1
|
Simon A, Velloso-Junior SO, Mesquita RD, Fontao APGA, Costa TEMM, Honorio TS, Guimaraes TF, Sousa EGR, Viçosa AL, Sampaio ALF, do Carmo FA, Healy AM, Cabral LM, Castro RR. Development of inhaled moxifloxacin-metformin formulation as an alternative for pulmonary tuberculosis treatment. Int J Pharm 2024; 666:124740. [PMID: 39341387 DOI: 10.1016/j.ijpharm.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Resistant M. tuberculosis strains threaten pulmonary tuberculosis (P-TB) control since they limit drug options. Drug repositioning and new development strategies are urgently required to overcome resistance. Studies have already shown the beneficial role of the oral antidiabetic metformin as an anti-tuberculosis adjuvant drug. This work aimed to develop an inhalatory dry powder co-formulation of metformin and moxifloxacin to figure out a future option for P-TB treatment. Pre-formulation evaluations indicated the physicochemical compatibility of constituents, demonstrating powder crystallinity and acceptable drug content. Eight moxifloxacin-metformin dry powder formulations were produced by spray drying, and solid-state characterizations showed partial amorphization, ascribed to moxifloxacin. Four formulations containing L-leucine exhibited micromeritic and in vitro deposition profiles indicating pulmonary delivery suitability, like spherical and corrugated particle surface, geometric diameters < 5 μm, high emitted doses (>85 %), and mass median aerodynamic diameters between 1-5 μm. The use of a second spray dryer model further optimized the aerodynamic properties and yield of the best formulation, demonstrating the influence of the equipment used on the product obtained. Moreover, the final formulation showed high in vitro cell tolerability and characteristics in permeability studies indicative of good drug retention in the lungs.
Collapse
Affiliation(s)
- A Simon
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - S O Velloso-Junior
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P G A Fontao
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T E M M Costa
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T S Honorio
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - T F Guimaraes
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - E G R Sousa
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L Viçosa
- Laboratorio de Farmacotécnica Experimental, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L F Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - F A do Carmo
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - L M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R R Castro
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Alizadeh H, Khoshhal P, Mirmoeini MS, Gilani K. Evaluating the effect of sodium alginate and sodium carboxymethylcellulose on pulmonary delivery of levofloxacin spray-dried microparticles. Daru 2024; 32:557-571. [PMID: 38955893 PMCID: PMC11554959 DOI: 10.1007/s40199-024-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Patients with cystic fibrosis commonly suffer from lung infections caused by Pseudomonas aeruginosa. Recently, the Levofloxacin (LVF) nebulizing solution (Quinsair®) has been prescribed for the antimicrobial management. The sustained-release (SR) dry powder formulation of LVF is a convenient alternative to Quinsair®. It has the potential to enhance patient convenience and decrease the likelihood of drug resistance over time. OBJECTIVE In this paper, we set forth to formulate and evaluate the potential application of sodium alginate (SA) and sodium carboxymethylcellulose (SCMC) for sustained pulmonary delivery of LVF. METHODS The spray-dried (SD) LVF microparticles were formulated using SCMC and SA along with L-leucine (Leu). The microparticles were analyzed in terms of particle size, morphology, x-ray diffraction (XRD), in-vitro drug release, and aerodynamic properties. Selected formulations were further proceeded to short-term stability test. RESULTS The polymer-containing samples displayed process yield of 33.31%-39.67%, mean entrapment efficiency of 89% and volume size within the range of 2-5 μm. All the hydrogel microparticles were amorphous and exhibited rounded morphology with surface indentations. Formulations with a drug-to-excipient ratio of 50:50 and higher, showed a 24-h SR. The aerodynamic parameters were fine particle fraction and emitted dose percentage ranging between 46.21%-60.6% and 66.67%-87.75%, respectively. The short-term stability test revealed that the formulation with a 50:50 drug-to-excipient ratio, containing SA, demonstrated better physical stability. CONCLUSION The selected formulation containing SA has the potential to extend the release duration. However, further enhancements are required to optimize its performance.
