1
|
Fuchs S, Caserto JS, Liu Q, Wang K, Shariati K, Hartquist CM, Zhao X, Ma M. A Glucose-Responsive Cannula for Automated and Electronics-Free Insulin Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403594. [PMID: 38639424 PMCID: PMC11223976 DOI: 10.1002/adma.202403594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Automated delivery of insulin based on continuous glucose monitoring is revolutionizing the way insulin-dependent diabetes is treated. However, challenges remain for the widespread adoption of these systems, including the requirement of a separate glucose sensor, sophisticated electronics and algorithms, and the need for significant user input to operate these costly therapies. Herein, a user-centric glucose-responsive cannula is reported for electronics-free insulin delivery. The cannula-made from a tough, elastomer-hydrogel hybrid membrane formed through a one-pot solvent exchange method-changes permeability to release insulin rapidly upon physiologically relevant varying glucose levels, providing simple and automated insulin delivery with no additional hardware or software. Two prototypes of the cannula are evaluated in insulin-deficient diabetic mice. The first cannula-an ends-sealed, subcutaneously inserted prototype-normalizes blood glucose levels for 3 d and controls postprandial glucose levels. The second, more translational version-a cannula with the distal end sealed and the proximal end connected to a transcutaneous injection port-likewise demonstrates tight, 3-d regulation of blood glucose levels when refilled twice daily. This proof-of-concept study may aid in the development of "smart" cannulas and next-generation insulin therapies at a reduced burden-of-care toll and cost to end-users.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Julia S. Caserto
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Kecheng Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Chase M. Hartquist
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Abstract
Type 1 diabetes mellitus is a common and highly morbid disease for which there is no cure. Treatment primarily involves exogenous insulin administration, and, under specific circumstances, islet or pancreas transplantation. However, insulin replacement alone fails to replicate the endocrine function of the pancreas and does not provide durable euglycemia. In addition, transplantation requires lifelong use of immunosuppressive medications, which has deleterious side effects, is expensive, and is inappropriate for use in adolescents. A bioartificial pancreas that provides total endocrine pancreatic function without immunosuppression is a potential therapy for treatment of type 1 diabetes. Numerous models are in development and take different approaches to cell source, encapsulation method, and device implantation location. We review current therapies for type 1 diabetes mellitus, the requirements for a bioartificial pancreas, and quantitatively compare device function.
Collapse
Affiliation(s)
- Sara J. Photiadis
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| | - Rebecca C. Gologorsky
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| | - Deepika Sarode
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Tschaikner M, Powell K, Jungklaus M, Fritz M, Ellmerer M, Hovorka R, Lane S, Pieber TR, Regittnig W. Novel Single-Site Device for Conjoined Glucose Sensing and Insulin Infusion: Performance Evaluation in Diabetes Patients During Home-Use. IEEE Trans Biomed Eng 2019; 67:323-332. [PMID: 31251175 DOI: 10.1109/tbme.2019.2925434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study evaluated a novel diabetes treatment device that combines commercially available continuous glucose monitoring and insulin infusion technology in such a way as to perform insulin delivery and glucose sensing through a single skin insertion site (single-port device). METHODS Ten type 1 diabetes patients used the device for up to six days in their home/work environment for open-loop insulin delivery and glucose sensing. On an additional day, the device was used in combination with an algorithm to perform automated closed-loop glucose control under hospital settings. To assess the performance of the device, capillary blood glucose concentrations were frequently determined and a continuous glucose sensor was additionally worn by the patients. RESULTS The average mean absolute relative deviation from blood glucose concentrations obtained for the sensor of the device was low (median, 13.0%; interquartile range, 10.5-16.7%; n = 10) and did not differ from that of the additionally worn glucose sensor (versus 13.9%; 11.9-15.3%; P = 0.922). Furthermore, insulin delivery with the single-port device was reliable and safe during home use and, when performed in combination with the control algorithm, was adequate to achieve and maintain near normoglycemia. CONCLUSION Our data show the feasibility of open- and closed-loop glucose control in diabetes patients using a device that combines insulin delivery and glucose sensing at a single tissue site. SIGNIFICANCE The reduction in device size and invasiveness achieved by this design may largely increase patient convenience and enhance acceptance of diabetes treatment with continuous glucose monitoring and insulin delivery technology.
