1
|
Sun W, Ma S, Meng D, Wang C, Zhang J. Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 2025; 31:133. [PMID: 40116116 PMCID: PMC11948985 DOI: 10.3892/mmr.2025.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
The intestinal microbiota represents a diverse population that serves a key role in colorectal cancer (CRC) and its treatment outcomes. Advancements in sequencing have revealed notable shifts in microbial composition and diversity among individuals with CRC. Concurrently, animal models have elucidated the involvement of specific microbes such as Lactobacillus fragilis, Escherichia coli and Fusobacterium nucleatum in the progression of CRC. The present review aimed to highlight contributions of intestinal microbiota to the pathogenesis of CRC, the effects of traditional treatments on intestinal microbiota and the potential for microbiota modulation as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Shize Ma
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Dongdong Meng
- Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| |
Collapse
|
2
|
Sapkota H, Dasgupta S, Roy B, Pathan EK. Human Commensal Bacteria: Next-generation Pro- and Post-biotics for Anticancer Therapy. Front Biosci (Elite Ed) 2025; 17:26809. [PMID: 40150985 DOI: 10.31083/fbe26809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 03/29/2025]
Abstract
Cancer is a common, deadly disease with an unknown etiology. Meanwhile, current therapeutic options possess significant risks. However, probiotic bacteria and their metabolites have been reported to have antiproliferative and apoptotic effects on cancer cells. Therefore, because of their selective specificity and lack of treatment-associated comorbidities, these bacteria and their metabolites could be potential alternatives to conventional chemical and radiation therapies. Given their superior immunomodulatory and anti-cancer effects and lack of side effects, commensal bacteria derived from healthy humans are currently used as next-generation probiotics. This review summarizes current findings on these probiotic properties and anti-cancer activities of healthy human commensal bacteria. Additionally, the review focuses on small metabolites, proteins, and enzymes secreted by human commensal bacteria for their therapeutic applications against cancer. Further, utilizing a protein engineering strategy to reduce the toxicity of L-asparaginase, an enzyme-based anti-leukemia drug used for the last forty years, is also discussed. A possible workflow outline for isolating, identifying, screening, and characterizing human commensal bacterial strains for their therapeutic applications in cancer treatment is also proposed. This review emphasizes the need to explore various human commensal bacteria, not just mainstream lactic acid bacteria, for novel cancer therapeutics that provide multiple health benefits.
Collapse
Affiliation(s)
- Himal Sapkota
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), 412115 Pune, Maharashtra, India
| | - Subrata Dasgupta
- RIKEN Center for Biosystems Dynamics Research, 230-0045 Yokohama, Kanagawa, Japan
| | - Bishnudeo Roy
- Department of Biosciences and Technology, MIT World Peace University, 411038 Pune, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), 412115 Pune, Maharashtra, India
| |
Collapse
|
3
|
Wang G, Pan L, Guo R. Restoration of miR-200 expression suppresses proliferation and mobility of pancreatic cancer cell. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03717-0. [PMID: 39754677 DOI: 10.1007/s00210-024-03717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025]
Abstract
A number of various human malignancies have been associated with abnormal microRNAs (miRNA) expression. There are evidence that miR-200 operates as both tumor suppressor and an onco-miR in a variety of tumors. In this study, we evaluated the effects of miR-200 on the proliferation and migration of pancreatic cancer cells, as well as the underlying molecular pathways. Clinical tissue samples were used to investigate the expression of miR-200 in pancreatic cancer and normal tissues, and the gene expression omnibus (GEO) database provided bioinformatics confirmation. Using the pCMV vector, miR-200 was transfected into PANC-1 pancreatic cancer cells. After transfection, expression of cancer-related genes (at the mRNA and protein levels) was evaluated. The miR-200-transfected pancreatic cancer cells' survival, invasion, migration, and apoptosis were also investigated. According to the bioinformatics analysis, decreased miR-200 expression was associated with a worse prognosis in pancreatic cancer patients. Moreover, low levels of miR-200 in pancreatic cancer tissues were approved. After transfection, pancreatic cancer cells exhibit a sustained increase in expression of miR-200, which inhibits cell viability, invasion, and migration. Additional investigations revealed that increasing expression of miR-200 increases the proportion of pancreatic cancer cells that endure apoptosis. Changes in the mRNA and protein expression of apoptosis- and metastasis-related genes may account for these findings. Our results indicate that miR-200 functions as a tumor suppressor in pancreatic cancer cells and that upregulating miR-200 levels may be a useful therapeutic strategy for pancreatic cancer patients to halt the progression of the illness.
