1
|
Mbaoma OC, Thomas SM, Beierkuhnlein C. Significance of vertical transmission of arboviruses in mosquito-borne disease epidemiology. Parasit Vectors 2025; 18:137. [PMID: 40205559 PMCID: PMC11983947 DOI: 10.1186/s13071-025-06761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Mosquito-borne diseases (MBDs) are increasingly prevalent due to the resultant impact of global change with significant health and economic impacts worldwide. Dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), yellow fever virus (YFV), Japanese encephalitis (JEV), and West Nile virus (WNV) transmitted by Aedes and Culex species have been identified as arboviruses of public health interest. The vertical transmission (VT) refers to the process where infected mosquitoes transmit viruses to their offspring; this has been often overlooked in MBD epidemiology. We conducted a systematic review to evaluate the role of VT in the occurrence, prevalence, and spread of MBDs, focusing on study types, mosquito species, and virus genera. In total, 73 studies from 2005 to 2024 relating to VT in the mosquito population were reviewed. Findings revealed the occurrence of VT across multiple mosquito species in natural and experimental settings, with significant variation in VT rates depending on vector species, virus genus, and study location. Aedes aegypti, Aedes albopictus, Aedes vexans, Culex pipiens, Culex tarsalis, and Culex quinquefasciatus were identified as mosquito species that support VT, while pathogens identified to be transmitted vertically were DENV, ZIKV, WNV, CHIKV, YFV, Sindbis virus (SINV), Ross River virus (RRV), and Mayaro virus (MAYV). VT rates were reported as minimum, and infection rate (MIR) varied across species, study type and location. Also, a high VT rate may precede a mosquito-borne disease outbreak. These findings indicate that VT, though often overlooked, contributes to the dynamics of MBD transmission and could influence disease outbreaks and endemism, especially under changing climatic conditions, highlighting the need for incorporating VT in mathematical models, experimental studies, and control strategies to understand dynamics of MBDs, given its potential role in sustaining arbovirus transmission and influencing outbreak dynamics.
Collapse
Affiliation(s)
| | - Stephanie Margarete Thomas
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
- Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
- Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Walsh E, Torres TZB, Prince BC, Rückert C. Generation of Cas9 Knock-In Culex quinquefasciatus Mosquito Cells. DNA 2025; 5:1. [PMID: 39958709 PMCID: PMC11823230 DOI: 10.3390/dna5010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Background/Objectives Culex species mosquitoes are globally distributed and transmit several pathogens that impact animal and public health, including West Nile virus, Usutu virus, and Plasmodium relictum. Despite their relevance, Culex species are less widely studied than Aedes and Anopheles mosquitoes. To expand the genetic tools used to study Culex mosquitoes, we previously developed an optimized plasmid for transient Cas9 and single-guide RNA (sgRNA) expression in Culex quinquefasciatus cells to generate gene knockouts. Here, we established a monoclonal cell line that consistently expresses Cas9 and can be used for screens to determine gene function or antiviral activity. Methods We used this system to perform the successful gene editing of seven genes and subsequent testing for potential antiviral effects, using a simple single-guide RNA (sgRNA) transfection and subsequent virus infection. Results We were able to show antiviral effects for the Cx. quinquefasciatus genes dicer-2, argonaute-2b, vago, piwi5, piwi6a, and cullin4a. In comparison to the RNAi-mediated gene silencing of dicer-2, argonaute-2b, and piwi5, our Cas9/sgRNA approach showed an enhanced ability to detect antiviral effects. Conclusions We propose that this cell line offers a new tool for studying gene function in Cx. quinquefasciatus mosquitoes that avoids the use of RNAi. This short study also serves as a proof-of-concept for future gene knock-ins in these cells. Our cell line expands the molecular resources available for vector competence research and will support the design of future research strategies to reduce the transmission of mosquito-borne diseases.