Collapse
|
4
|
Verheyen CA, Morales L, Sussman J, Paunovska K, Manzoli V, Ziebarth NM, Tomei AA. Characterization of Polyethylene Glycol-Reinforced Alginate Microcapsules for Mechanically Stable Cell Immunoisolation. MACROMOLECULAR MATERIALS AND ENGINEERING 2019; 304:1800679. [PMID: 31929732 PMCID: PMC6953757 DOI: 10.1002/mame.201800679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 06/02/2023]
Abstract
Islet transplantation within mechanically stable microcapsules offers the promise of long-term diabetes reversal without chronic immunosuppression. Reinforcing the ionically gelled network of alginate (ALG) hydrogels with covalently linked polyethylene glycol (PEG) may create hybrid structures with desirable mechanical properties. This report describes the fabrication of hybrid PEG-ALG interpenetrating polymer networks and the investigation of microcapsule swelling, surface modulus, rheology, compression, and permeability. It is demonstrated that hybrid networks are more resistant to bulk swelling and compressive deformation and display improved shape recovery and long-term resilience. Interestingly, it is shown that PEG-ALG networks behave like ALG during microscale surface deformation and small amplitude shear while exhibiting similar permeability properties. The results from this report's in vitro characterization are interpreted according to viscoelastic polymer theory and provide new insight into hybrid hydrogel mechanical behavior. This new understanding of PEG-ALG mechanical performance is then linked to previous work that demonstrated the success of hybrid polymer immunoisolation devices in vivo.
Collapse
Affiliation(s)
- Connor A Verheyen
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Laura Morales
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Joshua Sussman
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Kalina Paunovska
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Vita Manzoli
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | - Noel M Ziebarth
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL-33146, USA
| | - Alice A Tomei
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
5
|
Hirayama M. Advances in Functional Restoration of the Lacrimal Glands. Invest Ophthalmol Vis Sci 2018; 59:DES174-DES182. [PMID: 30481824 DOI: 10.1167/iovs.17-23528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lacrimal glands produce tears to support a healthy homeostatic environment on the ocular surface. The lacrimal gland dysfunction characteristic of dry eye disease causes ocular discomfort and visual disturbances and in severe cases can result in a loss of vision. The demand for adequate restoration of lacrimal gland function has been intensified due to advances in stem cell biology, developmental biology, and bioengineering technologies. In addition to conventional therapies, including artificial tears, tear alternatives (such as autologous serum eye drops) and salivary gland transplantation, a regenerative medicine approach has been identified as a novel strategy to restore the function of the lacrimal gland. Recent studies have demonstrated the potential of progenitor cell injection therapy to repair the tissue of the lacrimal glands. A current three-dimensional (3D) tissue engineering technique has been shown to regenerate a secretory gland structure by reproducing reciprocal epithelial-mesenchymal interactions during ontogenesis in vitro and in vivo. A novel direct reprogramming method has suggested a possibility to induce markers in the lacrimal gland developmental process from human pluripotent stem cells. The development of this method is supported by advances in our understanding of gene expression and regulatory networks involved in the development and differentiation of the lacrimal glands. Engineering science has proposed a medical device to stimulate tearing and a bio-hybrid scaffold to reconstruct the 3D lacrimal gland structure. In this review, we will summarize recent bioengineering advances in lacrimal gland regeneration toward the functional restoration of the lacrimal glands as a future dry eye therapy.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States
| |
Collapse
|
6
|
Yang Y, Opara EC, Liu Y, Atala A, Zhao W. Microencapsulation of porcine thyroid cell organoids within a polymer microcapsule construct. Exp Biol Med (Maywood) 2016; 242:286-296. [PMID: 27708182 DOI: 10.1177/1535370216673746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hypothyroidism is a common condition of hormone deficiency, and oral administration of thyroid hormones is currently the only available treatment option. However, there are some disadvantages with this treatment modality including compliance challenges to patients. Therefore, a physiologically based alternative therapy for hypothyroidism with little or no side-effects is needed. In this study, we have developed a method for microencapsulating porcine thyroid cells as a thyroid hormone replacement approach. The hybrid wall of the polymer microcapsules permits thyroid hormone release while preventing immunoglobulin antibodies from entry. This strategy could potentially enable implantation of the microcapsule organoids containing allogeneic or xenogeneic thyroid cells to secret hormones over time without the need for immunosuppression of recipients. Porcine thyroid cells were isolated and encapsulated in alginate-poly-L-ornithine-alginate microcapsules using a microfluidic device. The porcine thyroid cells formed three-dimensional follicular spheres in the microcapsules with decent cell viability and proliferation. Thyroxine release from the encapsulated cells was higher than from unencapsulated cells ( P < 0.05) and was maintained during the entire duration of experiment (>28 days). These results suggest that the microencapsulated thyroid cell organoids may have the potential to be used for therapy and/or drug screening.