Collapse
Affiliation(s)
- Guiming Wang
- Department of General Surgery, NHC Key Laboratory of Hormones and Development and Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianji, 300134, China
| | - Lifeng Pan
- Department of General Surgery, NHC Key Laboratory of Hormones and Development and Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianji, 300134, China
| | - Rende Guo
- Department of General Surgery, Tianjin First Center Hospital, Tianji, 300384, China.
| |
Collapse
|
4
|
Xu Y, Wu X, Li Y, Liu X, Fang L, Jiang Z. Probiotics and the Role of Dietary Substrates in Maintaining the Gut Health: Use of Live Microbes and Their Products for Anticancer Effects against Colorectal Cancer. J Microbiol Biotechnol 2024; 34:1933-1946. [PMID: 39210613 PMCID: PMC11540615 DOI: 10.4014/jmb.2403.03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
The gut microbiome is an important and the largest endocrine organ linked to the microbes of the GI tract. The bacterial, viral and fungal communities are key regulators of the health and disease status in a host at hormonal, neurological, immunological, and metabolic levels. The useful microbes can compete with microbes exhibiting pathogenic behavior by maintaining resistance against their colonization, thereby maintaining eubiosis. As diagnostic tools, metagenomic, proteomic and genomic approaches can determine various microbial markers in clinic for early diagnosis of colorectal cancer (CRC). Probiotics are live non-pathogenic microorganisms such as lactic acid bacteria, Bifidobacteria, Firmicutes and Saccharomyces that can help maintain eubiosis when administered in appropriate amounts. In addition, the type of dietary intake contributes substantially to the composition of gut microbiome. The use of probiotics has been found to exert antitumor effects at preclinical levels and promote the antitumor effects of immunotherapeutic drugs at clinical levels. Also, modifying the composition of gut microbiota by Fecal Microbiota Transplantation (FMT), and using live lactic acid producing bacteria such as Lactobacillus, Bifidobacteria and their metabolites (termed postbiotics) can contribute to immunomodulation of the tumor microenvironment. This can lead to tumor-preventive effects at early stages and antitumor effects after diagnosis of CRC. To conclude, probiotics are presumably found to be safe to use in humans and are to be studied further to promote their appliance at clinical levels for management of CRC.
Collapse
Affiliation(s)
- Yi Xu
- Phase I Clinical Cancer Trial Center, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, P.R. China
| | - Xiahui Wu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222002, P.R. China
- Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang 222002, P.R. China
| | - Yan Li
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222002, P.R. China
- Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang 222002, P.R. China
| | - Xuejie Liu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222002, P.R. China
- Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang 222002, P.R. China
| | - Lijian Fang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222002, P.R. China
- Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang 222002, P.R. China
| | - Ziyu Jiang
- Phase I Clinical Cancer Trial Center, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, P.R. China
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222002, P.R. China
- Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang 222002, P.R. China
| |
Collapse
|
5
|
Al-Asfour A, Bhardwaj RG, Karched M. Growth Suppression of Oral Squamous Cell Carcinoma Cells by Lactobacillus Acidophilus. Int Dent J 2024; 74:1151-1160. [PMID: 38679518 PMCID: PMC11561490 DOI: 10.1016/j.identj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is a highly aggressive form of oral cancer. Probiotic lactobacilli have demonstrated anticancer effects, whilst their interaction with Streptococcus mutans in this context remains unexplored. The objective of this study was to investigate the antiproliferative effect of Lactobacillus acidophilus on OSCC and to understand the effect of S mutans on OSCCs and whether it affects the antiproliferative potential of L acidophilus when co-exposed to OSCC. METHODS The human head and neck squamous cell carcinoma cells of the oral cavity (HNO97 cell line) were exposed to cultures of L acidophilus and S mutans separately and in combination. