1
|
Wang B, Li Y, Ouyang Q, Xu MT, Wang YY, Fu SJ, Liu WQ, Liu XT, Ling H, Zhang X, Xiu RJ, Liu MM. Strain- and sex-dependent variability in hepatic microcirculation and liver function in mice. World J Gastroenterol 2025; 31:101058. [PMID: 40309233 PMCID: PMC12038547 DOI: 10.3748/wjg.v31.i15.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/02/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The integrity and functionality of the hepatic microcirculation are essential for maintaining liver health, which is influenced by sex and genetic background. Understanding these variations is crucial for addressing disparities in liver disease outcomes. AIM To investigate the sexual dimorphism and genetic heterogeneity of liver microcirculatory function in mice. METHODS We assessed hepatic microhemodynamics in BALB/c, C57BL/6J, and KM mouse strains using laser Doppler flowmetry and wavelet analysis. We analyzed the serum levels of alanine transaminase, glutamic acid aminotransferase, total bile acid, total protein, alkaline phosphatase, and glucose. Histological and immunohistochemical staining were employed to quantify microvascular density and the expression levels of cluster of differentiation (CD) 31, and estrogen receptor α, and β. Statistical analyses, including the Mantel test and Pearson correlation, were conducted to determine the relationships among hepatic function, microcirculation, and marcocirculation between different sexes and across genetic backgrounds. RESULTS We identified sex-based disparities in hepatic microhemodynamics across all strains, with males exhibiting higher microvascular perfusion and erythrocyte concentration, but lower blood velocity. Strain-specific differences were evident, particularly in the endothelial oscillatory characteristics of the erythrocyte concentration. No sex-dependent differences in estrogen receptor expression were observed, while significant variations in CD31 expression and microvascular density were observed. The correlations highlighted relationships between hepatic microhemodynamics and liver function indicators. CONCLUSION Our findings indicate the influence of genetic and sex differences on hepatic microcirculation and liver function, highlighting the necessity of incorporating both genetic background and sex into hepatic physiology studies and potential liver disease management strategies.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qin Ouyang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Science, Beijing 100102, China
| | - Meng-Ting Xu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ying-Yu Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Sun-Jing Fu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Wei-Qi Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xue-Ting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hao Ling
- Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, Hunan Province, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing 100034, China
| | - Rui-Juan Xiu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ming-Ming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
- Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
2
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
3
|
Mazi TA, Shibata NM, Sarode GV, Medici V. Hepatic oxylipin profiles in mouse models of Wilson disease: New insights into early hepatic manifestations. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159446. [PMID: 38072238 PMCID: PMC11224028 DOI: 10.1016/j.bbalip.2023.159446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hepatic inflammation is commonly identified in Wilson disease (WD), a genetic disease of hepatic and brain copper accumulation. Copper accumulation is associated with increased oxidative stress and reactive oxygen species generation which may result in non-enzymatic oxidation of membrane-bound polyunsaturated fatty acids (PUFA). PUFA can be oxidized enzymatically via lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450 monooxygenases (CYP). Products of PUFA oxidation are collectively known as oxylipins (OXL) and are bioactive lipids that modulate hepatic inflammation. We examined hepatic OXL profiles at early stages of WD in two mouse models, the toxic milk mouse from The Jackson Laboratory (tx-j) and the Atp7b knockout on a C57Bl/6 background (Atp7b-/-B6). Targeted lipidomic analysis performed by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry showed that in both tx-j and Atp7b-/-B6 mice, hepatic OXL profiles were altered with higher thromboxane and prostaglandins levels. The levels of oxidative stress marker, 9-HETE were increased more markedly in tx-j mice. However, both genotypes showed upregulated transcript levels of many genes related to oxidative stress and inflammation. Both genotypes showed higher prostaglandins, thromboxin along with higher PUFA-derived alcohols, diols, and ketones with altered epoxides; the expression of Alox5 was upregulated and many CYP-related genes were dysregulated. Pathway analyses show dysregulation in arachidonic acid and linoleic acid metabolism characterizes mice with WD. Our findings indicate alterations in hepatic PUFA metabolism in early-stage WD and suggest the upregulation of both, non-enzymatic ROS-dependent and enzymatic PUFA oxidation, which could have implications for hepatic manifestations in WD and represent potential targets for future therapies.