Collapse
Affiliation(s)
- Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B. Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Brian C. Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
3
|
Dawurung JS, Harrison JJ, Modhiran N, Hall RA, Hobson-Peters J, de Malmanche H. Serum-Free Suspension Culture of the Aedes albopictus C6/36 Cell Line for Chimeric Orthoflavivirus Vaccine Production. Viruses 2025; 17:250. [PMID: 40007005 PMCID: PMC11860912 DOI: 10.3390/v17020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Chimeric orthoflaviviruses derived from the insect-specific Binjari virus (BinJV) offer a promising basis for safe orthoflavivirus vaccines. However, these vaccines have so far only been produced using adherent C6/36 Aedes albopictus mosquito cell cultures grown in serum-supplemented media, limiting their scalable manufacture. To address this, we adapted C6/36 cells for serum-free suspension culture using Sf900-III medium, achieving high peak cell densities (up to 2.5 × 107 cells/mL). Higher agitation rates reduced cell aggregation, and cryopreservation and direct-to-suspension revival were successful, confirming the adapted line's stability for research and industrial applications. Despite this, BinJV-based chimeric orthoflaviviruses, including BinJV/WNVKUN, a candidate vaccine for West Nile virus, and similar vaccines (BinJV/DENV2 and BinJV/JEVNSW22) for dengue 2 virus and Japanese encephalitis virus, respectively, exhibited substantially reduced titres in C6/36 cultures infected in Sf900-III, a phenomenon attributed to the medium's acidic pH. Switching to the more alkaline, serum-free CD-FortiCHO medium enhanced the replication of these chimeric viruses to peak titres between 1.7 × 107 and 7.6 × 109 infectious units per mL whilst preserving viral integrity. These findings suggest that suspension-adapted C6/36 cultures in CD-FortiCHO medium can support high-yield vaccine production for various orthoflaviviruses and highlight the important role of cell culture media pH for orthoflavivirus bioprocessing. This scalable mosquito cell-based system could reduce production costs and improve vaccine accessibility, supporting efforts to combat arbovirus-related public health challenges.
Collapse
Affiliation(s)
- Joshua S. Dawurung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.S.D.); (J.J.H.); (N.M.); (R.A.H.); (J.H.-P.)
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.S.D.); (J.J.H.); (N.M.); (R.A.H.); (J.H.-P.)
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.S.D.); (J.J.H.); (N.M.); (R.A.H.); (J.H.-P.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.S.D.); (J.J.H.); (N.M.); (R.A.H.); (J.H.-P.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.S.D.); (J.J.H.); (N.M.); (R.A.H.); (J.H.-P.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Henry de Malmanche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (J.S.D.); (J.J.H.); (N.M.); (R.A.H.); (J.H.-P.)
| |
Collapse
|
4
|
Dhanushkumar T, Selvam PK, M E S, Vasudevan K, C GPD, Zayed H, Kamaraj B. Rational design of a multivalent vaccine targeting arthropod-borne viruses using reverse vaccinology strategies. Int J Biol Macromol 2024; 258:128753. [PMID: 38104690 DOI: 10.1016/j.ijbiomac.2023.128753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Viruses transmitted by arthropods, such as Dengue, Zika, and Chikungunya, represent substantial worldwide health threats, particularly in countries like India. The lack of approved vaccines and effective antiviral therapies calls for developing innovative strategies to tackle these arboviruses. In this study, we employed immunoinformatics methodologies, incorporating reverse vaccinology, to design a multivalent vaccine targeting the predominant arboviruses. Epitopes of B and T cells were recognized within the non-structural proteins of Dengue, Zika, and Chikungunya viruses. The predicted epitopes were enhanced with adjuvants β-defensin and RS-09 to boost the vaccine's immunogenicity. Sixteen distinct vaccine candidates were constructed, each incorporating epitopes from all three viruses. FUVAC-11 emerged as the most promising vaccine candidate through molecular docking and molecular dynamics simulations, demonstrating favorable binding interactions and stability. Its effectiveness was further evaluated using computational immunological studies confirming strong immune responses. The in silico cloning performed using the pET-28a(+) plasmid facilitates the future experimental implementation of this vaccine candidate, paving the way for potential advancements in combating these significant arboviral threats. However, further in vitro and in vivo studies are warranted to confirm the results obtained in this computational study, which highlights the effectiveness of immunoinformatics and reverse vaccinology in creating vaccines against major Arboviruses, offering a promising model for developing vaccines for other vector-borne diseases and enhancing global health security.