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess the viability of HNO97 cells. Bacterial adhesion to HNO97 cells was examined by confocal microscopy and apoptosis by Nexin staining. To understand the underlying mechanism of apoptosis, expression of the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene and protein were determined by real-time polymerase chain reaction and quantitative enzyme-linked immunosorbent assay, respectively. RESULTS A significant decrease (53%-56%) in the viability of HNO97 cells on exposure to L acidophilus, S mutans, and the 2 species together demonstrated the antiproliferative activity of L acidophilus and S mutans. Both bacteria showed adhesion to HNO97 cells. The expression of the TRAIL gene increased 5-fold in HNO97 cells on treatment with L acidophilus and S mutans, which further increased to ∼17-fold with both species present. Expression levels of the TRAIL protein were significantly (P < .05) increased in bacteria-treated cell lysates. Further, bacteria-treated HNO97 cells exhibited lower live and intact cell percentages with higher proportions of cells in early and late apoptotic stages. CONCLUSIONS L acidophilus exhibits the antiproliferative activity against OSCC cells possibly partially via a TRAIL-induced mechanism of apoptosis, which is not affected by the presence of S mutans. These findings may encourage further investigation into the possible therapeutic application of probiotic L acidophilus in OSCC.
Collapse
Affiliation(s)
- Adel Al-Asfour
- Department of Surgical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait; Department of Biotechnology, School of Arts and Science, American International University, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
6
|
Victoria Obayomi O, Folakemi Olaniran A, Olugbemiga Owa S. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J Funct Foods 2024; 119:106337. [DOI: 10.1016/j.jff.2024.106337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
7
|
Vinothkanna A, Shi‐Liang X, Karthick Rajan D, Prathiviraj R, Sekar S, Zhang S, Wang B, Liu Z, Jia A. Feasible mechanisms and therapeutic potential of food probiotics to mitigate diabetes‐associated cancers: A comprehensive review and in silico validation. FOOD FRONTIERS 2024; 5:1476-1511. [DOI: 10.1002/fft2.406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractPeople with diabetes mellitus (DM) and hyperglycemia are linked with cancer risk. Diabetes and cancer have been corroborated by high morbidity and mortality rates. Studies revealed that elevated levels of insulin secretions trigger insulin‐like growth factor 1 (IGF‐1) production. Moreover, IGF‐1 is a key regulator involved in promoting cancer cell progression and is linked with DM. Cancer drug resistance and ototoxic effects can adversely affect the health and lifespan of an individual. However, naturally derived bioactive compounds are gaining attention for their nontoxic properties and specific behavior. Likewise, probiotics have also been regarded as safe and successful alternatives to treat DM‐linked cancers. The present review aims to highlight the therapeutic potential and feasible functions of probiotics to mitigate or inhibit DM‐associated cancers. Meanwhile, the intracellular signaling cascades involved in promoting DM‐linked cancer are enumerated for future prospective research. However, metabolomics interactions and protein–protein interactions are to be discussed for deeper insights into affirmative principles in diabetic‐linked cancers. Drug discovery and innovative preclinical evaluation need further adjuvant and immune‐enhancement therapies. Furthermore, the results of the in silico assessment could provide scientific excellence of IGF‐1 in diabetes and cancer. Overall, this review summarizes the mechanistic insights and therapeutic targets for diabetes‐associated cancer.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- School of Life and Health Sciences Hainan University Haikou China
| | - Xiang Shi‐Liang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences Central South University Changsha Hunan China
| | | | - Soundarapandian Sekar
- Department of Biotechnology Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences Central South University Changsha Hunan China
| | - Bo Wang
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
| | - Zhu Liu
- School of Life and Health Sciences Hainan University Haikou China
| | - Ai‐Qun Jia
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
| |
Collapse
|
8
|