Collapse
Affiliation(s)
- Hanieh Alizadeh
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Khoshhal
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Mirmoeini
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhang C, van de Weert M, Bjerregaard S, Rantanen J, Yang M. Leucine as a Moisture-Protective Excipient in Spray-Dried Protein/Trehalose Formulation. J Pharm Sci 2024; 113:2764-2774. [PMID: 38944343 DOI: 10.1016/j.xphs.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The incorporation of leucine (Leu), a hydrophobic amino acid, into pharmaceutically relevant particles via spray-drying can improve the physicochemical and particulate properties, stability, and ultimately bioavailability of the final product. More specifically, Leu has been proposed to form a shell on the surface of spray-dried (SD) particles. The aim of this study was to explore the potential of Leu in the SD protein/trehalose (Tre) formulation to control the water uptake and moisture-induced recrystallization of amorphous Tre, using lysozyme (LZM) as a model protein. LZM/Tre (1:1, w/w) was dissolved in water with varied amounts of Leu (0 - 40%, w/w) and processed by spray-drying. The solid form, residual moisture content (RMC), hygroscopicity, and morphology of SD LZM/Tre/Leu powders were evaluated, before and after storage under 22°C/55% RH conditions for 90 and 180 days. The X-ray powder diffraction results showed that Leu was in crystalline form when the amount of Leu in the formulation was at least 20% (w/w). Thermo-gravimetric analysis and scanning electron microscopy results showed that 0%, 5%, and 10% (w/w) Leu formulations led to comparable RMC and raisin-like round particles. In contrast, higher Leu contents resulted in a lower RMC and increased surface corrugation of the SD particles. Dynamic vapor sorption analysis showed that partial recrystallization of amorphous Tre to crystalline Tre·dihydrate occurred in the 0% Leu formulation. However, adding as little as 5% (w/w) Leu inhibited this recrystallization during the water sorption/desorption cycle. In addition, after storage, the formulations with higher Leu contents showed reduced water uptake. Instead of observing recrystallization of amorphous Tre in 0%, 5%, and 10% (w/w) Leu formulations, recrystallization of amorphous Leu was noted in the 5% and 10% (w/w) Leu formulations after storage. In summary, our study demonstrated that the addition of Leu has the potential to reduce water uptake and inhibit moisture-induced recrystallization of amorphous Tre in the SD protein/Tre powder system.
Collapse
Affiliation(s)
- Chengqian Zhang
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Mingshi Yang
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
4
|
Rai VK, Kumar A, Pradhan D, Halder J, Rajwar TK, Sarangi MK, Dash P, Das C, Manoharadas S, Kar B, Ghosh G, Rath G. Spray-Dried Mucoadhesive Re-dispersible Gargle of Chlorhexidine for Improved Response Against Throat Infection: Formulation Development, In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2024; 25:31. [PMID: 38326518 DOI: 10.1208/s12249-024-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Drug delivery to the buccal mucosa is one of the most convenient ways to treat common mouth problems. Here, we propose a spray-dried re-dispersible mucoadhesive controlled release gargle formulation to improve the efficacy of chlorhexidine. The present investigation portrays an approach to get stable and free-flowing spray-dried porous aggregates of chlorhexidine-loaded sodium alginate nanoparticles. The ionic gelation technique aided with the chlorhexidine's positive surface charge-based crosslinking, followed by spray drying of the nanoparticle's dispersion in the presence of lactose- and leucine-yielded nano-aggregates with good flow properties and with a size range of about 120-350 nm. Provided with the high entrapment efficiency (87%), the particles showed sustained drug release behaviors over a duration of 10 h, where 87% of the released drug got permeated within 12 h. The antimicrobial activity of the prepared formulation was tested on S. aureus, provided with a higher zone of growth inhibition than the marketed formulation. Aided with an appropriate mucoadhesive strength, this product exhibited extended retention of nanoparticles in the throat region, as shown by in vivo imaging results. In conclusion, the technology, provided with high drug retention and extended effect, could be a potential candidate for treating several types of throat infections.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Amresh Kumar