Collapse
Affiliation(s)
- T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Prasanna Kumar Selvam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Santhosh M E
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Balu Kamaraj
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Tanelus M, López K, Smith S, Muller JA, Porier DL, Auguste DI, Stone WB, Paulson SL, Auguste AJ. Exploring the immunogenicity of an insect-specific virus vectored Zika vaccine candidate. Sci Rep 2023; 13:19948. [PMID: 37968443 PMCID: PMC10651913 DOI: 10.1038/s41598-023-47086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Zika virus (ZIKV) is an important re-emerging flavivirus that presents a significant threat to human health worldwide. Despite its importance, no vaccines are approved for use in humans. Insect-specific flaviviruses (ISFVs) have recently garnered attention as an antigen presentation platform for vaccine development and diagnostic applications. Here, we further explore the safety, immunogenicity, and efficacy of a chimeric ISFV-Zika vaccine candidate, designated Aripo-Zika (ARPV/ZIKV). Our results show a near-linear relationship between increased dose and immunogenicity, with 1011 genome copies (i.e., 108 focus forming units) being the minimum dose required for protection from ZIKV-induced morbidity and mortality in mice. Including boosters did not significantly increase the short-term efficacy of ARPV/ZIKV-vaccinated mice. We also show that weanling mice derived from ARPV/ZIKV-vaccinated dams were completely protected from ZIKV-induced morbidity and mortality upon challenge, suggesting efficient transfer of maternally-derived protective antibodies. Finally, in vitro coinfection studies of ZIKV with Aripo virus (ARPV) and ARPV/ZIKV in African green monkey kidney cells (i.e., Vero-76) showed that ARPV and ARPV/ZIKV remain incapable of replication in vertebrate cells, despite the presence of active ZIKV replication. Altogether, our data continue to support ISFV-based vaccines, and specifically the ARPV backbone is a safe, immunogenic and effective vaccine strategy for flaviviruses.
Collapse
Affiliation(s)
- Manette Tanelus
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Shaan Smith
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - John A Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Danielle L Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Dawn I Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Sally L Paulson
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
6
|
Agboli E, Schulze J, Jansen S, Cadar D, Sreenu VB, Leggewie M, Altinli M, Badusche M, Jöst H, Börstler J, Schmidt-Chanasit J, Schnettler E. Interaction of Mesonivirus and Negevirus with arboviruses and the RNAi response in Culex tarsalis-derived cells. Parasit Vectors 2023; 16:361. [PMID: 37833743 PMCID: PMC10576325 DOI: 10.1186/s13071-023-05985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Mosquito-specific viruses (MSVs) comprise a variety of different virus families, some of which are known to interfere with infections of medically important arboviruses. Viruses belonging to the family Mesoniviridae or taxon Negevirus harbor several insect-specific viruses, including MSVs, which are known for their wide geographical distribution and extensive host ranges. Although these viruses are regularly identified in mosquitoes all over the world, their presence in mosquitoes in Germany had not yet been reported. METHODS A mix of three MSVs (Yichang virus [Mesoniviridae] and two negeviruses [Daeseongdong virus and Dezidougou virus]) in a sample that contained a pool of Coquillettidia richiardii mosquitoes collected in Germany was used to investigate the interaction of these viruses with different arboviruses in Culex-derived cells. In addition, small RNA sequencing and analysis of different mosquito-derived cells infected with this MSV mix were performed. RESULTS A strain of Yichang virus (Mesoniviridae) and two negeviruses (Daeseongdong virus and Dezidougou virus) were identified in the Cq. richiardii mosquitoes sampled in Germany, expanding current knowledge of their circulation in central Europe. Infection of mosquito-derived cells with these three viruses revealed that they are targeted by the small interfering RNA (siRNA) pathway. In Culex-derived cells, co-infection by these three viruses had varying effects on the representative arboviruses from different virus families (Togaviridae: Semliki forest virus [SFV]; Bunyavirales: Bunyamwera orthobunyavirus [BUNV]; or Flaviviridae: Usutu virus [USUV]). Specifically, persistent MSV co-infection inhibited BUNV infection, as well as USUV infection (but the latter only at specific time points). However, the impact on SFV infection was only noticeable at low multiplicity of infection (MOI 0.1) and at specific time points in combination with the infection status. CONCLUSIONS Taken together, these results are important findings that will lead to a better understanding of the complex interactions of MSVs, mosquitoes and arboviruses.
