1
|
Alfassam HE, Nasser N, Othman SI, Alharbi HM, Alenazi NA, Rudyani HA, Allam AA, Al Zoubi W, Abukhadra MR. Insight into loading, release, and anticancer activities of the methanol hybridized glauconite nano-sheets as a potential carrier of cisplatin: equilibrium and release kinetics. Front Chem 2025; 13:1523664. [PMID: 40084277 PMCID: PMC11903436 DOI: 10.3389/fchem.2025.1523664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025] Open
Abstract
Advanced silicate nano-sheets as exfoliated and separated layers were developed from natural glauconite and hybridized with methanol, producing a methoxy exfoliated structure (Mth/EXGL). The structure was assessed as an enhanced carrier of the cisplatin drug (CSPN) with significant loading, release, and cytotoxicity properties. The methoxy form of exfoliated glauconite showed better loading properties (327.7 mg/g) than the exfoliated sample (202.4 mg/g) as well as the raw sample (119.3 mg/g). This enhancement was assigned to the incorporated active loading centers after the methanol hybridization step, which is in agreement with the steric studies and determined active site density (Nm = 45.5 mg/g (Mth/EXGL), 38.4 mg/g (EXGL), and 26.3 mg/g (glauconite). Moreover, each site across the interface of Mth/EXGL has the capacity to be loaded with 8 CSPN molecules, donating multi-molecular mechanisms and their loading in vertical orientation. The CSPN loading energy value (<8 kJ/mol) into Mth/EXGL reflected the dominant impact of the physical mechanisms, including electrostatic attractions and hydrogen bonding. The recognized release profile demonstrates continuous and controlled behavior that can extend up to 110 h at pH 7.4 and 170 h at pH 5.5. This releasing behavior is regulated by two main processes (diffusion and erosion) based on the release kinetic findings. Also, Mth/EXGL as a carrier of CSPN induces its cytotoxic effect on human cervical epithelial tumors (HeLa) (0.65% cell viability) as compared to the free form of CSPN (6.6% cell viability). The Mth/EXGL is recommended as a delivery system for CSPN considering its determined loading, release, and cytotoxicity properties.
Collapse
Affiliation(s)
- Haifa E. Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nourhan Nasser
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Sarah I. Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hanan M. Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Noof A. Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hassan A. Rudyani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
2
|
Moffa EB, Malheiros SS, Silva LTS, Branco DI, Grassia Junior RCF, Brandt WC, Goncalves F, Barao VAR, Boaro LCC. Antimicrobial activity of PMMA enriched with nano-clay loaded with metronidazole and chlorhexidine. Braz Oral Res 2024; 38:e110. [PMID: 39661792 DOI: 10.1590/1807-3107bor-2024.vol38.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 12/13/2024] Open
Abstract
Poly(methyl methacrylate) (PMMA) materials are highly susceptible to microbial colonization, predisposing patients to oral infections. To address this concern, we loaded PMMA samples with montmorillonite clay (MMT), a crystalline nanoparticle, in combination with chlorhexidine (CHX) or metronidazole (MET) targeting improved antimicrobial action. PMMA samples were prepared with or without MMT loaded with either CHX or MET, establishing the following groups: control (acrylic resin without the addition of nanoparticles), MMT/CHX (acrylic resin with 5% by weight of MMT loaded with CHX), and MMT/MET (acrylic resin with 5% by weight of MMT loaded with MET). Mechanical properties such flexural strength, flexural modulus, and Knoop hardness were evaluated using a universal testing machine. Antimicrobial efficacy was assessed via agar diffusion tests against Enterococcus faecalis and Porphyromonas gingivalis. The addition of MMT loaded with CHX did not affect the flexural strength and flexural modulus of PMMA compared to the control group (p > 0.05). However, MMT/MET reduced all mechanical properties of PMMA (p < 0.05). Both loaded-PMMA materials demonstrated antibacterial activity against E. faecalis but not against P. gingivalis. In conclusion, the incorporation of MMT/CHX into acrylic resin appears to be the most promising approach to combat microbial colonization while preserving PMMA mechanical properties. Future research should focus on optimizing material characteristics to enhance antimicrobial properties, paving the way for clinical applicability.