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Deepak Pradhan
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh, India
| | - Priyanka Dash
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451, Riyadh, Saudi Arabia
| | - Biswakanth Kar
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
5
|
Tewes F, Lamy B, Laroche J, Lamarche I, Marchand S. PK-PD Evaluation of Inhaled Microparticles loaded with Ciprofloxacin-Copper complex in a Rat Model of Chronic Pseudomonas aeruginosa Lung Infection. Int J Pharm X 2023; 5:100178. [PMID: 36970713 PMCID: PMC10033950 DOI: 10.1016/j.ijpx.2023.100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The potential gain in efficacy of pulmonary administration over IV administration of some antibiotics such as ciprofloxacin (CIP) may be limited by the short residence time of the drug at the site of infection after nebulization. Complexation of CIP with copper reduced its apparent permeability in vitro through a Calu-3 cell monolayer and greatly increased its pulmonary residence time after aerosolisation in healthy rats. Chronic P. aeruginosa lung infections in cystic fibrosis patients result in airway and alveolar inflammation that may increase the permeability of inhaled antibiotics and alter their fate in the lung after inhalation compared to what was seen in healthy conditions. The objective of this study was to compare the pharmacokinetics and efficacy of CIP-Cu2+ complex-loaded microparticles administered by pulmonary route with a CIP solution administered by IV to model rats with chronic lung infection. After a single pulmonary administration of microparticles loaded with CIP-Cu2+ complex, pulmonary exposure to CIP was increased 2077-fold compared to IV administration of CIP solution. This single lung administration significantly reduced the lung burden of P. aeruginosa expressed as CFU/lung measured 24 h after administration by 10-fold while IV administration of the same dose of CIP was ineffective compared to the untreated control. This better efficacy of inhaled microparticles loaded with CIP-Cu2+ complex compared with CIP solution can be attributed to the higher pulmonary exposure to CIP obtained with inhaled CIP-Cu2+ complex-loaded microparticles than that obtained with IV solution.
Collapse
Affiliation(s)
- Frederic Tewes
- Université de Poitiers, INSERM U1070, Poitiers, France
- Corresponding author.
| | - Barbara Lamy
- Université de Poitiers, INSERM U1070, Poitiers, France
| | - Julian Laroche
- CHU de Poitiers, laboratoire de Toxicologie et de Pharmacocinetique, Poitiers, France
| | | | - Sandrine Marchand
- Université de Poitiers, INSERM U1070, Poitiers, France
- CHU de Poitiers, laboratoire de Toxicologie et de Pharmacocinetique, Poitiers, France
| |
Collapse
|
6
|
Wu HT, Lin HC, Tu YJ, Ng KH. Instant Formulation of Inhalable Beclomethasone Dipropionate-Gamma-Cyclodextrin Composite Particles Produced Using Supercritical Assisted Atomization. Pharmaceutics 2023; 15:1741. [PMID: 37376188 DOI: 10.3390/pharmaceutics15061741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Medical composites derived from Gamma-cyclodextrin (γ-CD) and beclomethasone dipropionate-gamma-cyclodextrin (BDP-γ-CD) are synthesized over supercritical-assisted atomization (SAA) herein. Carbon dioxide, which serves the dual function of spraying medium and co-solute, is incorporated in this process along with the ethanolic solvent. Results indicate that, for fine spherical particles, optimized aerosol performance could be obtained with 50.0% (w/w) ethanolic solvent, precipitator, and saturator at 373.2 K and 353.2 K, respectively, and carbon dioxide-to-γ-CD flow ratio of 1.8 in the presence of 10 wt% leucine (LEU) as dispersion enhancer. It is also noted that γ-CD solution at low concentration typically renders better aerosol performance of the particles. During drug particle-derivation, the solubility of drug BDP elevated considerably due to the formation of inclusion complexes, further assisted by the ethanolic solvent which increases the lipophilicity of BDP. Meanwhile, the in vitro aerosolization and dissolution performance of drug composites derived from varied γ-CD-to-BDP mass ratio (Z) were also evaluated. It was found that high Z promises higher fine particle fraction in the obtained drug composite while the dissolution rate of active ingredient (BDP) exhibits positive correlation to the content of water-soluble excipient (γ-CD) in the formulation. This study offers a new avenue for instant drug formulation with promising pulmonary delivery over the SAA technique.