Abedi A, Tafvizi F, Jafari P, Akbari N. The inhibition effects of Lentilactobacillus buchneri-derived membrane vesicles on AGS and HT-29 cancer cells by inducing cell apoptosis. Sci Rep 2024; 14:3100. [PMID: 38326490 PMCID: PMC10850327 DOI: 10.1038/s41598-024-53773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
In recent years, probiotics and their derivatives have been recognized as important therapeutic agents in the fight against cancer. Therefore, this study aimed to investigate the anticancer effects of membrane vesicles (MVs) from Lentilactobacillus buchneri strain HBUM07105 probiotic isolated from conventional and unprocessed yogurt in Arak province, Iran, against gastric and colon cancer cell lines. The MVs were prepared from the cell-free supernatant (CFS) of L. buchneri and characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) and SPS-PAGE techniques. The anticancer activity of MVs was evaluated using MTT, flow cytometry, qRT-PCR techniques, and a scratch assay. The study investigated the anti-adenocarcinoma effect of MVs isolated from L. buchneri on a human gastric adenocarcinoma cell line (AGS) and a human colorectal adenocarcinoma cell line (HT-29) at 24, 48, and 72-h time intervals. The results demonstrated that all prepared concentrations (12.5, 25, 50, 100, and 200 µg/mL) of MVs reduced the viability of both types of human adenocarcinoma cells after 24, 48, and 72 h of treatment. The analysis of the apoptosis results revealed that the percentage of AGS and HT-29 cancer cells in the early and late stages of apoptosis was significantly higher after 24, 48, and 72 h of treatment compared to the untreated cancer cells. After treating both AGS and HT-29 cells with the MVs, the cells were arrested in the G0/G1 phase. These microvesicles demonstrate apoptotic activity by increasing the expression of pro-apoptotic genes (BAX, CASP3, and CASP9). According to the scratch test, MVs can significantly decrease the migration of HT-29 and AGS cancer cells after 24, 48, and 72 h of incubation compared to the control groups. The MVs of L. buchneri can also be considered a potential option for inhibiting cancer cell activities.
Collapse
Affiliation(s)
- Adel Abedi
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran.
| | - Neda Akbari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
9
|
Aghaei E, Soltanzadeh H, Kohan L, Heiat M. Apatinib increases anticancer potential of doxorubicin in breast cancer cells. Mol Biol Rep 2023; 50:10137-10145. [PMID: 37921980 DOI: 10.1007/s11033-023-08860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND In recent years, drug resistance has become a most important challenge in chemotherapy of malignancies. Here, we investigated a novel approach to enhance therapeutic potential of doxorubicin (Dox as a common chemotherapeutic drug) by co-administration of apatinib (Apa as a monoclonal antibody) in breast cancer treatment. METHODS AND RESULTS Effects of Apa, Dox, and their combinations (Apa-Dox) were investigated on proliferation of MDA-MB-231 breast cancer cells by MTT assay. Moreover, migration and invasion of the treated and untreated control cancer cells were evaluated by scratch and transwell methods, respectively. Apoptosis percentage of the treated cancer cells was investigated by flow cytometry method. Finally, apoptosis-, metastasis-, and angiogenesis-related gene expression at mRNA and protein levels in the cancer cells were investigated by Real-Time PCR and western blotting methods, respectively. Our results indicated that treatments of cancer cells by Apa, Dox, and Apa-Dox significantly decrease proliferation, migration, and invasion of MDA-MB-231 breast cancer cells. Treatments of the breast cancer cells by Apa, Dox, and Apa-Dox significantly increase apoptosis percentage. We observed that anticancer effects of Apa, Dox, and Apa-Dox may due to modification of apoptosis-, metastasis-, and angiogenesis-related gene expression (at mRNA and protein level) in the breast cancer cells. However, anticancer potential of Apa-Dox combination was significantly more than Apa and Dox monotherapy. CONCLUSION We demonstrated that Apa significantly increases anticancer potential of Dox in MDA-MB-231 breast cells. However, further in-vitro, in-vivo, and clinical studies are required to confirm this result.
Collapse
Affiliation(s)
- Elnaz Aghaei
- Department of Biology, Faculty of Science, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Hossein Soltanzadeh
- Department of Genetics, Bonab Branch, Islamic Azad University, Bonab, Iran.