Collapse
Affiliation(s)
| | - Samuel Santana Malheiros
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Prosthodontics and Periodontology, Piracicaba, SP, Brazil
| | | | | | | | | | - Flavia Goncalves
- Universidade de Santo Amaro - Unisa, School of Dentistry, São Paulo, SP, Brazil
| | - Valentim Adelino Ricardo Barao
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Prosthodontics and Periodontology, Piracicaba, SP, Brazil
| | | |
Collapse
|
3
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Synthesis and characterization of cellulose fibers modified zinc phosphate/hydroxyapatite core-shell as enhanced carrier of cisplatin: Loading, release, and cytotoxicity. Int J Biol Macromol 2024; 277:134169. [PMID: 39097057 DOI: 10.1016/j.ijbiomac.2024.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
The uncontrolled administration of the cisplatin drug (CPTN) resulted in numerous drawbacks. Therefore, effective, affordable, and biocompatible delivery systems were suggested to regulate the loading, release, and therapeutic effect of CPTN. Zinc phosphate/hydroxyapatite hybrid form (ZP/HP) and core-shell nano-rod morphology, as well as its functionalized derivative with cellulose (CF@ZP/HP), were synthesized by the facile dissolution precipitation method followed by mixing with cellulose fibers, respectively. The developed CF@ZP/HP displayed remarkable enhanced CPTN loading properties (418.2 mg/g) as compared to ZP/HP (259.8 mg/g). The CPTN loading behaviors into CF@ZP/HP follow the Langmuir isotherm properties (R2 > 0.98) in addition to the kinetic activities of the pseudo-first-order model (R2 > 0.96). The steric assessment validates the notable increase in the existing loading receptors after the functionalization of ZP/HP with CF from 57.7 mg/g (ZP/HP) to 90.5 mg/g. The functionalization also impacted the capacity of each existing receptor to be able to ensure 5 CPTN molecules. This, in addition to the loading energies (<40 kJ/mol), donates the loading of CPTN by physical multi-molecular processes and in vertical orientation. The CPTN releasing patterns of CF@ZP/HP exhibit slow and controlled properties (95.7 % after 200 h at pH 7.4 and 100 % after 120 h at pH 5.5), but faster than the properties of ZP/HP. The kinetic modeling of the release activities together with the diffusion exponent (>0.45) reflected the release of CPTN according to both erosion and diffusion mechanisms. The loading of CPTN into both ZP/HP and CF@ZP/HP also resulted in a marked enhancement in the anticancer activity of CPTN against human cervical epithelial malignancies (HeLa) (cell viability = 5.6 % (CPTN), 3.2 % (CPTN loaded ZP/HP), and 1.12 % (CPTN loaded CF@ZP/HP)).
Collapse
Affiliation(s)
- May N Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt; Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
| |
Collapse
|
4
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Bellucci S, Abukhadra MR. Insight into the integration effect of chitosan and β-cyclodextrin on the properties of zinc-phosphate/hydroxyapatite hybrid as delivery structures for 5-fluorouracil: loading and release profiles. Front Chem 2024; 12:1456057. [PMID: 39324064 PMCID: PMC11422123 DOI: 10.3389/fchem.2024.1456057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Zinc-phosphate/hydroxyapatite hybrid form (ZP/HP) in core-shell nanostructure was developed and functionalized with both chitosan (CS@ZP/HP) and β-cyclodextrin (CD@ZP/HP) as bio-composite of enhanced physicochemical and biological properties. These structures were assessed as potential deliveries of 5-fluorouracil, exhibiting enhanced loading, release, and anti-cancer behaviors. The functionalization strongly prompted the loading effectiveness to be 301.3 mg/g (CS@ZP/HP) and 342.8 mg/g (CD@ZP/HP) instead of 238.9 mg/g for ZP/HP. The loading activities were assessed based on the hypotheses of traditional kinetic and isotherm models, alongside the computational variables of the monolayer model with a single energetic site as an advanced isotherm model. The functionalized versions exhibit much greater loading efficacy compared to ZP/HP as a result of the increment in the density of the existing loading sites [Nm(5-Fu) = 78.85 mg/g (ZP/HP), 93.87 mg/g (CS@ZP/HP), and 117.8 mg/g (CD@ZP/HP)]. Furthermore, the loading energies of approximately 40 kJ/mol, together with the loading potential of each receptor (n > 1) and Gaussian energies of approximately 8 kJ/mol, indicate the physical entrapment of 5-Fu molecules according to a vertical orientation. The materials mentioned verify long-term and continuous release characteristics. Following the modification processes, this behavior became faster as both CS@ZP/HP and CD@ZP/HP displayed complete release within 120 h at pH 1.2. The kinetic studies and diffusing exponent (>0.45) indicate that release characteristics are controlled by both diffusion and erosion processes. These carriers also markedly increase the cytotoxicity of 5-Fu against HCT-116 colorectal cancer cell lines: 5-Fu-ZP/HP (3.2% cell viability), 5-Fu-CS@ZP/HP (1.12% cell viability), and 5-Fu-CD@ZP/HP (0.63% cell viability).