Collapse
Affiliation(s)
- Tagreed A Mazi
- Department of Community Health Sciences-Clinical Nutrition, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Gaurav V Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA.
| |
Collapse
|
4
|
Cuño-Gómiz C, de Gregorio E, Tutusaus A, Rider P, Andrés-Sánchez N, Colell A, Morales A, Marí M. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice. Biol Sex Differ 2023; 14:85. [PMID: 37964320 PMCID: PMC10644614 DOI: 10.1186/s13293-023-00569-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression. METHODS A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry. RESULTS Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male. CONCLUSIONS NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.
Collapse
Affiliation(s)
- Carlos Cuño-Gómiz
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293, Montpellier, France
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| |
Collapse
|
5
|
Li J, Sato T, Hernández-Tejero M, Beier JI, Sayed K, Benos PV, Wilkey DW, Humar A, Merchant ML, Duarte-Rojo A, Arteel GE. The plasma degradome reflects later development of NASH fibrosis after liver transplant. Sci Rep 2023; 13:9965. [PMID: 37340062 PMCID: PMC10282030 DOI: 10.1038/s41598-023-36867-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease and decreased survival. Lack of risk stratification strategies hampers early intervention against development of post-LT NASH fibrosis. The liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether liver injury caused by post-LT NASH would yield a unique degradome profile that is predictive of severe post-LT NASH fibrosis, a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without) was performed. Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ~ 2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (~ 15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. The plasma degradome profile of post-LT patients yielded stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.
Collapse
Affiliation(s)
- Jiang Li
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Toshifumi Sato
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - María Hernández-Tejero
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Juliane I Beier
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, New Haven, CT, USA
| | | | - Daniel W Wilkey
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Abhinav Humar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andres Duarte-Rojo
- Division of Gastroenterology and Hepatology, Northwestern Medicine and Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern Medicine and Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gavin E Arteel
- Department of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, West 1143, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Undamatla R, Fagunloye OG, Chen J, Edmunds LR, Murali A, Mills A, Xie B, Pangburn MM, Sipula I, Gibson G, St Croix C, Jurczak MJ. Reduced mitophagy is an early feature of NAFLD and liver-specific PARKIN knockout hastens the onset of steatosis, inflammation and fibrosis. Sci Rep 2023; 13:7575. [PMID: 37165006 PMCID: PMC10172344 DOI: 10.1038/s41598-023-34710-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies that includes steatosis, steatohepatitis (NASH) and fibrosis and is strongly associated with insulin resistance and type 2 diabetes. Changes in mitochondrial function are implicated in the pathogenesis of NAFLD, particularly in the transition from steatosis to NASH. Mitophagy is a mitochondrial quality control mechanism that allows for the selective removal of damaged mitochondria from the cell via the autophagy pathway. While past work demonstrated a negative association between liver fat content and rates of mitophagy, when changes in mitophagy occur during the pathogenesis of NAFLD and whether such changes contribute to the primary endpoints associated with the disease are currently poorly defined. We therefore undertook the studies described here to establish when alterations in mitophagy occur during the pathogenesis of NAFLD, as well as to determine the effects of genetic inhibition of mitophagy via conditional deletion of a key mitophagy regulator, PARKIN, on the development of steatosis, insulin resistance, inflammation and fibrosis. We find that loss of mitophagy occurs early in the pathogenesis of NAFLD and that loss of PARKIN accelerates the onset of key NAFLD disease features. These observations suggest that loss of mitochondrial quality control in response to nutritional stress may contribute to mitochondrial dysfunction and the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- R Undamatla
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - O G Fagunloye
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - J Chen
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - L R Edmunds
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - A Murali
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - A Mills
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - B Xie
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - M M Pangburn
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - I Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA
| | - G Gibson
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - C St Croix
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - M J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, 200 Lothrop Street, BST W1060, Pittsburgh, PA, 15213, USA.