Collapse
Affiliation(s)
- Yipeng Yang
- 1 General Surgery Department and Laboratory of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Emmanuel C Opara
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Yingbin Liu
- 1 General Surgery Department and Laboratory of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Anthony Atala
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Weixin Zhao
- 2 Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.,3 Co-Innovation Center of Neuro-regeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Hirayama M, Kawakita T, Tsubota K, Shimmura S. Challenges and Strategies for Regenerating the Lacrimal Gland. Ocul Surf 2015; 14:135-43. [PMID: 26738799 DOI: 10.1016/j.jtos.2015.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 02/04/2023]
Abstract
The lacrimal gland produces the aqueous component of tears, including electrolytes, peptides, and glycoproteins necessary to maintain homeostasis and optical properties of the ocular surface. Stem cells that contribute to the homeostasis of the lacrimal gland are under extensive study. It is still unclear whether such stem cells are of mesenchymal or epithelial origin. It is also possible that a unique epithelial stem cell undergoes epithelial-mesenchymal transition and contributes to the mesenchyme. Developmental studies in mice have shown that a network of growth factors contributes to epithelial-mesenchymal interaction during morphogenesis of the lacrimal gland. Recently, the developmental process was successfully recapitulated in vitro, providing a valuable tool for study of lacrimal gland development and possibly opening doors to regenerative therapy. While further studies are required to identify and appreciate the potential of lacrimal gland stem cells, advances in stem cell biology in general should become a catalyst towards developing regenerative therapy of the lacrimal gland.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Kawakita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Bioengineered Lacrimal Gland Organ Regeneration in Vivo. J Funct Biomater 2015; 6:634-49. [PMID: 26264034 PMCID: PMC4598675 DOI: 10.3390/jfb6030634] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/18/2015] [Accepted: 07/23/2015] [Indexed: 12/23/2022] Open
Abstract
The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear eye drops, are transient and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions during embryogenesis. Lacrimal tissue stem cells have been identified for use in regenerative therapeutic approaches aimed at restoring lacrimal gland functions. Fully functional organ replacement, such as for tooth and hair follicles, has also been developed via a novel three-dimensional stem cell manipulation, designated the Organ Germ Method, as a next-generation regenerative medicine. Recently, we successfully developed fully functional bioengineered lacrimal gland replacements after transplanting a bioengineered organ germ using this method. This study represented a significant advance in potential lacrimal gland organ replacement as a novel regenerative therapy for dry eye disease. In this review, we will summarize recent progress in lacrimal regeneration research and the development of bioengineered lacrimal gland organ replacement therapy.
Collapse
|
10
|
Pareta R, McQuilling JP, Sittadjody S, Jenkins R, Bowden S, Orlando G, Farney AC, Brey EM, Opara EC. Long-term function of islets encapsulated in a redesigned alginate microcapsule construct in omentum pouches of immune-competent diabetic rats. Pancreas 2014; 43:605-13. [PMID: 24681880 PMCID: PMC3981909 DOI: 10.1097/mpa.0000000000000107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Our study aim was to determine encapsulated islet graft viability in an omentum pouch and the effect of fibroblast growth factor 1 (FGF-1) released from our redesigned alginate microcapsules on the function of the graft. METHODS Isolated rat islets were encapsulated in an inner core made with 1.5% low-viscosity-high-mannuronic-acid alginate followed by an external layer made with 1.25% low-viscosity high-guluronic acid alginate with or without FGF-1, in microcapsules measuring 300 to 400 µm in diameter. The 2 alginate layers were separated by a perm-selective membrane made with 0.1% poly-L-ornithine, and the inner low-viscosity-high-mannuronic-acid core was partially chelated using 55 mM sodium citrate for 2 minutes. RESULTS A marginal mass of encapsulated islet allografts (∼2000 islets/kg) in streptozotocin-diabetic Lewis rats caused significant reduction in blood glucose levels similar to the effect observed with encapsulated islet isografts. Transplantation of alloislets coencapsulated with FGF-1 did not result in better glycemic control, but induced greater body weight maintenance in transplant recipients compared with those that received only alloislets. Histological examination of the retrieved tissue demonstrated morphologically and functionally intact islets in the microcapsules, with no signs of fibrosis. CONCLUSIONS We conclude that the omentum is a viable site for encapsulated islet transplantation.