Collapse
Affiliation(s)
- May N. Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I. Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
5
|
Saini RS, Bavabeedu SS, Quadri SA, Gurumurthy V, Kanji MA, Okshah A, Binduhayyim RIH, Alarcón-Sánchez MA, Mosaddad SA, Heboyan A. Mapping the research landscape of nanoparticles and their use in denture base resins: a bibliometric analysis. DISCOVER NANO 2024; 19:95. [PMID: 38814562 PMCID: PMC11139848 DOI: 10.1186/s11671-024-04037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Nanoparticles are increasingly used in dentistry for various applications, including enhancing the mechanical properties of denture base resins. This study aimed to comprehensively review and analyze the research landscape of nanoparticles and their effect on the flexural strength of denture base resins to identify key research areas and trends and to highlight the importance of collaboration between authors and institutions. METHODS A Bibliometric Analysis was conducted using the Keywords "Nanoparticle*" AND "Denture*" OR "CAD/CAM." The literature search from the WOS database was restricted to the publication years 2011 to 2022. RESULTS Key findings encompass an increase in research publications but a decline in citations. Saudi Arabia, China, and Iraq led this research, with specific institutions excelling. Notable journals with high impact factors were identified. Authorship patterns show variations in citation impact. Additionally, keyword analysis revealed that current research trends offer insights into influential authors and their networks. CONCLUSIONS The analysis of nanoparticles and denture base resins reveals a dynamic and evolving landscape that emphasizes the importance of collaboration, staying current with research trends, and conducting high-quality research in this ever-evolving domain.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | - Masroor Ahmed Kanji
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Abdulmajeed Okshah
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Mario Alberto Alarcón-Sánchez
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
6
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Characterization of chitosan- and β-cyclodextrin-modified forms of magnesium-doped hydroxyapatites as enhanced carriers for levofloxacin: loading, release, and anti-inflammatory properties. RSC Adv 2024; 14:16991-17007. [PMID: 38799215 PMCID: PMC11124724 DOI: 10.1039/d4ra02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
An advanced form of magnesium-rich hydroxyapatite (Mg·HAP) was modified with two types of biopolymers, namely chitosan (CH/Mg·HAP) and β-cyclodextrin (CD/Mg·HAP), producing two types of bio-composites. The synthesized materials were developed as enhanced carriers for levofloxacin to control its loading, release, and anti-inflammatory properties. The polymeric modification significantly improved the loading efficiency to 281.4 mg g-1 for CH/Mg·HAP and 332.4 mg g-1 for CD/Mg·HAP compared with 218.3 mg g-1 for Mg·HAP. The loading behaviors were determined using conventional kinetic and isotherm models and mathematical parameters of new equilibrium models (the monolayer model of one energy). The estimated density of effective loading sites (Nm (LVX) = 88.03 mg g-1 (Mg·HAP), 115.8 mg g-1 (CH/Mg·HAP), and 138.5 mg g-1 (CD/Mg·HAP)) illustrates the markedly higher loading performance of the modified forms of Mg·HAP. Moreover, the loading energies (<40 kJ mol-1) in conjunction with the capacity of each loading site (n > 1) and Gaussian energies (<8 kJ mol-1) signify the physical trapping of LVX molecules in vertical orientation. The addressed materials validate prolonged and continuous release behaviors. These behaviors accelerated after the modification procedures, as the complete release was identified after 160 h (CH/Mg·HAP) and 200 h (CD/Mg·HAP). The releasing behaviors are regulated by both diffusion and erosion mechanisms, according to the kinetic investigations and diffusion exponent analysis (>0.45). The entrapping of LVX into Mg·HAP induces its anti-inflammatory properties against the generation of cytokines (IL-6 and IL-8) in human bronchial epithelia cells (NL20), and this effect displays further enhancement after the integration of chitosan and β-cyclodextrin.