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Karimkhanloo H, Keenan SN, Bayliss J, De Nardo W, Miotto PM, Devereux CJ, Nie S, Williamson NA, Ryan A, Watt MJ, Montgomery MK. Mouse strain-dependent variation in metabolic associated fatty liver disease (MAFLD): a comprehensive resource tool for pre-clinical studies. Sci Rep 2023; 13:4711. [PMID: 36949095 PMCID: PMC10033881 DOI: 10.1038/s41598-023-32037-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH), characterized as the joint presence of steatosis, hepatocellular ballooning and lobular inflammation, and liver fibrosis are strong contributors to liver-related and overall mortality. Despite the high global prevalence of NASH and the substantial healthcare burden, there are currently no FDA-approved therapies for preventing or reversing NASH and/or liver fibrosis. Importantly, despite nearly 200 pharmacotherapies in different phases of pre-clinical and clinical assessment, most therapeutic approaches that succeed from pre-clinical rodent models to the clinical stage fail in subsequent Phase I-III trials. In this respect, one major weakness is the lack of adequate mouse models of NASH that also show metabolic comorbidities commonly observed in NASH patients, including obesity, type 2 diabetes and dyslipidaemia. This study provides an in-depth comparison of NASH pathology and deep metabolic profiling in eight common inbred mouse strains (A/J, BALB/c, C3H/HeJ, C57BL/6J, CBA/CaH, DBA/2J, FVB/N and NOD/ShiLtJ) fed a western-style diet enriched in fat, sucrose, fructose and cholesterol for eight months. Combined analysis of histopathology and hepatic lipid metabolism, as well as measures of obesity, glycaemic control and insulin sensitivity, dyslipidaemia, adipose tissue lipolysis, systemic inflammation and whole-body energy metabolism points to the FVB/N mouse strain as the most adequate diet-induced mouse model for the recapitulation of metabolic (dysfunction) associated fatty liver disease (MAFLD) and NASH. With efforts in the pharmaceutical industry now focussed on developing multi-faceted therapies; that is, therapies that improve NASH and/or liver fibrosis, and concomitantly treat other metabolic comorbidities, this mouse model is ideally suited for such pre-clinical use.
Collapse
Affiliation(s)
- Hamzeh Karimkhanloo
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - William De Nardo
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Paula M Miotto
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Camille J Devereux
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Ryan
- TissuPath, Mount Waverley, VIC, 3149, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
8
|
Nemec-Bakk AS, Sridharan V, Desai P, Landes RD, Hart B, Allen AR, Boerma M. Effects of Simulated 5-Ion Galactic Cosmic Radiation on Function and Structure of the Mouse Heart. Life (Basel) 2023; 13:life13030795. [PMID: 36983950 PMCID: PMC10057791 DOI: 10.3390/life13030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Missions into deep space will expose astronauts to the harsh space environment, and the degenerative tissue effects of space radiation are largely unknown. To assess the risks, in this study, male BALB/c mice were exposed to 500 mGy 5-ion simulated GCR (GCRsim) at the NASA Space Radiation Laboratory. In addition, male and female CD1 mice were exposed to GCRsim and administered a diet containing Transforming Growth Factor-beta (TGF-β)RI kinase (ALK5) inhibitor IPW-5371 as a potential countermeasure. An ultrasound was performed to investigate cardiac function. Cardiac tissue was collected to determine collagen deposition, the density of the capillary network, and the expression of the immune mediator toll-like receptor 4 (TLR4) and immune cell markers CD2, CD4, and CD45. In male BALB/c mice, the only significant effects of GCRsim were an increase in the CD2 and TLR4 markers. In male CD1 mice, GCRsim caused a significant increase in total collagens and a decrease in the expression of TLR4, both of which were mitigated by the TGF-β inhibitor diet. In female CD1 mice, GCRsim caused an increase in the number of capillaries per tissue area in the ventricles, which may be explained by the decrease in the left ventricular mass. However, this increase was not mitigated by TGF-β inhibition. In both male and female CD1 mice, the combination of GCRsim and TGF-β inhibition caused changes in left ventricular immune cell markers that were not seen with GCRsim alone. These data suggest that GCRsim results in minor changes to cardiac tissue in both an inbred and outbred mouse strain. While there were few GCRsim effects to be mitigated, results from the combination of GCRsim and the TGF-β inhibitor do point to a role for TGF-β in maintaining markers of immune cells in the heart after exposure to GCR.