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Leila Kohan
- Department of Biology, Faculty of Science, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Disease (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Safavi R, Soltanzadeh H, Hojjati Bonab Z. Scrophularia amplexicaulis increases anti-cancer potential of doxorubicin in gastric cancer cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2741-2750. [PMID: 37471627 DOI: 10.1002/tox.23909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Increased drug resistance has reduced efficiency of chemotherapic drugs such as Doxorubicin (Dox). Scrophularia amplexicaulis (Scr) is one of the most important medicinal plants in Iran that has anti-cancer activity. The aim of this study was to investigate a novel approach to enhance therapeutic efficacy of Dox (as a chemotherapeutic agent) by co-administration of Scr (as a bioactive herbal compound) in gastric cancer treatment. In the present study, effects of Dox, Scr, and their combinations (Scr-Dox) were evaluated on viability and proliferation of two gastric cancer cell lines (AGS and MKN28). Moreover, morphological changes, invasion, migration, colony formation, and apoptosis rate in the treated cancer cells were evaluated. Expression of BAX, BCL2, SAMC, SURVIVIN, CASP9, P53, MMP9, and MMP2 in the treated cancer cells and untreated controls were evaluated by Real-Time PCR method. Treatments of cancer cells by Scr, Dox, and Scr-Dox significantly decreased proliferation, invasion, migration, and colony formation of gastric cancer cells. Treatments of cancer cells by Scr, Dox, and Scr-Dox significantly increased apoptosis rate as well as decreased cells mobility through modification of apoptosis- and metastasis-related genes expression. However, anti-cancer activity of Scr-Dox combination was significantly more than Scr and Dox treatments alone. In general, we demonstrated that Scr-Dox combination therapy exerts more profound anti-cancer effects on AGS and MKN28 cell lines than Scr and Dox monotherapy.
Collapse
Affiliation(s)
- Reza Safavi
- Department of Genetics, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Hossein Soltanzadeh
- Department of Genetics, Bonab Branch, Islamic Azad University, Bonab, Iran
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zahra Hojjati Bonab
- Department of Microbiology, Bonab Branch, Islamic Azad University, Bonab, Iran
| |
Collapse
|
11
|
Esmaeili H, Nasrollahzadeh Sabet M, Mosaed R, Chamanara M, Hadi S, Hazrati E, Farhadi A, Heidari MF, Behroozi J. Oleanolic acid increases the anticancer potency of doxorubicin in pancreatic cancer cells. J Biochem Mol Toxicol 2023; 37:e23426. [PMID: 37345903 DOI: 10.1002/jbt.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Combination therapy is a novel cancer therapy approach that combines two or more chemotherapy drugs. This treatment modality enhances the efficacy of chemotherapy by targeting key pathways in an additive or synergistic manner. Therefore, we investigated the efficacy of combination therapy by widely used chemotherapy drug doxorubicin (DOX) and oleanolic acid (OA) to induction of apoptosis for pancreatic cancer (PC) therapy. The effects of DOX, OA, and their combination (DOX-OA) were investigated on proliferation and viability of PC cell line (PANC-1) by MTT assay. Moreover, migration and invasion of the cancer cells were evaluated by trans-well migration assay and wound healing assay. Flow cytometry and DAPI (4',6-diamidino-2-phenylindole) staining were employed to investigate apoptosis quantification and qualification of the treated cancer cells. Finally, mRNA expression of apoptosis-related genes was assessed by quantitative real-time polymerase chain reaction. Our results demonstrated that the proliferation and metastasis potential of PC cells significantly decreased after treatment by DOX, OA, and DOX-OA. Moreover, we observed an increase in apoptosis percentage in the treated cancer cells. The apoptosis-related gene expression was modified to increase the apoptosis rate in all of the treatment groups. However, the anticancer potency of DOX-OA combination was significantly more than that of DOX and OA treatments alone. Our study suggested that DOX-OA combination exerts more profound anticancer effects against PC cell lines than DOX or OA monotherapy. This approach may increase the efficiency of chemotherapy and reduce unintended side effects by lowering the prescribed dose of DOX.
