses led us to identify antibodies for several proteins that were not previously reported that may have relevance to human disease. Abstract Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.
Collapse
Affiliation(s)
- Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Eric Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Thiagarajan Venkataraman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel Anderson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| |
Collapse
|
5
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
6
|
Guthmiller JJ, Utset HA, Wilson PC. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021; 13:965. [PMID: 34067435 PMCID: PMC8224597 DOI: 10.3390/v13060965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses.
Collapse
Affiliation(s)
- Jenna J. Guthmiller
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Henry A. Utset
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
| | - Patrick C. Wilson
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (H.A.U.); (P.C.W.)
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Development and Characterization of a Highly Sensitive NanoLuciferase-Based Immunoprecipitation System for the Detection of Anti-Influenza Virus HA Antibodies. mSphere 2021; 6:6/3/e01342-20. [PMID: 33980684 PMCID: PMC8125058 DOI: 10.1128/msphere.01342-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibody detection is crucial for monitoring host immune responses to specific pathogen antigens (Ags) and evaluating vaccine efficacies. The luciferase immunoprecipitation system (LIPS) was developed for sensitive detection of Ag-specific antibodies in sera from various species. In this study, we describe NanoLIPS, an improved LIPS assay based on NanoLuciferase (NLuc), and employ the assay for monitoring antibody responses following influenza virus infection or vaccination. We generated recombinant influenza virus hemagglutinin (HA) proteins tagged with N-terminal (N-NLuc-HA) or C-terminal (C-NLuc-HA) NLuc reporters. NLuc-HA yielded an at least 20-fold higher signal-to-noise ratio than did a LIPS assay employing a recombinant HA-Gaussia princeps luciferase (GLuc) fusion protein. NanoLIPS-based detection of anti-HA antibodies yielded highly reproducible results with a broad dynamic range. The levels of antibodies against C-NLuc-HA generated by mice vaccinated with recombinant vaccinia virus DIs strain expressing an influenza virus HA protein (rDIs-HA) was significantly correlated with the protective effect elicited by the rDIs-HA vaccine. C-NLuc-HA underwent glycosylation with native conformations and assembly to form a trimeric structure and was detected by monoclonal antibodies that detect conformational epitopes present on the globular head or stalk domain of HA. Therefore, NanoLIPS is applicable for evaluating vaccine efficacy. We also showed that C-NLuc-HA is applicable for detection of HA-specific antibodies in sera from various experimental species, including mouse, cynomolgus macaque, and tree shrew. Thus, NanoLIPS-based detection of HA offers a simple and high-sensitivity method that detects native conformational epitopes and can be used in various experimental animal models.IMPORTANCE Influenza virus HA-specific antibodies can be detected via the hemagglutination inhibition (HI) assay, the neutralization (NT) assay, and the enzyme-linked immunosorbent assay (ELISA). However, these assays have some drawbacks, including narrow dynamic range and the requirement for large amounts of sera. As an alternative to an ELISA-based method, luciferase immunoprecipitation system (LIPS) was developed. We focused on NanoLuciferase (NLuc), which has a small size, higher intensity, and longer stability. In this study, we developed a technically feasible and highly sensitive method for detecting influenza virus-specific antibodies using a NLuc-tagged recombinant HA protein produced in mammalian cells. HA with a C-terminal NLuc extension (C-NLuc-HA) was glycosylated and formed trimeric complexes when expressed in mammalian cells. Furthermore, C-NLuc-HA was recognized not only by monoclonal antibodies that bind to the globular head domain but also by those that bind to the stalk domain. We also demonstrated that the data obtained by this assay correlate with the protection of an experimental vaccine in animal models.
Collapse
|
8
|
Nagashima KA, Mousa JJ. Next-Generation Influenza HA Immunogens and Adjuvants in Pursuit of a Broadly Protective Vaccine. Viruses 2021; 13:v13040546. [PMID: 33805245 PMCID: PMC8064354 DOI: 10.3390/v13040546] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza virus, a highly mutable respiratory pathogen, causes significant disease nearly every year. Current vaccines are designed to protect against circulating influenza strains of a given season. However, mismatches between vaccine strains and circulating strains, as well as inferior vaccine effectiveness in immunodeficient populations, represent major obstacles. In an effort to expand the breadth of protection elicited by influenza vaccination, one of the major surface glycoproteins, hemagglutinin (HA), has been modified to develop immunogens that display conserved regions from multiple viruses or elicit a highly polyclonal antibody response to broaden protection. These approaches, which target either the head or the stalk domain of HA, or both domains, have shown promise in recent preclinical and clinical studies. Furthermore, the role of adjuvants in bolstering the robustness of the humoral response has been studied, and their effects on the vaccine-elicited antibody repertoire are currently being investigated. This review will discuss the progress made in the universal influenza vaccine field with respect to influenza A viruses from the perspectives of both antigen and adjuvant, with a focus on the elicitation of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kaito A. Nagashima
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
9
|
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel) 2021; 9:vaccines9030257. [PMID: 33805749 PMCID: PMC7998911 DOI: 10.3390/vaccines9030257] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus has significant viral diversity, both through antigenic drift and shift, which makes development of a vaccine challenging. Current influenza vaccines are updated yearly to include strains predicted to circulate in the upcoming influenza season, however this can lead to a mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and immunogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein to improve cross-reactive immunity for development of a universal influenza vaccine.
Collapse
|
10
|
Progress in the Development of Universal Influenza Vaccines. Viruses 2020; 12:v12091033. [PMID: 32957468 PMCID: PMC7551969 DOI: 10.3390/v12091033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses pose a significant threat to human health. They are responsible for a large number of deaths annually and have a serious impact on the global economy. There are numerous influenza virus subtypes, antigenic variations occur continuously, and epidemic trends are difficult to predict—all of which lead to poor outcomes of routine vaccination against targeted strain subtypes. Therefore, the development of universal influenza vaccines still constitutes the ideal strategy for controlling influenza. This article reviews the progress in development of universal vaccines directed against the conserved regions of hemagglutinin (HA), neuraminidase (NA), and other structural proteins of influenza viruses using new technologies and strategies with the goals of enhancing our understanding of universal influenza vaccines and providing a reference for research into the exploitation of natural immunity against influenza viruses.
Collapse
|