Collapse
Affiliation(s)
- Eric Agboli
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
- School of Basic and Biomedical Sciences, Department of Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Jonny Schulze
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Stephanie Jansen
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20148, Hamburg, Germany
| | - Daniel Cadar
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
| | | | - Mayke Leggewie
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Mine Altinli
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Marlis Badusche
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Hanna Jöst
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Jessica Börstler
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20148, Hamburg, Germany
| | - Esther Schnettler
- Bernhard-Nocht-Institute for Tropical Medicine, 20359, Hamburg, Germany.
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20148, Hamburg, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
7
|
Bhat EA, Ali T, Sajjad N, Kumar R, Bron P. Insights into the structure, functional perspective, and pathogenesis of ZIKV: an updated review. Biomed Pharmacother 2023; 165:115175. [PMID: 37473686 DOI: 10.1016/j.biopha.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Zika virus (ZIKV) poses a serious threat to the entire world. The rapid spread of ZIKV and recent outbreaks since 2007 have caused worldwide concern about the virus. Diagnosis is complicated because of the cross-reactivity of the virus with other viral antibodies. Currently, the virus is diagnosed by molecular techniques such as RT-PCR and IgM-linked enzyme immunoassays (MAC-ELISA). Recently, outbreaks and epidemics have been caused by ZIKV, and severe clinical symptoms and congenital malformations have also been associated with the virus. Although most ZIKV infections present with a subclinical or moderate flu-like course of illness, severe symptoms such as Guillain-Barre syndrome in adults and microcephaly in children of infected mothers have also been reported. Because there is no reliable cure for ZIKV and no vaccine is available, the public health response has focused primarily on preventing infection, particularly in pregnant women. A comprehensive approach is urgently needed to combat this infection and stop its spread and imminent threat. In view of this, this review aims to present the current structural and functional viewpoints, structure, etiology, clinical prognosis, and measures to prevent this transmission based on the literature and current knowledge. Moreover, we provide thorough description of the current understanding about ZIKV interaction with receptors, and a comparative examination of its similarities and differences with other viruses.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir 190006, India
| | - Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
8
|
Kong L, Xiao J, Yang L, Sui Y, Wang D, Chen S, Liu P, Chen XG, Gu J. Mosquito densovirus significantly reduces the vector susceptibility to dengue virus serotype 2 in Aedes albopictus mosquitoes (Diptera: Culicidae). Infect Dis Poverty 2023; 12:48. [PMID: 37161462 PMCID: PMC10169196 DOI: 10.1186/s40249-023-01099-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) is a major public health threat, with Aedes albopictus being the confirmed vector responsible for dengue epidemics in Guangzhou, China. Mosquito densoviruses (MDVs) are pathogenic mosquito-specific viruses, and a novel MDV was previously isolated from Ae. albopictus in Guangzhou. This study aims to determine the prevalence of MDVs in wild Ae. albopictus populations and investigate their potential interactions with DENV and impact on vector susceptibility for DENV. METHODS The prevalence of MDV in wild mosquitoes in China was investigated using open access sequencing data and PCR detection in Ae. albopictus in Guangzhou. The viral infection rate and titers in MDV-persistent C6/36 cells were evaluated at 12, 24, 48, 72, 96, and 120 h post infection (hpi) by indirect immunofluorescence assay (IFA) and real time quantitative PCR (RT-qPCR). The midgut infection rate (MIR), dissemination rate (DR), and salivary gland infection rate (SGIR) in various tissues of MDV-infected mosquitoes were detected and quantified at 0, 5, 10, and 15 days post infection (dpi) by RT-PCR and RT-qPCR. The chi-square test evaluated dengue virus serotype 2 (DENV-2) and Aedes aegypti densovirus (AaeDV) infection rates and related indices in mosquitoes, while Tukey's LSD and t-tests compared viral titers in C6/36 cells and tissues over time. RESULTS The results revealed a relatively wide distribution of MDVs in Aedes, Culex, and Anopheles mosquitoes in China and an over 68% positive rate. In vitro, significant reductions in DENV-2 titers in supernatant at 120 hpi, and an apparent decrease in DENV-2-positive cells at 96 and 120 hpi were observed. In vivo, DENV-2 in the ovaries and salivary glands was first detected at 10 dpi in both monoinfected and superinfected Ae. albopictus females, while MDV superinfection with DENV-2 suppressed the salivary gland infection rate at 15 dpi. DENV-2 titer in the ovary and salivary glands of Ae. albopictus was reduced in superinfected mosquitoes at 15 dpi. CONCLUSIONS MDVs is widespread in natural mosquito populations, and replication of DENV-2 is suppressed in MDV-infected Ae. albopictus, thus reducing vector susceptibility to DENV-2. Our study supports the hypothesis that MDVs may contribute to reducing transmission of DENV and provides an alternative strategy for mosquito-transmitted disease control.