Collapse
Affiliation(s)
- Rajesh Pareta
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John P McQuilling
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sivanandane Sittadjody
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Randy Jenkins
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen Bowden
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alan C Farney
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
11
|
Colton CK. Oxygen supply to encapsulated therapeutic cells. Adv Drug Deliv Rev 2014; 67-68:93-110. [PMID: 24582600 DOI: 10.1016/j.addr.2014.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic cells encapsulated in immunobarrier devices have promise for treatment of a variety of human diseases without immunosuppression. The absence of sufficient oxygen supply to maintain viability and function of encapsulated tissue has been the most critical impediment to progress. Within the framework of oxygen supply limitations, we review the major issues related to development of these devices, primarily in the context of encapsulated islets of Langerhans for treating diabetes, including device designs and materials, supply of tissue, protection from immune rejection, and maintenance of cell viability and function. We describe various defensive measures investigated to enhance survival of transplanted tissue, and we review the diverse approaches to enhancement of oxygen transport to encapsulated tissue, including manipulation of diffusion distances and oxygen permeability of materials, induction of neovascularization with angiogenic factors and vascularizing membranes, and methods for increasing the oxygen concentration adjacent to encapsulated tissue so as to exceed that in the microvasculature. Recent developments, particularly in this latter area, suggest that the field is ready for clinical trials of encapsulated therapeutic cells to treat diabetes.
Collapse
|
12
|
Abstract
Current approaches for the development of regenerative therapies have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. The ultimate goal of regenerative therapy is to develop fully functioning bioengineered organs to replace lost or damaged organs that result from disease, injury, or aging. Almost all organs including ectodermal organs, such as teeth, hair, salivary glands, and lacrimal glands, arise from organ germs induced by reciprocal epithelial-mesenchymal interactions in the developing embryo. A novel concept to generate a bioengineered organ is to recreate organogenesis and thereby develop fully functioning bioengineered organs from the resulting bioengineered organ germ generated via 3-dimensional cell manipulation using immature stem cells in vitro. We have previously developed a bioengineering method for forming a 3-dimensional organ germ in the early developmental stages, termed the "bioengineered organ germ method." Recently, we reported fully functioning bioengineered tooth replacements after transplantation of a bioengineered tooth germ or a mature tooth unit comprising the bioengineered tooth and periodontal tissues. This concept could be adopted to generate not only teeth but also bioengineered hair follicles, salivary glands, and lacrimal glands. These studies emphasize the potential for bioengineered organ replacement in future regenerative therapies. In this review, we will summarize the strategies and the recent progress of research and development for the establishment of organ replacement regenerative therapies.
Collapse
|
13
|
Seita M, Noguchi H, Kubota Y, Kawamoto H, Nakaji S, Kobayashi N, Fujiwara T. Development of Canine Models of Type 1 Diabetes With Partial Pancreatectomy and the Administration of Streptozotocin. CELL MEDICINE 2013; 6:25-31. [PMID: 26858877 DOI: 10.3727/215517913x674289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We created canine models of type 1 diabetes that were suitable for the assessment of cell therapies, such as islet transplantation and bioartificial pancreas, with low-dose streptozotocin (STZ) injection and partial pancreatectomy. In our model, a 50% pancreatectomy was performed with general anesthesia, followed by systemic injection of 35 mg/kg STZ into a vein of the foreleg. Four weeks after the administration of STZ, the fasting blood glucose level of our model dogs was found to be over 200 mg/dl twice on different days, and we could not detect any canine insulin by the intravenous glucose tolerance test (IVGTT). We therefore diagnosed the dogs to have induced diabetes. Some studies have reported high-dose STZ to be very toxic for both the kidney and liver, and therefore a lower dose is desirable to induce diabetic models without any associated kidney or liver damage. We think that the combination of a partial pancreatectomy can thus make it possible to reduce the dose of STZ, and it is therefore useful for the creation of type 1 diabetes models. We believe that our model is a safe and reliable model for type 1 diabetes in canines to assess the efficacy of pancreas-targeted cell therapies.
Collapse
Affiliation(s)
- Masayuki Seita
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hirofumi Noguchi
- † Department of Surgery, Clinical Research Center, Chiba-East National Hospital, National Hospital Organization , Chiba , Japan
| | - Yasuhiro Kubota
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hironobu Kawamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Shuhei Nakaji
- ‡ Department of Biomedical Engineering, School of Engineering, Okayama University of Science , Okayama , Japan
| | - Naoya Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|
14
|
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | |
Collapse
|
15
|
Tsuji T. Bioengineering of Functional Teeth. STEM CELLS IN CRANIOFACIAL DEVELOPMENT AND REGENERATION 2013:447-459. [DOI: 10.1002/9781118498026.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Buchwald P, Cechin SR. Glucose-stimulated insulin secretion in isolated pancreatic islets: Multiphysics FEM model calculations compared to results of perifusion experiments with human islets. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.65a006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Domínguez-Bendala J, Ricordi C. Present and future cell therapies for pancreatic beta cell replenishment. World J Gastroenterol 2012; 18:6876-84. [PMID: 23322984 PMCID: PMC3531670 DOI: 10.3748/wjg.v18.i47.6876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.