Collapse
Affiliation(s)
- Hosein Esmaeili
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehrdad Nasrollahzadeh Sabet
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Department of Clinical Pharmacy, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Clinical Pharmacy, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Saeid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ebrahim Hazrati
- Department of Anesthesiology and Critical Care, AJA University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Biotechnology, Faculty of Life Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Mohammad Foad Heidari
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Javad Behroozi
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Heiat M, Rezaei E, Gharechahi J, Abbasi M, Behroozi J, Abyazi MA, Baradaran B. Knockdown of SIX4 inhibits pancreatic cancer cells via apoptosis induction. Med Oncol 2023; 40:287. [PMID: 37656231 DOI: 10.1007/s12032-023-02163-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Sine oculis homeobox 4 (SIX4), a critical transcription factor modulating organ development, potentially participates in tumorigenesis through numerous pathways. Here, we investigated siRNA-mediated knockdown effects of SIX4 on pancreatic cancer cells and underlying molecular mechanisms. The expression of SIX4 in pancreatic cancer and adjacent tissues were investigated in clinical tissue samples and bioinformatically approved by gene expression omnibus (GEO) database. Appropriate siRNA transfected into PANC1 pancreatic cancer cells in order to SIX4 knockdown. The survival, migration, invasion, colony formation, mitochondrial membrane potential, apoptosis, autophagy, and cell cycle in the cancer cells were investigated after knockdown of SIX4. In addition, expression of genes involved in apoptosis and metastasis were assessed in the transfected cancer cells in mRNA and protein levels. High-throughput analysis using GEO database confirmed the overexpression of SIX4 in pancreatic cancer tissues by six independent pancreatic cancer microarrays. Knockdown of SIX4 by specific siRNA significantly decreased survival, colony formation, and mitochondrial membrane potential of the cancer cells. Further assessments demonstrated that knockdown of SIX4 increases the apoptosis and autophagy rates in the cancer cells through modifying the expression of related genes. Moreover, a significant decrease in migration and invasion rates were observed in SIX4 suppressed group. Furthermore, frequency of the cells transfected with SIX4 siRNA increased slightly in G1 and Sub-G1 phases of cell cycle. Our study suggested that siRNA-mediated knockdown of SIX4 increases the pancreatic cancer cells death and reduces the invasion and migration of the cancer cells through different molecular pathways.
Collapse
Affiliation(s)
- Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Rezaei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoumeh Abbasi
- Department of Microbiology, Malekan Branch, Islamic Azad University, Malekan, Iran
| | - Javad Behroozi
- Department of Genetics and Biotechnology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Abyazi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Gholghasht Ave, 5166614766, Tabriz, Iran.
| |
Collapse
|
13
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
14
|
Avcı CB, Sogutlu F, Pinar Ozates N, Shademan B, Gunduz C. Enhanced Anti-cancer Potency Using a Combination of Oleanolic Acid and Maslinic Acid to Control Treatment Resistance in Breast Cancer. Adv Pharm Bull 2023; 13:611-620. [PMID: 37646060 PMCID: PMC10460813 DOI: 10.34172/apb.2023.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/ mTOR) pathway is a complex intracellular metabolic pathway that leads to cell growth and tumor proliferation and plays a key role in drug resistance in breast cancer. Therefore, the anti-cancer effects of oleanolic acid (OA), maslinic acid (MA), and their combination were investigated to improve the performance of the treatment strategy. Methods We investigated the effect of OA and MA on cell viability using the WST-1 method. The synergistic effect of the combination was analyzed by isobologram analysis. In addition, the effects of the two compounds, individually and in combination, on apoptosis, autophagy, and the cell cycle were investigated in MCF7 cells. In addition, changes in the expression of PI3K/AKT/mTOR genes involved in apoptosis, cell cycle and metabolism were determined by quantitative RT-PCR. Results MA, OA, and a combination of both caused G0/G1 arrest. Apoptosis also increased in all treated groups. The autophagosomal LC3-II formation was induced 1.74-fold in the MA-treated group and 3.25-fold in the MA-OA-treated group. The combination treatment resulted in increased expression of genes such as GSK3B, PTEN, CDKN1B and FOXO3 and decreased expression of IGF1, PRKCB and AKT3 genes. Conclusion The results showed that the combination of these two substances showed the highest synergistic effect at the lowest dose and using MA-OA caused cancer cells to undergo apoptosis. The use of combination drugs may reduce the resistance of cancer cells to treatment.