Collapse
Affiliation(s)
- May N Bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Sarah I Al Othman
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt +2001288447189
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef City Egypt
| |
Collapse
|
7
|
Moaness M, Mousa SM, Abo-Elfadl MT, El-Bassyouni GT. Doxorubicin loaded cerium substituted hydroxyapatite nanoparticles: A promising new therapeutic approach for bone regeneration, doxorubicin delivery, and cancer treatment. Int J Pharm 2024; 654:123969. [PMID: 38442795 DOI: 10.1016/j.ijpharm.2024.123969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
The current study used the precipitation method to prepare pure calcium hydroxyapatite (HA) and cerium-substituted hydroxyapatite (Ce-HA) nanoparticles, where cerium ions were exchanged into the HA structure at different concentrations ranging from 3 to 7 wt%. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) surface area measurements, and zeta potential were used to examine the structural characteristics of the nanoparticles. Additionally, the antibacterial and antifungal effects of the produced materials on Gram-positive, Gram-negative, and fungal bacterial species were studied. Nanoparticles with cerium doping showed effective antibacterial and antifungal properties. All samples were tested for bioactivity in simulated body fluid (SBF), and the formation of an apatite layer on their surfaces was highlighted using SEM in conjunction with energy-dispersive X-rays (EDX).Doxorubicin (DOX) release from Ce-HA nanoparticles and pure HA was tested in phosphate-buffered saline (PBS) for up to 28 days. Both nanoparticles were able to release the drug while still being semi-fully loaded. Similarly, the cytotoxic effect of all produced samples on the MG-63 cell line was evaluated, and all samples showed good cytocompatibility. The cytotoxic effect of doxorubicin-loaded nanoparticles showed promising anticancer activity against bone cancer cells, especially samples with high cerium content. The resulting nanoparticles show excellent promising ability for the delivery of doxorubicin to bone cancer with the capacity for bone regeneration.
Collapse
Affiliation(s)
- Mona Moaness
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.
| | - Sahar M Mousa
- Inorganic Chemistry Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mahmoud T Abo-Elfadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt; Cancer Biology and Genetics Laboratory Centre of Excellence for Advanced Sciences, National Research Centre, Cairo 12622, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
8
|
Reffaee A, Saied M, Hamieda SF, Amin SK. Fabrication of green anti-microbial and anti-static cement building bricks. Sci Rep 2024; 14:6313. [PMID: 38491047 PMCID: PMC10943018 DOI: 10.1038/s41598-024-56514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
The design cement mix of grade 350 was created in accordance with Egyptian Standards by partially substituting the fine aggregate with WPVC waste in various weight percentages (10, 20, 30, 40, 50, 75, and 100%). A control mix with 0% replacement was also prepared. The W/C ratio was about 0.5 for all mixes. Compressive, flexure strength, bulk density, and absorption tests were studied. For WPVC replacement, until 30%, compressive strength and flexure strength are acceptable with respect to standerds. Thermal treatment at 200 °C improves the compressive strength, flexure strength and water absorption for 20% WPVC only. The dielectric properties of all cement paste mixes before and after heat treatment, over a frequency range (0.1-106 Hz), were measured as a function of frequency. For dielectric properties and conductivity, an improvement was obtained until 30% WPVC. After this percentage, the dielectric properties and the conductivity got worse. So, cement paste with 30% WPVC as replacement of sand is the optimum ratio with conductivity in range of 10-12 S/cm, which is a good choice for antistatic cement paste applications (10-10-10-12 S/cm). The antimicrobial efficacy of the prepared cement samples of WPVC concentrations (0, 20 and 30) % were studied, the number of grown microbial colonies decreased for all the samples compared to control tap water and decreased by introducing WPVC into the cement paste sample. So, it is recommended to use these samples in places that should be carefully shielded from bacterial infections and static electric charge dangers.
Collapse
Affiliation(s)
- Abeer Reffaee
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt.
| | - Mona Saied
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt
| | - Shimaa Farag Hamieda
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt
| | - Sh K Amin
- Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre (NRC), Affiliation ID: 60014618, Giza, Egypt
| |
Collapse
|
9
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Potentiality of chitosan hybridized magnesium doped-hydroxyapatite (CH/Mg·HAP) for enhanced carrying of oxaliplatin: loading, release, kinetics, and cytotoxicity. NEW J CHEM 2024; 48:15008-15024. [DOI: 10.1039/d4nj02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Magnesium-enriched hydroxyapatite was synthesized and integrated with chitosan, forming a bio-compatible biocomposite (CH/Mg·HAP) to be applied as a carrier of oxaliplatin (OXN) with enhanced loading, release, and therapeutic activities.