Collapse
|
18
|
Dong H, Fahmy TM, Metcalfe SM, Morton SL, Dong X, Inverardi L, Adams DB, Gao W, Wang H. Immuno-isolation of pancreatic islet allografts using pegylated nanotherapy leads to long-term normoglycemia in full MHC mismatch recipient mice. PLoS One 2012; 7:e50265. [PMID: 23227162 PMCID: PMC3515593 DOI: 10.1371/journal.pone.0050265] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/18/2012] [Indexed: 01/16/2023] Open
Abstract
Two major hurdles need to be surmounted for cell therapy for diabetes: (i) allo-immune rejection of grafted pancreatic islets, or stem/precursor cell-derived insulin-secreting cells; and (ii) continuing auto-immunity against the diabetogenic endogenous target antigen. Nanotherapeutics offer a novel approach to overcome these problems and here we ask if creation of “stealth” islets encapsulated within a thin cage of pegylated material of 100–200 nanometers thick provides a viable option for islet transplantation. The aims of this study were to test islet viability and functionality following encapsulation within the pegylated cage, and functional efficacy in vivo in terms of graft-derived control of normoglycemia in diabetic mice. We first demonstrated that pegylation of the islet surface, plus or minus nanoparticles, improved long-term islet viability in vitro compared to non-pegylated (naked) control islets. Moreover, pegylation of the islets with nanoparticles was compatible with glucose-stimulated insulin secretion and insulin biogenesis. We next looked for functionality of the created “stealth” DBA/2 (H-2d) islets in vivo by comparing glycemic profiles across 4 groups of streptozotozin-induced diabetic C57BL/6 (H-2b) recipients of (i) naked islets; (ii) pegylated islets; (iii) pegylated islets with nanoparticles (empty); and (iv) pegylated islets with nanoparticles loaded with a cargo of leukemia inhibitory factor (LIF), a factor both promotes adaptive immune tolerance and regulates pancreatic β cell mass. Without any other treatment, normoglycemia was lost after 17 d (+/−7.5 d) in control group. In striking contrast, recipients in groups (ii), (iii), and (iv) showed long-term (>100 d) normoglycemia involving 30%; 43%, and 57% of the recipients in each respective group. In conclusion, construction of “stealth” islets by pegylation-based nanotherapeutics not only supports islet structure and function, but also effectively isolates the islets from immune-mediated destruction. The added value of nanoparticles to deliver immune modulators plus growth factors such as LIF expands the potential of this novel therapeutic approach to cell therapy for diabetes.
Collapse
Affiliation(s)
- Huansheng Dong
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tarek M. Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Su M. Metcalfe
- Brain Repair Centre, Department of Neurology, University of Cambridge. Cambridge, United Kingdom
| | - Steve L. Morton
- National Center for Coastal Ocean Science, Charleston, South Carolina, United States of America
| | - Xiao Dong
- College of Life Science, Qingdao Agricultural University, Qingdao, P.R. China
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - David B. Adams
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, Massachusetts, United States of America
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Lysy PA, Weir GC, Bonner-Weir S. Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Transl Med 2012. [PMID: 23197762 DOI: 10.5966/sctm.2011-0025] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The replacement of functional pancreatic β-cells is seen as an attractive potential therapy for diabetes, because diabetes results from an inadequate β-cell mass. Inducing replication of the remaining β-cells and new islet formation from progenitors within the pancreas (neogenesis) are the most direct ways to increase the β-cell mass. Stimulation of both replication and neogenesis have been reported in rodents, but their clinical significance must still be shown. Because human islet transplantation is limited by the scarcity of donors and graft failure within a few years, efforts have recently concentrated on the use of stem cells to replace the deficient β-cells. Currently, embryonic stem cells and induced pluripotent stem cells achieve high levels of β-cell differentiation, but their clinical use is still hampered by ethical issues and/or the risk of developing tumors after transplantation. Pancreatic epithelial cells (duct, acinar, or α-cells) represent an appealing alternative to stem cells because they demonstrate β-cell differentiation capacities. Yet translation of such capacity to human cells after significant in vitro expansion has yet to be achieved. Besides providing new β-cells, cell therapy also has to address the question on how to protect the transplanted cells from destruction by the immune system via either allo- or autoimmunity. Encouraging developments have been made in encapsulation and immunomodulation techniques, but many challenges still remain. Herein, we discuss recent advances in the search for β-cell replacement therapies, current strategies for circumventing the immune system, and mandatory steps for new techniques to be translated from bench to clinics.