Collapse
Affiliation(s)
- Hsien-Tsung Wu
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan
| | - Han-Cyuan Lin
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan
| | - Yi-Jia Tu
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan
| |
Collapse
|
7
|
Landa G, Alejo T, Sauzet T, Laroche J, Sebastian V, Tewes F, Arruebo M. Colistin-loaded aerosolizable particles for the treatment of bacterial respiratory infections. Int J Pharm 2023; 635:122732. [PMID: 36803926 DOI: 10.1016/j.ijpharm.2023.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Compared to parenteral administration of colistin, its direct pulmonary administration can maximize lung drug deposition while reducing systemic adverse side effects and derived nephrotoxicity. Current pulmonary administration of colistin is carried out by the aerosolization of a prodrug, colistin methanesulfonate (CMS), which must be hydrolized to colistin in the lung to produce its bactericidal effect. However, this conversion is slow relative to the rate of absorption of CMS, and thus only 1.4 % (w/w) of the CMS dose is converted to colistin in the lungs of patients receiving inhaled CMS. We synthesized several aerosolizable nanoparticle carriers loaded with colistin using different techniques and selected particles with sufficient drug loading and adequate aerodynamic behavior to efficiently deliver colistin to the entire lung. Specifically, we carried out (i) the encapsulation of colistin by single emulsion-solvent evaporation with immiscible solvents using polylactic-co-glycolic (PLGA) nanoparticles; (ii) its encapsulation using nanoprecipitation with miscible solvents using poly(lactide-co-glycolide)-block-poly(ethylene glycol) as encapsulating matrix; (iii) colistin nanoprecipitation using the antisolvent precipitation method and its subsequent encapsulation within PLGA nanoparticles; and (iv) colistin encapsulation within PLGA-based microparticles using electrospraying. Nanoprecipitation of pure colistin using antisolvent precipitation showed the highest drug loading (55.0 ± 4.8 wt%) and spontaneously formed aggregates with adequate aerodynamic diameter (between 3 and 5 μm) to potentially reach the entire lung. These nanoparticles were able to completely eradicate Pseudomonas aeruginosa in an in vitro lung biofilm model at 10 µg/mL (MBC). This formulation could be a promising alternative for the treatment of pulmonary infections improving lung deposition and, therefore, the efficacy of aerosolized antibiotics.
Collapse
Affiliation(s)
- Guillermo Landa
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Teresa Alejo
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Theo Sauzet
- Université de Poitiers, INSERM U1070, Poitiers, France
| | | | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | | | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
8
|
de Pablo E, O'Connell P, Fernández-García R, Marchand S, Chauzy A, Tewes F, Dea-Ayuela MA, Kumar D, Bolás F, Ballesteros MP, Torrado JJ, Healy AM, Serrano DR. Targeting lung macrophages for fungal and parasitic pulmonary infections with innovative amphotericin B dry powder inhalers. Int J Pharm 2023; 635:122788. [PMID: 36863544 DOI: 10.1016/j.ijpharm.2023.122788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
The incidence of fungal pulmonary infections is known to be on the increase, and yet there is an alarming gap in terms of marketed antifungal therapies that are available for pulmonary administration. Amphotericin B (AmB) is a highly efficient broad-spectrum antifungal only marketed as an intravenous formulation. Based on the lack of effective antifungal and antiparasitic pulmonary treatments, the aim of this study was to develop a carbohydrate-based AmB dry powder inhaler (DPI) formulation, prepared by spray drying. Amorphous AmB microparticles were developed by combining 39.7 % AmB with 39.7 % γ-cyclodextrin, 8.1 % mannose and 12.5 % leucine. An increase in the mannose concentration from 8.1 to 29.8 %, led to partial drug crystallisation. Both formulations showed good in vitro lung deposition characteristics (80 % FPF < 5 µm and MMAD < 3 µm) at different air flow rates (60 and 30 L/min) when used with a DPI, but also during nebulisation upon reconstitution in water.