Collapse
Affiliation(s)
- Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | | | | | | |
Collapse
|
15
|
Sojan JM, Licini C, Marcheggiani F, Carnevali O, Tiano L, Mattioli-Belmonte M, Maradonna F. Bacillus subtilis Modulated the Expression of Osteogenic Markers in a Human Osteoblast Cell Line. Cells 2023; 12:cells12030364. [PMID: 36766709 PMCID: PMC9913848 DOI: 10.3390/cells12030364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Several in vivo trials have previously demonstrated the beneficial effects of the administration of various probiotic forms on bone health. In this study, we explored the potency of two probiotics, Bacillus subtilis and Lactococcus lactis, alone or in combination with vitamin D (VD), to modulate the transcription of genes involved in the ossification process in a human osteoblast cell line. Genes that mark the "osteoblast proliferation phase", such as RUNX2, TGFB1, and ALPL, "extracellular matrix (ECM) maturation", such as SPP1 and SPARC, as well as "ECM mineralization", such as BGN, BGLAP, and DCN, were all highly expressed in osteoblasts treated with B. subtilis extract. The observed increase in the transcription of the ALPL mRNA was further in agreement with its protein levels as observed by Western blot and immunofluorescence. Therefore, this higher transcription and translation of alkaline phosphatase in osteoblasts treated with the B. subtilis extract, indicated its substantial osteogenic impact on human osteoblasts. Although both the probiotic extracts showed no osteogenic synergy with VD, treatment with B. subtilis alone could increase the ECM mineralization, outperforming the effects of L. lactis and even VD. Furthermore, these results supported the validity of employing probiotic extracts rather than live cells to investigate the effects of probiotics in the in vitro systems.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Caterina Licini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (O.C.); (F.M.); Tel.: +39-0712204990 (O.C.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (O.C.); (F.M.); Tel.: +39-0712204990 (O.C.)
| |
Collapse
|
16
|
Singh S, Singh M, Gaur S. Probiotics as multifaceted oral vaccines against colon cancer: A review. Front Immunol 2022; 13:1002674. [PMID: 36263037 PMCID: PMC9573965 DOI: 10.3389/fimmu.2022.1002674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics are known as the live microorganisms that, upon adequate administration, elicit a health beneficial response inside the host. The probiotics are known as immunomodulators and exhibit anti-tumor properties. Advanced research has explored the potential use of probiotics as the oral vaccines without the latent risks of pathogenicity. Probiotic-based oral vaccines are known to induce mucosal immunity that prevents the host from several enteric infections. Probiotic bacteria have the ability to produce metabolites in the form of anti-inflammatory cytokines, which play an important role in the prevention of carcinogenesis and in the activation of the phagocytes that eliminate the preliminary stage cancer cells. This review discusses the advantages and disadvantages of using the oral probiotic vaccines as well as the mechanism of action of probiotics in colon cancer therapy. This review also employs the use of “PROBIO” database for selecting certain probiotics with immunomodulatory properties. Furthermore, the use of several probiotic bacteria as anti-colon cancer adjuvants has also been discussed in detail. Because the current studies and trials are more focused on using the attenuated pathogens instead of using the probiotic-based vaccines, future studies must involve the advanced research in exploiting the potential of several probiotic strains as adjuvants in cancer therapies.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- *Correspondence: Smriti Gaur,
| |
Collapse
|
17
|
Shademan B, Masjedi S, Karamad V, Isazadeh A, Sogutlu F, Rad MHS, Nourazarian A. CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges. Biochem Genet 2022; 60:1446-1470. [PMID: 35092559 DOI: 10.1007/s10528-022-10193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
A novel gene editing tool, the Cas system, associated with the CRISPR system, is emerging as a potential method for genome modification. This simple method, based on the adaptive immune defense system of prokaryotes, has been developed and used in human cancer research. These technologies have tremendous therapeutic potential, especially in gene therapy, where a patient-specific mutation is genetically corrected to cure diseases that cannot be cured with conventional treatments. However, translating CRISPR/Cas9 into the clinic will be challenging, as we still need to improve the efficiency, specificity, and application of the technology. In this review, we will explain how CRISPR-Cas9 technology can treat cancer at the molecular level, focusing on ordination and the epigenome. We will also focus on the promise and shortcomings of this system to ensure its application in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