Collapse
Affiliation(s)
- Ashley S. Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Parth Desai
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Barry Hart
- Innovation Pathways, LLC of Palo Alto, Palo Alto, CA 94301, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
9
|
Li J, Sato T, Hernández-Tejero M, Beier JI, Sayed K, Benos PV, Wilkey DW, Humar A, Merchant ML, Duarte-Rojo A, Arteel GE. The plasma degradome reflects later development of NASH fibrosis after liver transplant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526241. [PMID: 36778394 PMCID: PMC9915514 DOI: 10.1101/2023.01.30.526241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease, and decreased survival. Lack of risk stratification strategies hamper liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether inflammatory liver injury caused by post-LT NASH would yield a unique degradome profile, predictive of severe post-LT NASH fibrosis, we performed a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without). Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ∼2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly-changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (∼15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. Both The plasma degradome profile of post-LT patients yields stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.
Collapse
|
10
|
Undamatla R, Fagunloye OG, Chen J, Edmunds LR, Murali A, Mills A, Xie B, Pangburn MM, Sipula I, Gibson G, Croix CS, Jurczak MJ. Reduced hepatocyte mitophagy is an early feature of NAFLD pathogenesis and hastens the onset of steatosis, inflammation and fibrosis. RESEARCH SQUARE 2023:rs.3.rs-2469234. [PMID: 36711642 PMCID: PMC9882688 DOI: 10.21203/rs.3.rs-2469234/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies that includes steatosis, steatohepatitis (NASH) and fibrosis and is strongly associated with insulin resistance and type 2 diabetes. Changes in mitochondrial function are implicated in the pathogenesis of NAFLD, particularly in the transition from steatosis to NASH. Mitophagy is a mitochondrial quality control mechanism that allows for the selective removal of damaged mitochondria from the cell via the autophagy pathway. While past work demonstrated a negative association between liver fat content and rates of mitophagy, when changes in mitophagy occur during the pathogenesis of NAFLD and whether such changes contribute to the primary endpoints associated with the disease are currently poorly defined. We therefore undertook the studies described here to establish when alterations in mitophagy occur during the pathogenesis of NAFLD, as well as to determine the effects of genetic inhibition of mitophagy via conditional deletion of a key mitophagy regulator, PARKIN, on the development of steatosis, insulin resistance, inflammation and fibrosis. We find that loss of mitophagy occurs early in the pathogenesis of NAFLD and that loss of PARKIN hastens the onset but not severity of key NAFLD disease features. These observations suggest that loss of mitochondrial quality control in response to nutritional stress may contribute to mitochondrial dysfunction and the pathogenesis of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ian Sipula
- University of Pittsburgh School of Medicine
| | | | | | | |
Collapse
|
11
|
A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Sci Rep 2022; 12:17558. [PMID: 36266427 PMCID: PMC9585018 DOI: 10.1038/s41598-022-22423-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic liver disease, characterized by an altered mental state and hyperammonemia. Insight into the brain pathophysiology of HE is limited due to a paucity of well-characterized HE models beyond the rat bile duct ligation (BDL) model. Here, we assess the presence of HE characteristics in the mouse BDL model. We show that BDL in C57Bl/6j mice induces motor dysfunction, progressive liver fibrosis, liver function failure and hyperammonemia, all hallmarks of HE. Swiss mice however fail to replicate the same phenotype, underscoring the importance of careful strain selection. Next, in-depth characterisation of metabolic disturbances in the cerebrospinal fluid of BDL mice shows glutamine accumulation and transient decreases in taurine and choline, indicative of brain ammonia overload. Moreover, mouse BDL induces glial cell dysfunction, namely microglial morphological changes with neuroinflammation and astrocyte reactivity with blood-brain barrier (BBB) disruption. Finally, we identify putative novel mechanisms involved in central HE pathophysiology, like bile acid accumulation and tryptophan-kynurenine pathway alterations. Our study provides the first comprehensive evaluation of a mouse model of HE in chronic liver disease. Additionally, this study further underscores the importance of neuroinflammation in the central effects of chronic liver disease.