Collapse
Affiliation(s)
- Ling Kong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuan Sui
- Brown School, Washington University, St. Louis, MO, 63130, USA
| | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Shaoqiang Chen
- Shenzhen Aiming Pest Control Operation Service Company Limited, Shenzhen, Guangdong, China
| | - Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiao-Guang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Lin CY, Batuman O, Levy A. Identifying the Gut Virome of Diaphorina citri from Florida Groves. INSECTS 2023; 14:166. [PMID: 36835735 PMCID: PMC9967087 DOI: 10.3390/insects14020166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Asian citrus psyllid (Diaphorina citri) transmits the bacterial pathogen Candidatus Liberibacter asiaticus (CLas), the putative causative agent of citrus Huanglongbing disease (HLB). Insect-specific viruses can act against insects as their natural enemies, and recently, several D. citri-associated viruses were discovered. The insect gut plays an important role as not only a pool for diverse microbes but also as a physical barrier to prevent the spread of pathogens such as CLas. However, there is little evidence of the presence of D. citri-associated viruses in the gut and of the interaction between them and CLas. Here, we dissected psyllid guts collected from five growing regions in Florida, and the gut virome was analyzed by high throughput sequencing. Four insect viruses, including D. citri-associated C virus (DcACV), D. citri densovirus (DcDV), D. citri reovirus (DcRV), and D. citri flavi-like virus (DcFLV), were identified, and their presence in the gut, including an additional D. citri cimodo-like virus (DcCLV), were confirmed with PCR-based assays. Microscopic analysis showed that DcFLV infection leads to morphological abnormalities in the nuclear structure in the infected psyllid gut cells. The complex and diverse composition of microbiota in the psyllid gut suggests a possible interaction and dynamics between CLas and the D. citri-associated viruses. Our study identified various D. citri-associated viruses that localized in the psyllid gut and provided more information that helps to evaluate the potential vectors for manipulating CLas in the psyllid gut.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Ozgur Batuman
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
- Southwest Florida Research and Education Center, University of Florida, Immokalee, FL 34142, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Sá GCDS, da Silva LB, Bezerra PVV, da Silva MAF, Inacio CLS, Paiva WDS, e Silva VPM, Cordeiro LV, Oliveira JWDF, Silva MS, Lima EDO, Moreira FJC, Rocha HADO, Barra PB, Ximenes MDFFDM, Uchôa AF. Tephrosia toxicaria (Sw.) Pers. extracts: Screening by examining aedicidal action under laboratory and field conditions along with its antioxidant, antileishmanial, and antimicrobial activities. PLoS One 2023; 18:e0275835. [PMID: 36630475 PMCID: PMC9833590 DOI: 10.1371/journal.pone.0275835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/24/2022] [Indexed: 01/12/2023] Open
Abstract
An increase in the incidence of arboviral, microbial and parasitic infections, and to disorders related to oxidative stress has encouraged the development of adjuvant therapies based on natural formulations, such as those involving plant extracts. Thus, to expand the repertoire of the available therapeutic options, this study aimed to describe the versatility of Tephrosia toxicaria (Sw.) (Pers., 1807) extracts for the control of arbovirus vectors, as well as their antioxidant, antileishmanial, and antimicrobial potential. Among the aqueous and hydroethanolic extracts obtained, the hydroethanolic extract from roots (RHA) was identified as the most active larvicide extract demonstrating, respectively, the lowest lethal concentration (mg/mL) for 50%, 90% and 99% of Aedes aegypti (L., 1762) and Aedes albopictus (S., 1894) larvae, observed at 24 h (0.33, 0.84 and 1.80; 0.32, 0.70 and 1.32) and 48 h (0.17, 0.51 and 1.22; 0.26, 0.47 and 0.78) post-exposure. Field assays revealed that RHA (0.84 mg/mL) is a potential oviposition deterrent, reducing egg-laying by approximately 90%. RHA (0.1 mg/mL) also exhibited antioxidant activity for the following tests: total antioxidant capacity (286.86 mg AAE/g), iron (87.16%) and copper (25.64%) chelation, and superoxide scavenging (10%). In the cell culture assays, RHA (0.1 mg/mL) promoted regeneration of metabolic activity (92% cell viability) in cells exposed to oxidative stress. Furthermore, RHA displayed weak antileishmanial activity (IC50 = 3.53 mg/mL) against Leishmania amazonensis and not exhibit antimicrobial activity. The extraction favored the concentration of carbohydrates in RHA, in addition to lectins and protease inhibitors, with molecular masses estimated between 10 and 24 kDa. Cytotoxicity and phytotoxicity analyses of RHA suggested its biosecurity. Thus, RHA is a multivalent extract with insecticide and antioxidant properties at low and safe concentrations. However, others studies on its indirect toxic effects are ongoing to ensure the complete safety of RHA.