Collapse
Affiliation(s)
- May N. Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I. Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
| | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
10
|
Sayed IR, Alfassam HE, El-Sayed MI, Abd El-Gaied IM, Allam AA, Abukhadra MR. Synthesis and characterization of chitosan hybridized zinc phosphate/hydroxyapatite core shell nanostructure and its potentiality as delivery system of oxaliplatin drug. Int J Biol Macromol 2024; 254:127734. [PMID: 37913876 DOI: 10.1016/j.ijbiomac.2023.127734] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/17/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
An advanced form of zinc phosphate/hydroxyapatite nanorods with a core-shell structure (ZPh/HPANRs) was made and then hybridized with chitosan polymeric chains to make a safe biocomposite (CH@ZPh/HPANRs) that improves the delivery structure of traditional oxaliplatin (OXPN) chemotherapy during the treatment of colorectal cancer cells. The qualifications of CH@ZPh/HPANRs in comparison with ZPh/HPANRs as a carrier for OXPN were followed based on loading, release, and cytotoxicity. CH@ZPh/HPANRs composite exhibits a notably higher OXPN loading capacity (321.75 mg/g) than ZPh/HPANRs (127.2 mg/g). The OXPN encapsulation processes into CH@ZPh/HPANRs display the isotherm behavior of the Langmuir model (R2 = 0.99) and the kinetic assumptions of pseudo-first-order kinetics (R2 > 0.89). The steric studies reflect a strong increment in the quantities of the free sites after the chitosan hybridization steps (Nm = 34.6 mg/g) as compared to pure ZPh/HPANRs (Nm = 18.7 mg/g). Also, the capacity of each site was enhanced to be loaded by 10 OXPN molecules (n = 9.3) in a vertical orientation. The OXPN loading energy into CH@ZPh/HPANRs (<40 KJ/mol) reflects physical loading reactions involving van der Waals forces and hydrogen bonding. The OXPN release profiles of CH@ZPh/HPANRs exhibit slow and controlled properties for about 140 h at pH 7.4 and 80 h at pH 5.5. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CH@ZPh/HPANRs particles display a considerable cytotoxic effect on the HCT-116 cancer cells (9.53 % cell viability), and their OXPN-loaded product shows a strong cytotoxic effect (1.83 % cell viability).
Collapse
Affiliation(s)
- Islam R Sayed
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Mohamed I El-Sayed
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | | | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt.
| |
Collapse
|
11
|
Abualsaud R, Gad MM. Highlights on Drug and Ion Release and Recharge Capacity of Antimicrobial Removable Prostheses. Eur J Dent 2023; 17:1000-1011. [PMID: 36574783 PMCID: PMC10756732 DOI: 10.1055/s-0042-1758788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article aimed to review the ion and drug release, recharge abilities, and antimicrobial properties of drug/ion-releasing removable prostheses, and to assess their capability in preventing and inhibiting denture stomatitis as well preventing caries and reversing carious lesions. Data was collected from published scientific papers listed in PubMed database from January 1975 to December 2021. English full-text articles, involving clinical or in vitro studies, focusing on removable prostheses and are concerned with drug/ion release and rechargeability as a way to prevent or inhibit denture stomatitis or dental caries were included. The relevant articles reported that ion- or drug-modified polymethylmethacrylate acts as a reservoir for these ions and drugs and is capable of releasing significant amounts with sustained release effect. Recharging of modified resin resulted in greater sustainability of ion and drug release, thus improving the long-term effects of protection against demineralization and reducing the adhesion of Streptococcus mutans and Candida albicans. Modifications of removable prostheses with rechargeable ions and drugs enhance remineralization, hinder demineralization, and reduce microbial adhesion in difficult-to-access areas. Selection of denture base for clinical use will consider its ability to act as an ion/drug reservoir that is capable of release and recharge.