Collapse
|
12
|
Multiparametric Flow Cytometry-Based Immunophenotyping of Mouse Liver Immune Cells. Methods Protoc 2022; 5:mps5050070. [PMID: 36136816 PMCID: PMC9498390 DOI: 10.3390/mps5050070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is a complex organ that governs many types of metabolisms, including energy metabolism and other cellular processes. The liver also plays a crucial role in important functions in immunity, and the activity of liver tissue-associated immunity affects the outcome of many liver pathologies. A thorough characterization of the liver immune microenvironment may contribute to a better understanding of immune signaling, the mechanisms of specific immune responses, and even to improved predictions about therapy outcomes. In this paper, we present an optimized, simple, and rapid protocol to characterize the liver-associated immune cell milieu. We believe that the most suitable technique for obtaining a complex immune cell suspension and for removing contaminating blood cells is to perform mouse liver perfusion, using only phosphate buffer saline. Combining an enzymatic digestion and a mechanical dissociation of liver tissue, followed by cell purification, improves downstream applications. This combination is an essential prerequisite for immune cell determination and characterization. We then demonstrate a flow cytometry-based multiparametric immunophenotyping along with a gating strategy to detect and quantify liver endothelial cells, T cells (helper and cytotoxic), B cells, NK cells, NKT cells, neutrophils, monocytes (subsets included), dendritic cells (subsets included), macrophages and Kupffer cells.
Collapse
|
13
|
Antiorio AT, Alemán-Laporte J, Zanatto DA, Pereira MAA, Gomes MS, Wadt D, Yamamoto PK, Bernardi MM, Mori CM. Mouse Behavior in the Open-field Test after Meloxicam Administration. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:270-274. [PMID: 35101160 PMCID: PMC9137284 DOI: 10.30802/aalas-jaalas-21-000046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/03/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Several analgesics are suggested for pain management in mice. Nonsteroidal antiinflammatories (NSAIDs), such as meloxicam can be administered for the treatment of inflammation and acute pain; however, several side effects can occur which include gastrointestinal ulceration and renal and hepatic toxicity. We previously performed a pilot study to test the antinociceptive activity of meloxicam in mice, but we observed behavioral changes in unoperated control mice. These observations spurred further investigation. One hypothesis for the result was potential differences in formulation between commercial brands of meloxicam. Thus, this current study aimed to evaluate the effects of 3 different commercial brands of meloxicam (20 mg/kg) in the general activity of mice using the open field test. Our results showed that meloxicam had several effects on mouse behavior and caused the formation of skin lesions at the injection site, depending on the brand of the drug. The most significant adverse effect observed was decreased exploratory activity. Grooming frequency was reduced in all groups. These adverse effects might be related to the quality of the drugs because meloxicam formulations can contain crystal polymorphisms that affect drug quality and efficacy. This study points out the importance of drug quality variation that can affect the outcome of behavioral studies in mice.