18
|
Farhoudi Sefidan Jadid M, Jahangirzadehd G, Behroozi J. Anti-proliferation effects of Apatinib in combination with Curcumin in breast cancer cells. Horm Mol Biol Clin Investig 2022; 44:27-32. [PMID: 36056785 DOI: 10.1515/hmbci-2022-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Despite remarkable development of new therapeutic strategies to improve survival rates and treatment of patients with cancer, there are still many limitations in management of patients with distant metastasis breast cancer. Therefore, the aim of this study was to investigate a novel method to enhance therapeutic efficacy of Apatinib (as a chemotherapeutic agent) by co-administration of Curcumin (as a bioactive herbal compound) in breast cancer treatment. METHODS Effects of Apatinib, Curcumin, and their combinations (Apa-Cur) was evaluated on viability and proliferation of breast cell line (MCF7) by MTT assay. Moreover, effects of Apatinib, Curcumin, and Apa-Cur was investigated on apoptosis rate in the cancer cells. Expression levels of apoptosis-related genes (BAX, SMAC, BCL2, and SURVIVIN) in treated cancer cells and untreated controls were evaluated using the Real-Time PCR method. RESULTS The obtained results showed that all treatments of Apatinib, Curcumin, and Apa-Cur significantly decreased viability and proliferation of the breast cancer cells in a concentration- and time-dependent manner. However, anti-proliferation activity of Apa-Cur combination was significantly higher than Apatinib and Curcumin treatment alone. In addition, Apatinib, Curcumin, and Apa-Cur increased apoptosis percentage in the treated cancer cells through regulation of apoptosis-related genes expression. CONCLUSIONS In general, Apa-Cur combination therapy exerts more profound anti-proliferation effects on breast cancer cell than Apatinib or Curcumin monotherapy. However, further studies are required to identify other possible signaling pathways and mechanisms involved in the anticancer effects of Apatinib, Curcumin, and Apa-Cur.
Collapse
Affiliation(s)
| | | | - Javad Behroozi
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran.,Department of Genetics and Advanced Medical Technology, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Sankarapandian V, Venmathi Maran BA, Rajendran RL, Jogalekar MP, Gurunagarajan S, Krishnamoorthy R, Gangadaran P, Ahn BC. An Update on the Effectiveness of Probiotics in the Prevention and Treatment of Cancer. Life (Basel) 2022; 12:59. [PMID: 35054452 PMCID: PMC8779143 DOI: 10.3390/life12010059] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics are living microbes that play a significant role in protecting the host in various ways. Gut microbiota is one of the key players in maintaining homeostasis. Cancer is considered one of the most significant causes of death worldwide. Although cancer treatment has received much attention in recent years, the number of people suffering from neoplastic syndrome continues to increase. Despite notable improvements in the field of cancer therapy, tackling cancer has been challenging due to the multiple properties of cancer cells and their ability to evade the immune system. Probiotics alter the immunological and cellular responses by enhancing the epithelial barrier and stimulating the production of anti-inflammatory, antioxidant, and anticarcinogenic compounds, thereby reducing cancer burden and growth. The present review focuses on the various mechanisms underlying the role of probiotics in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Vidya Sankarapandian
- Department of Microbiology, Srimad Andavan Arts and Science College, Bharathidasan University, Trichy 620005, India;
| | | | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Sridharan Gurunagarajan
- Department of Biochemistry, Srimad Andavan Arts and Science College, Bharathidasan University, Trichy 620005, India;
| | - Rajapandiyan Krishnamoorthy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 4545, Saudi Arabia;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
20
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Maleki MP, Soltanzade H, Tanomand A, Shahsavari G. The layered double hydroxide (LDH) nanosheets decrease anticancer potential of Satureja khuzestanica in HepG2 hepatocellular carcinoma cells. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|