Collapse
Affiliation(s)
- Reem Abualsaud
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
12
|
Albogamy NTS, Aboushoushah SF, Aljoud F, Organji H, Elbialy NS. Preparation and characterization of dextran-zein-curcumin nanoconjugate for enhancement of curcumin bioactivity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1891-1910. [PMID: 37000910 DOI: 10.1080/09205063.2023.2198389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Curcumin is one of the most important polyphenolic nutrients in pharmaceutical industries. Unfortunately, its poor solubility and bioavailability have hampered its clinical application. To improve curcumin solubility and bioavailability, a natural nanocarrier made from protein-polysaccharide conjugate has been developed. Following antisolvent precipitation method, zein (Z) nanoparticles coated with dextran sulphate (DS) have been fabricated as curcumin (C) nanocarrier (DSZCNPs). The physicochemical properties of the nanoconjugate were measured using different techniques. Morphologically, DSZCNPs appeared spherical and monodispersed in scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Curcumin encapsulation efficiency was ≈ 96%. DSZCNPs size was 180 nm and the polydispersity index value (PDI) 0.28. Zeta potential for DSZCNPs was -28.5 mV. DSZCNPs showed stability either for shelf storage (100 days) or at different pHs. Furthermore, DSZCNPs protected zein nanoparticles degradation in gastric environment and achieved controlled curcumin release in intestinal environment. DSZCNPs greatly enhanced the antioxidant activity of curcumin as demonstrated by DPPH assay. DSZCNPs had significant results in the reduction of colony forming unit (CFU%) against the tested microbes when compared with free curcumin. Also, the anticancer activity of DSZCNPs and free curcumin against hepatocellular carcinoma cells (HepG2) were assessed by MTT assay. IC50 for DSZCNPs was 13 µg/ml compared to 50 µg/ml for free curcumin indicating the therapeutic impact of DSZCNPs over free curcumin.Based on the above results, the developed zein-dextran nanocomplex exhibited high stability and improved the efficacy and bioactivity of curcumin suggesting its potential utility as nanovehicle for the hydrophobic drug curcumin.
Collapse
Affiliation(s)
- N T S Albogamy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physics Department, University College-Taraba, Taif University, Turbah, Kingdom of Saudi Arabia
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Aljoud
- Regenerative Medicine Unit-KFMRC, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Organji
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nihal S Elbialy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Alqahtani MD, Bin Jumah MN, Al-Hashimi A, Allam AA, Abukhadra MR, Bellucci S. Synthesis and Characterization of Methoxy-Exfoliated Montmorillonite Nanosheets as Potential Carriers of 5-Fluorouracil Drug with Enhanced Loading, Release, and Cytotoxicity Properties. Molecules 2023; 28:5895. [PMID: 37570864 PMCID: PMC10421137 DOI: 10.3390/molecules28155895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Natural bentonite clay (BE) underwent modification steps that involved the exfoliation of its layers into separated nanosheets (EXBE) and further functionalization of these sheets with methanol, forming methoxy-exfoliated bentonite (Mth/EXBE). The synthetically modified products were investigated as enhanced carriers of 5-fluorouracil as compared to raw bentonite. The modification process strongly induced loading properties that increased to 214.4 mg/g (EXBE) and 282.6 mg/g (Mth/EXBE) instead of 124.9 mg/g for bentonite. The loading behaviors were illustrated based on the kinetic (pseudo-first-order model), classic isotherm (Langmuir model), and advanced isotherm modeling (monolayer model of one energy). The Mth/EBE carrier displays significantly higher loading site density (95.9 mg/g) as compared to EXBE (66.2 mg/g) and BE (44.9 mg/g). The loading numbers of 5-Fu in each site of BE, EXBE, and Mth/EXBE (>1) reflect the vertical orientation of these loaded ions involving multi-molecular processes. The loading processes that occurred appeared to be controlled by complex physical and weak chemical mechanisms, considering both Gaussian energy (<8 KJ/mol) as well as loading energy (<40 KJ/mol). The releasing patterns of EXBE and Mth/EXBE exhibit prolonged and continuous properties up to 100 h, with Mth/EXBE displaying much faster behaviors. Based on the release kinetic modeling, the release reactions exhibit non-Fickian transport release properties, validating cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/BE (8.6% cell viability), 5-Fu/EXBE (2.21% cell viability), and 5-Fu/Mth/EXBE (0.73% cell viability).