Collapse
Affiliation(s)
- Ana Tfb Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil;,
| | - Jilma Alemán-Laporte
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Laboratory of Teaching in Surgery and Cancer, University of Costa Rica, San Jose, Costa Rica
| | - Dennis A Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marco A A Pereira
- Department of Surgery. School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mariana Sag Gomes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Danilo Wadt
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro K Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria M Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Claudia Mc Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Cheng B, Ahn HH, Nam H, Jiang Z, Gao FJ, Minn I, Pomper MG. A Unique Core–Shell Structured, Glycol Chitosan-Based Nanoparticle Achieves Cancer-Selective Gene Delivery with Reduced Off-Target Effects. Pharmaceutics 2022; 14:pharmaceutics14020373. [PMID: 35214105 PMCID: PMC8878887 DOI: 10.3390/pharmaceutics14020373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
The inherent instability of nucleic acids within serum and the tumor microenvironment necessitates a suitable vehicle for non-viral gene delivery to malignant lesions. A specificity-conferring mechanism is also often needed to mitigate off-target toxicity. In the present study, we report a stable and efficient redox-sensitive nanoparticle system with a unique core–shell structure as a DNA carrier for cancer theranostics. Thiolated polyethylenimine (PEI-SH) is complexed with DNA through electrostatic interactions to form the core, and glycol chitosan-modified with succinimidyl 3-(2-pyridyldithio)propionate (GCS-PDP) is grafted on the surface through a thiolate-disulfide interchange reaction to form the shell. The resulting nanoparticles, GCS-PDP/PEI-SH/DNA nanoparticles (GNPs), exhibit high colloid stability in a simulated physiological environment and redox-responsive DNA release. GNPs not only show a high and redox-responsive cellular uptake, high transfection efficiency, and low cytotoxicity in vitro, but also exhibit selective tumor targeting, with minimal toxicity, in vivo, upon systemic administration. Such a performance positions GNPs as viable candidates for molecular-genetic imaging and theranostic applications.
Collapse
Affiliation(s)
- Bei Cheng
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
| | - Hye-Hyun Ahn
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
| | - Hwanhee Nam
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zirui Jiang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
| | - Feng J. Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Il Minn
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence: (I.M.); (M.G.P.)
| | - Martin G. Pomper
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence: (I.M.); (M.G.P.)
| |
Collapse
|
15
|
Matthews BJ, Melia T, Waxman DJ. Harnessing natural variation to identify cis regulators of sex-biased gene expression in a multi-strain mouse liver model. PLoS Genet 2021; 17:e1009588. [PMID: 34752452 PMCID: PMC8664386 DOI: 10.1371/journal.pgen.1009588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/10/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in gene expression are widespread in the liver, where many autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57BL/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose their sex-biased expression in CAST/EiJ mouse liver. To elucidate the observed strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of the sex differences in expression between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-dependent gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs apparently lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.
Collapse
Affiliation(s)
- Bryan J. Matthews
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Tisha Melia
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
17
|
Kennedy-Wood K, Ng CAS, Alaiyed S, Foley PL, Conant K. Increased MMP-9 levels with strain-dependent stress resilience and tunnel handling in mice. Behav Brain Res 2021; 408:113288. [PMID: 33836170 PMCID: PMC8102390 DOI: 10.1016/j.bbr.2021.113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/09/2022]
Abstract
Increased perineuronal net (PNN) deposition has been observed in association with corticosteroid administration and stress in rodent models of depression. PNNs are a specialized form of extracellular matrix (ECM) that may enhance GABA-mediated inhibitory neurotransmission to potentially restrict the excitation and plasticity of pyramidal glutamatergic neurons. In contrast, antidepressant administration increases levels of the PNN-degrading enzyme matrix metalloproteinase-9 (MMP-9), which enhances glutamatergic plasticity and neurotransmission. In the present study, we compare pro-MMP-9 levels and measures of stress in females from two mouse strains, C57BL/6 J and BALB/cJ, in the presence or absence of tail grasping versus tunnel-associated cage transfers. Prior work suggests that C57BL/6 J mice show relatively enhanced neuroplasticity and stress resilience, while BALB/c mice demonstrate enhanced susceptibility to adverse effects of stress. Herein we observe that as compared to the C57BL/6 J strain, BALB/c mice demonstrate a higher level of baseline anxiety as determined by elevated plus maze (EPM) testing. Moreover, as determined by open field testing, anxiety is differentially reduced in BALB/c mice by a choice-driven tunnel-entry cage transfer technique. Additionally, as compared to tail-handled C57BL/6 J mice, tail-handled BALB/c mice have reduced brain levels of pro-MMP-9 and increased levels of its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1); however, tunnel-associated cage transfer increases pro-MMP-9 levels in BALB/c mice. BALB/c mice also show increases in Western blot immunoreactive bands for brevican, a constituent of PNNs. Together, these data support the possibility that MMP-9, an effector of PNN remodeling, contributes to the phenotype of strain and handling-associated differences in behavior.