Collapse
Affiliation(s)
- Giulian César da Silva Sá
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Instituto de Medicina Tropical do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Leidiane Barboza da Silva
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Instituto de Medicina Tropical do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Pedro Vitor Vale Bezerra
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Instituto de Medicina Tropical do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Melissa Alves Farias da Silva
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Instituto de Medicina Tropical do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Cássio Lázaro Silva Inacio
- Department of Microbiology and Parasitology, Laboratory of Entomology Research, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Weslley de Souza Paiva
- Department of Biochemistry, Laboratory of Biotechnology of Natural Polymer, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Virgínia Penéllope Macedo e Silva
- Department of Microbiology and Parasitology, Laboratory of Entomology Research, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Laísa Vilar Cordeiro
- Department of Pharmaceutical Sciences, Laboratory of Mycology, Universidade Federal da Paraiba, João Pessoa, Paraiba, Brazil
| | - Johny Wysllas de Freitas Oliveira
- Department of Clinical and Toxicological Analysis, Laboratory of Immunoparasitology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marcelo Sousa Silva
- Department of Clinical and Toxicological Analysis, Laboratory of Immunoparasitology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Edeltrudes de Oliveira Lima
- Department of Pharmaceutical Sciences, Laboratory of Mycology, Universidade Federal da Paraiba, João Pessoa, Paraiba, Brazil
| | | | - Hugo Alexandre de Oliveira Rocha
- Department of Biochemistry, Laboratory of Biotechnology of Natural Polymer, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Patricia Batista Barra
- Department of Biomedical Sciences, Universidade do Estado do Rio Grande do Norte, Mossoró, Rio Grande do Norte, Brazil
| | - Maria de Fátima Freire de Melo Ximenes
- Department of Microbiology and Parasitology, Laboratory of Entomology Research, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Adriana Ferreira Uchôa
- Department of Cellular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Instituto de Medicina Tropical do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
11
|
Walsh E, Torres TZB, Rückert C. Culex Mosquito Piwi4 Is Antiviral against Two Negative-Sense RNA Viruses. Viruses 2022; 14:2758. [PMID: 36560761 PMCID: PMC9781653 DOI: 10.3390/v14122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Culex spp. mosquitoes transmit several pathogens concerning public health, including West Nile virus and Saint Louis encephalitis virus. Understanding the antiviral immune system of Culex spp. mosquitoes is important for reducing the transmission of these viruses. Mosquitoes rely on RNA interference (RNAi) to control viral replication. While the siRNA pathway in mosquitoes is heavily studied, less is known about the piRNA pathway. The piRNA pathway in mosquitoes has recently been connected to mosquito antiviral immunity. In Aedes aegypti, Piwi4 has been implicated in antiviral responses. The antiviral role of the piRNA pathway in Culex spp. mosquitoes is understudied compared to Ae. aegypti. Here, we aimed to identify the role of PIWI genes and piRNAs in Culex quinquefasciatus and Culex tarsalis cells during virus infection. We examined the effect of PIWI gene silencing on virus replication of two arboviruses and three insect-specific viruses in Cx. quinquefasciatus derived cells (Hsu) and Cx. tarsalis derived (CT) cells. We show that Piwi4 is antiviral against the La Crosse orthobunyavirus (LACV) in Hsu and CT cells, and the insect-specific rhabdovirus Merida virus (MERDV) in Hsu cells. None of the silenced PIWI genes impacted replication of the two flaviviruses Usutu virus (USUV) and Calbertado virus, or the phasivirus Phasi-Charoen-like virus. We further used small RNA sequencing to determine that LACV-derived piRNAs, but not USUV-derived piRNAs were generated in Hsu cells and that PIWI gene silencing resulted in a small reduction in vpiRNAs. Finally, we determined that LACV-derived DNA was produced in Hsu cells during infection, but whether this viral DNA is required for vpiRNA production remains unclear. Overall, we expanded our knowledge on the piRNA pathway and how it relates to the antiviral response in Culex spp mosquitoes.