Collapse
Affiliation(s)
- Mashael D. Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - May N. Bin Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Laboratory, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
14
|
Alqahtani MD, Bin Jumah MN, AlZahrani SA, Allam AA, Abukhadra MR, Bellucci S. Insights into the Effect of Chitosan and β-Cyclodextrin Hybridization of Zeolite-A on Its Physicochemical and Cytotoxic Properties as a Bio-Carrier for 5-Fluorouracil: Equilibrium and Release Kinetics Studies. Molecules 2023; 28:5427. [PMID: 37513298 PMCID: PMC10384421 DOI: 10.3390/molecules28145427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Synthetic zeolite-A (ZA) was hybridized with two different biopolymers (chitosan and β-cyclodextrin) producing biocompatible chitosan/zeolite-A (CS/ZA) and β-cyclodextrin/zeolite-A (CD/ZA) biocomposites. The synthetic composites were assessed as bio-carriers of the 5-fluorouracil drug (5-Fu) with enhanced properties, highlighting the impact of the polymer type. The hybridization by the two biopolymers resulted in notable increases in the 5-Fu loading capacities, to 218.2 mg/g (CS/ZA) and 291.3 mg/g (CD/ZA), as compared to ZA (134.2 mg/g). The loading behaviors using ZA as well as CS/ZA and CD/ZA were illustrated based on the classic kinetics properties of pseudo-first-order kinetics (R2 > 0.95) and the traditional Langmuir isotherm (R2 = 0.99). CD/ZA shows a significantly higher active site density (102.7 mg/g) in comparison to CS/ZA (64 mg/g) and ZA (35.8 mg/g). The number of loaded 5-Fu per site of ZA, CS/ZA, and CD/ZA (>1) validates the vertical ordering of the loaded drug ions by multi-molecular processes. These processes are mainly physical mechanisms based on the determined Gaussian energy (<8 kJ/mol) and loading energy (<40 kJ/mol). Both the CS/ZA and CD/ZA 5-Fu release activities display continuous and controlled profiles up to 80 h, with CD/ZA exhibiting much faster release. According to the release kinetics studies, the release processes contain non-Fickian transport release properties, suggesting cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/ZA (11.72% cell viability), 5-Fu/CS/ZA (5.43% cell viability), and 5-Fu/CD/ZA (1.83% cell viability).
Collapse
Affiliation(s)
- Mashael D Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - May N Bin Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saleha A AlZahrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
15
|
Taha SK, Hassan EA, Mousa S, El-Bassyouni GT, Shalash HN, Abdel Hamid MA. Biphasic calcium phosphate doped with zirconia nanoparticles for reconstruction of induced mandibular defects in dogs: cone-beam computed tomographic and histopathologic evaluation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:27. [PMID: 37204535 DOI: 10.1007/s10856-023-06731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
The present study aimed to evaluate osteogenic potential and biocompatibility of combining biphasic calcium phosphate with zirconia nanoparticles (4Zr TCP/HA) compared to biphasic calcium phosphate (TCP/HA) for reconstruction of induced mandibular defects in dog model. TCP/HA and 4Zr TCP/HA scaffolds were prepared. Morphological, physicochemical, antibacterial, cytocompatibility characterization were tested. In vivo application was performed in 12 dogs where three critical-sized mandibular defects were created in each dog. Bone defects were randomly allocated into: control, TCP/HA, and 4Zr TCP/HA groups. Bone density and bone area percentage were evaluated at 12 weeks using cone-beam computed tomographic, histopathologic, histomorphometric examination. Bone area density was statistically increased (p < 0.001) in TCP/HA and 4Zr TCP/HA groups compared to control group both in sagittal and coronal views. Comparing TCP/HA and 4Zr TCP/HA groups, the increase in bone area density was statistically significant in coronal view (p = 0.002) and sagittal view (p = 0.05). Histopathologic sections of TCP/HA group demonstrated incomplete filling of the defect with osteoid tissue. Doping with zirconia (4Zr TCP/HA group), resulted in statistically significant increase (p < 0.001) in bone formation (as indicated by bone area percentage) and maturation (as confirmed by Masson trichrome staining) compared to TCP/HA group. The newly formed bone was mature and organized with more trabecular thickness and less trabecular space in between. Physicochemical, morphological and bactericidal properties of combining zirconia and TCP/HA were improved. Combining zirconia and TCP/HA resulted in synergistic action with effective osteoinduction, osteoconduction and osteointegration suggesting its suitability to restore damaged bone in clinical practice.