Collapse
Affiliation(s)
- E de Pablo
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - P O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - R Fernández-García
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - S Marchand
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France; Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2, Rue de la milétrie, 86021 Poitiers, France
| | - A Chauzy
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France
| | - F Tewes
- UMR 1070, Université de PoitiersPôle Biologie Santé, 1, Rue Georges Bonnet, 86073 Poitiers, France; Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2, Rue de la milétrie, 86021 Poitiers, France
| | - M A Dea-Ayuela
- Pharmacy Department, School of Life Sciences, Universidad Cardenal Herrera-CEU, Moncada 46113 Valencia, Spain
| | - D Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - F Bolás
- Parasitology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M P Ballesteros
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J J Torrado
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - D R Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Correlation of brittle matrix powder properties to aerodynamic performance of inhaled nintedanib made by thin-film freezing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Pacławski A, Politis S, Balafas E, Mina E, Papakyriakopoulou P, Christodoulou E, Kostomitsopoulos N, Rekkas DM, Valsami G, Giovagnoli S. Development and Pharmacokinetics of a Novel Acetylsalicylic Acid Dry Powder for Pulmonary Administration. Pharmaceutics 2022; 14:pharmaceutics14122819. [PMID: 36559312 PMCID: PMC9786194 DOI: 10.3390/pharmaceutics14122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Aspirin is an historic blockbuster product, and it has been proposed in a wide range of formulas. Due to exacerbation risks, the pulmonary route has been seldom considered as an alternative to conventional treatments. Only recently, owing to overt advantages, inhalable acetylsalicylic acid dry powders (ASA DPI) began to be considered as an option. In this work, we developed a novel highly performing inhalable ASA DPI using a nano spray-drying technique and leucine as an excipient and evaluated its pharmacokinetics compared with oral administration. The formulation obtained showed remarkable respirability and quality features. Serum and lung ASA DPI profiles showed faster presentation in blood and higher retention compared with oral administration. The dry powder was superior to the DPI suspension. The relative bioavailability in serum and lungs claimed superiority of ASA DPI over oral administration, notwithstanding a fourfold lower pulmonary dose. The obtained ASA DPI formulation shows promising features for the treatment of inflammatory and infectious lung pathologies.
Collapse
Affiliation(s)
- Adam Pacławski
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Cracow, Poland
| | - Stavros Politis
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Evangelos Balafas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ekaterini Mina
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eirini Christodoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Dimitrios M. Rekkas
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (D.M.R.); (S.G.); Tel.: +39-075-5585162 (S.G.)
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
- Correspondence: (D.M.R.); (S.G.); Tel.: +39-075-5585162 (S.G.)
| |
Collapse
|
11
|
Mahar R, Chakraborty A, Nainwal N. The influence of carrier type, physical characteristics, and blending techniques on the performance of dry powder inhalers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Preparation and Evaluation of Mucus-Penetrating Inhalable Microparticles of Tiotropium Bromide Containing Sodium Glycocholate. Pharmaceutics 2022; 14:pharmaceutics14071409. [PMID: 35890304 PMCID: PMC9321333 DOI: 10.3390/pharmaceutics14071409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
This study aimed to prepare mucus-penetrating inhalable microparticles for dry powder inhalers and to evaluate their applicability in an asthma-induced rat model. Microparticles were prepared from water solutions containing tiotropium bromide, L-leucine, and sodium glycocholate (NaGc) as permeation enhancers using the spray drying method. Four formulations (SDL1, SDL2, SDL3, and SDL4) were used, depending on the various NaGc concentrations. Tiotropium microparticles were characterized by standard methods. Additionally, an asthma-induced rat model was used to confirm the effects of the formulations on lung function. Tiotropium microparticles with NaGc resulted in formulations with a more corrugated morphology and smaller particle size distribution than those without NaGc. SDL 1 had a rough surface with irregular morphology, and SDL 2, 3, and 4 had a corrugated morphology. All SDL formulations had an aerodynamic size of <3 µm. The microparticles with a corrugated morphology aerosolized better than SDL1 microparticles. The apparent permeability coefficient (Papp) values of SDL3 and SDL4 were significantly higher than those for raw tiotropium. In an in vivo study using an asthma-induced rat model, the specific airway resistance (Sraw), airway wall thickness, and mean alveolus size recovered to those of the negative control group in the SDL4 formulation.