Collapse
Affiliation(s)
| | | | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
12
|
Ateutchia Ngouanet S, Wanji S, Yadouleton A, Demanou M, Djouaka R, Nanfack-Minkeu F. Factors enhancing the transmission of mosquito-borne arboviruses in Africa. Virusdisease 2022; 33:477-488. [PMID: 36278029 PMCID: PMC9579656 DOI: 10.1007/s13337-022-00795-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sandra Ateutchia Ngouanet
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin
- Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon
| | - Samuel Wanji
- Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon
| | - Anges Yadouleton
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Maurice Demanou
- Regional Yellow Fever Laboratory Coordinator World Health Organization, Inter-Country Support Team West Africa, 03 P.O. Box 7019, Ouagadougou 03, Burkina Faso
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin
| | - Ferdinand Nanfack-Minkeu
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin
- Department of Biology, The College of Wooster, Wooster, OH USA
| |
Collapse
|
13
|
Association of Midgut Bacteria and Their Metabolic Pathways with Zika Infection and Insecticide Resistance in Colombian Aedes aegypti Populations. Viruses 2022; 14:v14102197. [PMID: 36298752 PMCID: PMC9609292 DOI: 10.3390/v14102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.
Collapse
|
14
|
Agboli E, Zahouli JBZ, Badolo A, Jöst H. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa. Viruses 2021; 13:v13050891. [PMID: 34065928 PMCID: PMC8151702 DOI: 10.3390/v13050891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-associated viruses (MAVs), including mosquito-specific viruses (MSVs) and mosquito-borne (arbo)viruses (MBVs), are an increasing public, veterinary, and global health concern, and West Africa is projected to be the next front for arboviral diseases. As in-depth knowledge of the ecologies of both western African MAVs and related mosquitoes is still limited, we review available and comprehensive data on their diversity, abundance, and distribution. Data on MAVs’ occurrence and related mosquitoes were extracted from peer-reviewed publications. Data on MSVs, and mosquito and vertebrate host ranges are sparse. However, more data are available on MBVs (i.e., dengue, yellow fever, chikungunya, Zika, and Rift Valley fever viruses), detected in wild and domestic animals, and humans, with infections more concentrated in urban areas and areas affected by strong anthropogenic changes. Aedes aegypti, Culex quinquefasciatus, and Aedes albopictus are incriminated as key arbovirus vectors. These findings outline MAV, related mosquitoes, key knowledge gaps, and future research areas. Additionally, these data highlight the need to increase our understanding of MAVs and their impact on host mosquito ecology, to improve our knowledge of arbovirus transmission, and to develop specific strategies and capacities for arboviral disease surveillance, diagnostic, prevention, control, and outbreak responses in West Africa.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana
| | - Julien B. Z. Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouake, 27 BP 529 Abidjan 27, Cote D’Ivoire;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Département de Recherche et Développement, 01 BP 1303 Abidjan 01, Cote D’Ivoire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, Universitée Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso;
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Correspondence:
| |
Collapse
|