Collapse
Affiliation(s)
- Said K Taha
- Surgery and Oral Medicine Department, Oral and Dental Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Elham A Hassan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Sahar Mousa
- Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Heba N Shalash
- Basic Dental Science Department, Oral and Dental Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed A Abdel Hamid
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
16
|
Gad MM, Abu-Rashid K, Alkhaldi A, Alshehri O, Khan SQ. Evaluation of the effectiveness of bioactive glass fillers against Candida albicans adhesion to PMMA denture base materials: An in vitro study. Saudi Dent J 2022; 34:730-737. [PMID: 36570574 PMCID: PMC9767839 DOI: 10.1016/j.sdentj.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Background Dentures with antimicrobial properties are desirable for preventing Candida albicans adhesion. This study was to assess the effectiveness of bioactive glass (BAG) on C. albicans adhesion, surface roughness, and hardness of denture base materials. Methods Heat-polymerized (HP) and autopolymerized (AP) acrylic resins were used to fabricate 240 disk specimens (120/material, 60/C. albicans, 60/surface roughness and hardness). Specimens were divided into five groups (n = 10) based on the BAG concentration: 0.5, 1.5, 3, 5, and 7.5 wt% of the acrylic powder, with a control group comprised of unmodified specimens. Direct culture method was used to assess C. albicans adhesion. A profilometer and Vickers hardness test were used to measure surface roughness and hardness respectively. Analysis of variance (ANOVA) and post hoc Tukey's test were used for data analysis (α = 0.05). Results BAG addition significantly decreased the C. albicans count when compared with the control group (P < 0.001) for both HP and AP. Regarding surface roughness, there was no change in the HP acrylic resins (P > 0.05), while the AP acrylic resins exhibited significantly higher surface roughness with BAG addition (P < 0.001). The hardness of the HP and AP acrylic resins were significantly higher with the addition of BAG (P < 0.001). Conclusions The addition of BAG to HP and AP acrylic resins effectively decreases C. albicans adhesion. The roughness of AP acrylic resins increases with the addition of BAG, while the hardness of both HP and AP acrylic resins increase with the addition of BAG.
Collapse
Affiliation(s)
- Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia,Corresponding author at: College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia. Phone number: 00966592502080.
| | - Khalid Abu-Rashid
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Adel Alkhaldi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Omar Alshehri
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soban Q. Khan
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
17
|
El-Bassyouni GT, Kenawy SH, El-Aty AAA, Hamzawy EM, Turky GM. Influence of ZnO doped into hydroxyapatite: Structural, electrical, biocompatibility, and antimicrobial assessment. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
de Barros Fernandes H, Ciriaco SL, Filgueiras LA, Costa Barros I, Menezes Carvalho AL, Lins Rolim HM, Nele de Souza M, Costa da Silva Pinto JC, Mendes AN, de Cássia Meneses Oliveira R. Gastroprotective effect of α-terpineol-loaded polymethyl methacrylate particles on gastric injury model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Mabrouk M, Taha SK, Abdel Hamid MA, Kenawy SH, Hassan EA, El-Bassyouni GT. Radiological evaluations of low cost wollastonite nano-ceramics graft doped with iron oxide in the treatment of induced defects in canine mandible. J Biomed Mater Res B Appl Biomater 2020; 109:1029-1044. [PMID: 33289320 DOI: 10.1002/jbm.b.34767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 02/01/2023]
Abstract
Wollastonite with/without maghemite [(Fe2O3), 0, 3 and 10 wt%] was prepared by facile wet precipitation method. Effect of Fe2O3 presence in the obtained nano-ceramics on physical structure, morphology, size and the mechanical features was evaluated using X-ray diffraction, transmission electron microscope, and universal testing machine. Moreover, the in vitro biomineralization was examined using simulated body fluid (SBF) by means of scanning electron microscope/energy dispersive X-ray, Fourier transform infrared, and inductively coupled plasma. An in vivo study was conducted on 24 adult male mongrel dogs to test the biosafety of fabricated samples in the reconstruction of experimentally induced mandibular bone defects. Bone density was measured through cone beam computed tomography analysis conducted at 1 and 3 months following surgery. Wollastonite was the main phase in all the prepared samples however little maghemite was developed in Fe-containing samples. No remarkable changes were recognized for physical structure of obtained microcrystalline structures, however, a decrease in particle size was noted in the existence of Fe2O3 (10-15 nm) when compared to the pure wollastonite (30-50 nm). Mechanical features were dependent on the included Fe2O3 concentration within the wollastonite ceramic matrix. The degree of biomineralization of the samples immersed in SBF was elevated with the increase in Fe2O3 percentage. Clinically, the reconstruction of bone defects was uneventful without any adverse toxic effect. Bone density was significantly increased at 1 and 3 months (p < .001) in grafted defects compared to control ones. Increasing the doping concentrations of iron oxide was associated with significant increase (p < .001) of bone density in all induced defects. Due to the impressive healing effect of current fabricated nano-ceramics, they are recommended to be utilized as low cost bone graft alternatives.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Giza, Egypt
| | - Said K Taha
- OMF surgeon researcher in Surgery and Oral Medicine Dept., Oral and Dental Researches Division, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A Abdel Hamid
- Department of Surgery, Anaesthesiology, and Radiology- Faculty of Veterinary Medicine, Cairo University- Giza, Egypt
| | - Sayed H Kenawy
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Elham A Hassan
- Department of Surgery, Anaesthesiology, and Radiology- Faculty of Veterinary Medicine, Cairo University- Giza, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|