Collapse
Affiliation(s)
- Philippe A Lysy
- Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
20
|
Basta G, Calafiore R. Immunoisolation of pancreatic islet grafts with no recipient's immunosuppression: actual and future perspectives. Curr Diab Rep 2011; 11:384-91. [PMID: 21826429 DOI: 10.1007/s11892-011-0219-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In spite of steady and remarkable progress, islet transplantation in patients with type 1 diabetes mellitus (T1DM) continues to face two major bottlenecks: inadequate availability of human pancreatic donors and necessity to totally immunosuppress the graft recipients lifelong. Microencapsulation of the islet grafts within highly biocompatible and selective permeable biomembranes could obviate use of the immunosuppressants, while potentially offering the opportunity to use a wide array of insulin-producing cells, in active development, including xenogeneic pig islets. Although macrodevices and microcapsules, which essentially differ by size/configuration, and both serve for immunoisolation devices, have been used for many years with initial human applications, new products on development in both areas might open new perspectives for more focused use in patients with T1DM. Physical-chemical properties and material engineering of these devices are critically reviewed to assess where we actually stand and where the future expansion of these technologies may go.
Collapse
Affiliation(s)
- Giuseppe Basta
- Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, via Enrico dal Pozzo, snc, Perugia, Italy.
| | | |
Collapse
|
21
|
Buchwald P. A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets. Theor Biol Med Model 2011; 8:20. [PMID: 21693022 PMCID: PMC3138450 DOI: 10.1186/1742-4682-8-20] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/21/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Because insulin is the main regulator of glucose homeostasis, quantitative models describing the dynamics of glucose-induced insulin secretion are of obvious interest. Here, a computational model is introduced that focuses not on organism-level concentrations, but on the quantitative modeling of local, cellular-level glucose-insulin dynamics by incorporating the detailed spatial distribution of the concentrations of interest within isolated avascular pancreatic islets. METHODS All nutrient consumption and hormone release rates were assumed to follow Hill-type sigmoid dependences on local concentrations. Insulin secretion rates depend on both the glucose concentration and its time-gradient, resulting in second-and first-phase responses, respectively. Since hypoxia may also be an important limiting factor in avascular islets, oxygen and cell viability considerations were also built in by incorporating and extending our previous islet cell oxygen consumption model. A finite element method (FEM) framework is used to combine reactive rates with mass transport by convection and diffusion as well as fluid-mechanics. RESULTS The model was calibrated using experimental results from dynamic glucose-stimulated insulin release (GSIR) perifusion studies with isolated islets. Further optimization is still needed, but calculated insulin responses to stepwise increments in the incoming glucose concentration are in good agreement with existing experimental insulin release data characterizing glucose and oxygen dependence. The model makes possible the detailed description of the intraislet spatial distributions of insulin, glucose, and oxygen levels. In agreement with recent observations, modeling also suggests that smaller islets perform better when transplanted and/or encapsulated. CONCLUSIONS An insulin secretion model was implemented by coupling local consumption and release rates to calculations of the spatial distributions of all species of interest. The resulting glucose-insulin control system fits in the general framework of a sigmoid proportional-integral-derivative controller, a generalized PID controller, more suitable for biological systems, which are always nonlinear due to the maximum response being limited. Because of the general framework of the implementation, simulations can be carried out for arbitrary geometries including cultured, perifused, transplanted, and encapsulated islets.
Collapse
Affiliation(s)
- Peter Buchwald
- Diabetes Research Institute and the Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
22
|
Cattaneo AG, Gornati R, Sabbioni E, Chiriva-Internati M, Cobos E, Jenkins MR, Bernardini G. Nanotechnology and human health: risks and benefits. J Appl Toxicol 2011; 30:730-44. [PMID: 21117037 DOI: 10.1002/jat.1609] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology is expected to be promising in many fields of medical applications, mainly in cancer treatment. While a large number of very attractive exploitations open up for the clinics, regulatory agencies are very careful in admitting new nanomaterials for human use because of their potential toxicity. The very active research on new nanomaterials that are potentially useful in medicine has not been counterbalanced by an adequate knowledge of their pharmacokinetics and toxicity. The different nanocarriers used to transport and release the active molecules to the target tissues should be treated as additives, with potential side effects of themselves or by virtue of their dissolution or aggregation inside the body. Only recently has a systematic classification of nanomaterials been proposed, posing the basis for dedicated modeling at the nanoscale level. The use of in silico methods, such as nano-QSAR and PSAR, while highly desirable to expedite and rationalize the following stages of toxicological research, are not an alternative, but an introduction to mandatory experimental work.