Collapse
|
13
|
Remadevi R, AV Morton D, Hapgood K, Rashida N, Rajkhowa R. Improving the dynamic properties of silk particles by co-spray drying with L-leucine. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
14
|
Zhang Y, Soto M, Ghosh D, Williams RO. Manufacturing Stable Bacteriophage Powders by Including Buffer System in Formulations and Using Thin Film Freeze-drying Technology. Pharm Res 2021; 38:1793-1804. [PMID: 34697726 DOI: 10.1007/s11095-021-03111-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Bacteriophage (phage) therapy has re-gained attention lately given the ever-increasing prevalence of multi-drug resistance 'super-bugs'. To develop therapeutic phage into clinically usable drug products, the strategy of solidifying phage formulations has been implemented to diversify the dosage forms and to overcome the storage condition limitations for liquid phage formulations. METHOD In our work, we hypothesize and tested that an advanced technology, thin film freeze-drying (TFFD), can be used to produce phage containing dry powders without significantly losing phage viability. Here we selected T7 phage as our model phage in a preliminary screening study. RESULTS We found that a binary excipient matrix of sucrose and leucine at ratios of 90:10 or 75:25 by weight, protected phage from the stresses encountered during the TFFD process. In addition, we confirmed that incorporating a buffer system in the formulation significantly improved the survival of phage during the initial freezing step and subsequent sublimation step in the solidifying processes. The titer loss of phage in SM buffer (Tris/NaCl/MgSO4) containing formulation was as low as 0.19 log plaque forming units, which indicated that phage function was well preserved after the TFFD process. The presence of buffers markedly reduced the geometric particle sizes as determined by a dry dispersion method using laser diffraction, which indicated that the TFFD phage powder formulations were easily sheared into smaller powder aggregates, an ideal property for facilitating a variety of topical drug delivery routes including pulmonary delivery through dry powder inhalers, nebulization after reconstitution, and intranasal or wound therapy, etc. CONCLUSION: From these findings, we show that introducing buffer system can stabilize phage during dehydration processes, and TFFD, as a novel particle engineering method, can successfully produce phage containing powders that possess the desired properties for bioactivity and potentially for inhalation therapy.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.,Formulation Development Department, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Melissa Soto
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Characterization and Aerosolization Performance of HydroxyPropyl-Beta-Cyclodextrin Particles Produced Using Supercritical Assisted Atomization. Polymers (Basel) 2021; 13:polym13142260. [PMID: 34301017 PMCID: PMC8309227 DOI: 10.3390/polym13142260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, hydroxypropyl-beta-cyclodextrin (HP-β-CD) particles were produced using supercritical assisted atomization (SAA) with carbon dioxide as the spraying medium or co-solute and aqueous ethanol solution as the solvent. The effects of several key factors on the morphology and size of the HP-β-CD particles were investigated. These factors included the solvent effect, temperatures of the precipitator and saturator, concentration of the HP-β-CD solution, and flow rate ratio of carbon dioxide to the HP-β-CD solution. The conducive conditions for producing fine spherical particles were 54.2% (w/w) aqueous ethanol as the solvent; precipitator and saturator temperatures of 373.2 K and 353.2 K, respectively; a flow rate ratio of carbon dioxide to HP-β-CD solution of 1.8; and low concentrations of HP-β-CD solution. The addition of leucine (LEU) enhanced the aerosol performance of the HP-β-CD particles, and the fine particle fraction (FPF) of the HP-β-CD particles with the addition of 13.0 mass% LEU was 1.8 times higher than that of the HP-β-CD particles without LEU. This study shows that LEU can act as a dispersion enhancer and that HP-β-CD particles produced using SAA can be used as pulmonary drug carriers.
Collapse
|
16
|
Bahrainian S, Rouini M, Gilani K. Preparation and evaluation of vancomycin spray-dried powders for pulmonary delivery. Pharm Dev Technol 2021; 26:647-660. [PMID: 33896355 DOI: 10.1080/10837450.2021.1915331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to achieve a dry powder formulation of vancomycin by spray drying whilst evaluating the effect of pH and excipient type and percentage used in formulation on particle characteristics and aerosolization performance. A D-optimal design was applied to optimize the formulation comprising vancomycin and two main excipient groups; a carbohydrate bulking agent (lactose, mannitol or trehalose) and a second excipient (hydroxypropyl beta-cyclodextrin or L-leucine) at pH 4 and 7. The physicochemical properties of particles (size, morphology, crystallinity state, residual moisture content), stability, and aerosolization characteristics were investigated. Using the combination of two excipients increased the fine particle fraction of powder emitted from an Aerolizer® device at a flow rate of 60 L/min. Hydroxypropyl beta-cyclodextrin showed more potential than L-leucine in aerosolization capabilities. Stability studies over 3 months of storage in 40 °C and 75% relative humidity suggested a good physical stability of the optimized formulation containing 17.39% hydroxypropyl beta-cyclodextrin along with 29.61% trehalose relative to the amount of drug at pH 4. Use of two excipients including trehalose and hydroxypropyl beta-cyclodextrin with a total weight ratio of 47% relative to the amount of drug is appropriate for the preparation of vancomycin dry powder formulation for inhalation.