Collapse
Affiliation(s)
- Anna Giulia Cattaneo
- Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Stiegler P, Matzi V, Pierer E, Hauser O, Schaffellner S, Renner H, Greilberger J, Aigner R, Maier A, Lackner C, Iberer F, Smolle-Jüttner FM, Tscheliessnigg K, Stadlbauer V. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation 2011; 17:379-90. [PMID: 20955294 DOI: 10.1111/j.1399-3089.2010.00606.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Transplanted cells, especially islet cells, are likely to become apoptotic due to local hypoxia leading to graft dysfunction. Isolated pancreatic islet cells depend on the diffusion of oxygen from the surrounding tissue; therefore, access to sufficient oxygen supply is beneficial, particularly when microcapsules are used for immunoisolation in xenotransplantation. The aim of this study was to create a prevascularized site for cell transplantation in rats and test its effectiveness with microencapsulated HEK293 cells. METHODS The combination of implantation of a foam dressing, vacuum-assisted wound closure (foam+VAC) and hyperbaric oxygenation (HBO) was used in 40 Sprague-Dawley rats. Blood flow and vascular endothelial growth factor (VEGF) levels were determined. Sodium cellulose sulphate (SCS)-microencapsulated HEK293 cells were xenotransplanted into the foam dressing in rats pre-treated with HBO, and angiogenesis and apoptosis were assessed. RESULTS Vessel ingrowth and VEGF levels increased depending on the duration of HBO treatment. The area containing the foam was perfused significantly better in the experimental groups when compared to controls. Only a small amount of apoptosis occurs in SCS-microencapsulated HEK293 cells after xenotransplantation. CONCLUSION As ischemia-damaged cells are likely to undergo cell death or loose functionality due to hypoxia, therefore leading to graft dysfunction, the combination foam+VAC and HBO might be a promising method to create a prevascularized site to achieve better results in xenogeneic cell transplantation.
Collapse
Affiliation(s)
- Philipp Stiegler
- Department of Surgery, Division of Transplantation Surgery, Medical University Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The promise of islet transplantation for type 1 diabetes has been hampered by the lack of a renewable source of insulin-producing cells. However, steadfast advances in the field have set the stage for stem cell-based approaches to take over in the near future. This review focuses on the most intriguing findings reported in recent years, which include not only progress in adult and embryonic stem cell differentiation, but also the direct reprogramming of nonendocrine tissues into insulin-producing beta cells. RECENT FINDINGS In spite of their potential for tumorigenesis, human embryonic stem (hES) cells are poised to be in clinical trials within the next decade. This situation is mainly due to the preclinical success of a differentiation method that recapitulates beta cell development. In contrast, adult stem cells still need one such gold standard of differentiation, and progress is somewhat impeded by the lack of consensus on the best source. A concerted effort is necessary to bring their potential to clinical fruition. In the meantime, reported success in reprogramming might offer a 'third way' towards the rescue of pancreatic endocrine function. SUMMARY Here we discuss the important strategic decisions that need to be made in order to maximize the therapeutic chances of each of the presented approaches.
Collapse
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine; 1450 NW 10 Ave, Miami, FL 33136
- Department of Surgery, University of Miami Miller School of Medicine
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine; 1450 NW 10 Ave, Miami, FL 33136
- Department of Medicine, University of Miami Miller School of Medicine
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine; 1450 NW 10 Ave, Miami, FL 33136
- Department of Surgery, University of Miami Miller School of Medicine
| |
Collapse
|
25
|
Affiliation(s)
- Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Florida, USA.
| | | |
Collapse
|
26
|
Yechoor V, Chan L. Minireview: beta-cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation. Mol Endocrinol 2010; 24:1501-11. [PMID: 20219891 DOI: 10.1210/me.2009-0311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta-cell failure underlies type 1 diabetes; it also contributes in an essential way to type 2 diabetes. beta-Cell replacement is an important component of any cure for diabetes. The current options of islet and pancreas transplantation are not satisfactory as definitive forms of therapy. Here, we review strategies for induced de novo pancreatic beta-cell formation, which depend on the targeted differentiation of cells into pancreatic beta-cells. With this objective in mind, one can manipulate the fate of three different types of cells: 1) from terminally differentiated cells, e.g. exocrine pancreatic cells, into beta-cells; 2) from multipotent adult stem cells, e.g. hepatic oval cells, into pancreatic islets; and 3) from pluripotent stem cells, e.g. embryonic stem cells and induced pluripotent stem cells, into beta-cells. We will examine the pros and cons of each strategy as well as the hurdles that must be overcome before these approaches to generate new beta-cells will be ready for clinical application.