Collapse
Affiliation(s)
- Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Alhajj N, O'Reilly NJ, Cathcart H. Leucine as an excipient in spray dried powder for inhalation. Drug Discov Today 2021; 26:2384-2396. [PMID: 33872799 DOI: 10.1016/j.drudis.2021.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
Leucine is a promising excipient with several applications in the development of inhalable spray-dried powder of high- and low-dose drugs. The addition of leucine has exhibited significant enhancing effects on the aerosolization and physical stability of the produced particles. Here, we focus not only on the applications of leucine in inhalable spray-drying powders, but also on the underlying mechanisms by which the formulation and processing parameters dictate the behavior of leucine during the drying process and, therefore, its functionalities within the dried powder. Additionally, we highlight the current regulatory status of leucine. Such insights are important for more efficient utilization of leucine in the future, both for dry powder inhaler formulations and other pharmaceutical applications.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
18
|
Hassan A, Farkas D, Longest W, Hindle M. Characterization of excipient enhanced growth (EEG) tobramycin dry powder aerosol formulations. Int J Pharm 2020; 591:120027. [PMID: 33130220 DOI: 10.1016/j.ijpharm.2020.120027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
Spray drying can be utilized to produce highly dispersible powder aerosol formulations. However, these formulations are known to be hygroscopic, leading to potential solid-state stability and aerosol performance issues. This study aims to investigate if control of the spray drying particle formation conditions could be employed to improve the solid-state stability and alter the aerosol performance of tobramycin EEG formulations. Eight formulations were prepared, each had the same drug:excipient ratio of 60%w/w tobramycin, 20% w/w l-leucine, 18% w/w mannitol, and 2% w/w poloxamer 188. An experimental design matrix was performed with drying air water content of 1 or 10 g/m3 and spray drying solution l-leucine concentrations of 4.6, 7.6, 15.2 or 23.0 mmol/L. The particle size, morphology and crystallinity of spray dried formulations were characterized together with their dynamic moisture vapor sorption and aerosol performance. Higher crystallization and glass transition %RH were observed for the formulations spray dried using drying air with higher water content indicating more stable characteristics. Initial screening using a handheld dry powder inhaler of the realistic aerosol performance revealed that neither changing l-leucine concentration nor the drying gas water content affect the in-vitro expected lung dose. However, using a novel positive pressure inhaler, formulations produced using spray drying solutions with lower l-leucine concentrations showed better aerosol performance with MMAD around 2 µm and FPF < 5 µm around 80%.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA.
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Development of inhaled formulation of modified clofazimine as an alternative to treatment of tuberculosis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Brillault J, Tewes F. Control of the Lung Residence Time of Highly Permeable Molecules after Nebulization: Example of the Fluoroquinolones. Pharmaceutics 2020; 12:pharmaceutics12040387. [PMID: 32340298 PMCID: PMC7238242 DOI: 10.3390/pharmaceutics12040387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Pulmonary drug delivery is a promising strategy to treat lung infectious disease as it allows for a high local drug concentration and low systemic side effects. This is particularly true for low-permeability drugs, such as tobramycin or colistin, that penetrate the lung at a low rate after systemic administration and greatly benefit from lung administration in terms of the local drug concentration. However, for relatively high-permeable drugs, such as fluoroquinolones (FQs), the rate of absorption is so high that the pulmonary administration has no therapeutic advantage compared to systemic or oral administration. Formulation strategies have thus been developed to decrease the absorption rate and increase FQs’ residence time in the lung after inhalation. In the present review, some of these strategies, which generally consist of either decreasing the lung epithelium permeability or decreasing the release rate of FQs into the epithelial lining fluid after lung deposition, are presented in regards to their clinical aspects.
Collapse
Affiliation(s)
- Julien Brillault
- INSERM U-1070, Pôle Biologie Santé, 86000 Poitiers, France
- UFR Médecine-Pharmacie, Université de Poitiers, 86073 Poitiers, France
- Correspondence: (J.B.); (F.T.)
| | - Frédéric Tewes
- INSERM U-1070, Pôle Biologie Santé, 86000 Poitiers, France
- UFR Médecine-Pharmacie, Université de Poitiers, 86073 Poitiers, France
- Correspondence: (J.B.); (F.T.)
| |
Collapse
|