Collapse
Affiliation(s)
- Vijay Yechoor
- One Baylor Plaza, R614, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
27
|
Yang KC, Wu CC, Lin SC, Sumi S, Lin FH. The in vivo performance of bioartificial pancreas in bone marrow cavity: A case report of a spontaneous diabetic feline. Biochem Biophys Res Commun 2010; 393:362-4. [DOI: 10.1016/j.bbrc.2009.12.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/24/2009] [Indexed: 11/26/2022]
|
28
|
Mayhew CN, Wells JM. Converting human pluripotent stem cells into beta-cells: recent advances and future challenges. Curr Opin Organ Transplant 2010; 15:54-60. [PMID: 19855279 PMCID: PMC2832838 DOI: 10.1097/mot.0b013e3283337e1c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW The transplantation of insulin-producing beta-cells derived from human embryonic stem cells and induced pluripotent stem cells (collectively termed pluripotent stem cells or PSCs) holds great promise for therapy of diabetes mellitus. The purpose of this review is to summarize recent advances in this area, emphasizing the importance of studies of endocrine pancreas development in efforts to direct PSC differentiation into endocrine cells, as well as to outline the major challenges remaining before transplantation of PSC-derived beta-cells can become a reality. RECENT FINDINGS Although several protocols to generate glucose-responsive pancreatic beta-cells in vitro have been described, the most successful approaches are those that most closely mimic embryonic development of the endocrine pancreas. Until recently, cells generated by these methods have exhibited immature pancreatic endocrine phenotypes. However, protocols that generate more functional beta-like cells have now been described. In addition, small molecules are being used to improve protocols to direct differentiation of PSCs into endoderm and pancreatic lineages. SUMMARY Advances over the last decade suggest that generating functional beta-cells from human PSCs is achievable. However, there are aspects of beta-cell development that are not well understood and are hampering generation of PSC-derived beta-cells. In particular, the signaling pathways that instruct endocrine progenitor cells to differentiate into mature and functional beta-cells are poorly understood. Other significant obstacles remain, including the need for safe and cost-effective differentiation methods for large-scale generation of transplantation quality beta-cells, methods to prevent immune rejection of grafted tissues, and amelioration of the risks of tumorigenesis.
Collapse
Affiliation(s)
- Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
29
|
Modulation of Early Inflammatory Reactions to Promote Engraftment and Function of Transplanted Pancreatic Islets in Autoimmune Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:725-47. [DOI: 10.1007/978-90-481-3271-3_32] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Suzuki J, Ricordi C, Chen Z. Immune tolerance induction by integrating innate and adaptive immune regulators. Cell Transplant 2009; 19:253-68. [PMID: 19919733 PMCID: PMC2884065 DOI: 10.3727/096368909x480314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A diversity of immune tolerance mechanisms have evolved to protect normal tissues from immune damage. Immune regulatory cells are critical contributors to peripheral tolerance. These regulatory cells, exemplified by the CD4(+)Foxp3(+) regulatory T (Treg) cells and a recently identified population named myeloid-derived suppressor cells (MDSCs), regulate immune responses and limiting immune-mediated pathology. In a chronic inflammatory setting, such as allograft-directed immunity, there may be a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage. CTLA4-B7-based interaction between the two branches may function as a molecular "bridge" to facilitate such "cross-talk." Understanding the interplays among Treg cells, innate suppressors, and pathogenic effector T (Teff) cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immunosuppressive elements in the innate and adaptive immune system. Successful development of localized strategies of regulatory cell therapies could circumvent the requirement for very high number of cells and decrease the risks associated with systemic immunosuppression. To realize the potential of innate and adaptive immune regulators for the still elusive goal of immune tolerance induction, adoptive cell therapies may also need to be coupled with agents enhancing endogenous tolerance mechanisms.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Camillo Ricordi
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami, Miami, FL, USA
- Karolinska Institute, Stockholm, Sweden
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|