Collapse
Affiliation(s)
| | - Christi Anne S Ng
- Georgetown University Medical Center, Department of Neuroscience, Washington D.C., United States
| | - Seham Alaiyed
- Georgetown University Medical Center, Department of Neuroscience, Washington D.C., United States; Georgetown University Medical Center, Department of Pharmacology, Washington D.C., United States
| | - Patricia L Foley
- Georgetown University Medical Center, Division of Comparative Medicine, Washington D.C., United States.
| | - Katherine Conant
- Georgetown University Medical Center, Department of Neuroscience, Washington D.C., United States.
| |
Collapse
|
18
|
Muchenditsi A, Talbot CC, Gottlieb A, Yang H, Kang B, Boronina T, Cole R, Wang L, Dev S, Hamilton JP, Lutsenko S. Systemic deletion of Atp7b modifies the hepatocytes' response to copper overload in the mouse models of Wilson disease. Sci Rep 2021; 11:5659. [PMID: 33707579 PMCID: PMC7952580 DOI: 10.1038/s41598-021-84894-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/09/2021] [Indexed: 02/03/2023] Open
Abstract
Wilson disease (WD) is caused by inactivation of the copper transporter Atp7b and copper overload in tissues. Mice with Atp7b deleted either globally (systemic inactivation) or only in hepatocyte recapitulate various aspects of human disease. However, their phenotypes vary, and neither the common response to copper overload nor factors contributing to variability are well defined. Using metabolic, histologic, and proteome analyses in three Atp7b-deficient mouse strains, we show that global inactivation of Atp7b enhances and specifically modifies the hepatocyte response to Cu overload. The loss of Atp7b only in hepatocytes dysregulates lipid and nucleic acid metabolisms and increases the abundance of respiratory chain components and redox balancing enzymes. In global knockouts, independently of their background, the metabolism of lipid, nucleic acid, and amino acids is inhibited, respiratory chain components are down-regulated, inflammatory response and regulation of chromosomal replication are enhanced. Decrease in glucokinase and lathosterol oxidase and elevation of mucin-13 and S100A10 are observed in all Atp7b mutant strains and reflect the extent of liver injury. The magnitude of proteomic changes in Atp7b-/- animals inversely correlates with the metallothioneins levels rather than liver Cu content. These findings facilitate identification of WD-specific metabolic and proteomic changes for diagnostic and treatment.
Collapse
Affiliation(s)
- Abigael Muchenditsi
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - C Conover Talbot
- Core Analysis Unit, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Aline Gottlieb
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Haojun Yang
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Byunghak Kang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Robert Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Li Wang
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Som Dev
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - James P Hamilton
- Department of Medicine, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Quan N, Harris LR, Halder R, Trinidad CV, Johnson BW, Horton S, Kimler BF, Pritchard MT, Duncan FE. Differential sensitivity of inbred mouse strains to ovarian damage in response to low-dose total body irradiation†. Biol Reprod 2020; 102:133-144. [PMID: 31436294 PMCID: PMC7334620 DOI: 10.1093/biolre/ioz164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/08/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Radiation induces ovarian damage and accelerates reproductive aging. Inbred mouse strains exhibit differential sensitivity to lethality induced by total body irradiation (TBI), with the BALB/cAnNCrl (BALB/c) strain being more sensitive than the 129S2/SvPasCrl (129) strain. However, whether TBI-induced ovarian damage follows a similar pattern of strain sensitivity is unknown. To examine this possibility, female BALB/c and 129 mice were exposed to a single dose of 1 Gy (cesium-137 γ) TBI at 5 weeks of age, and ovarian tissue was harvested for histological and gene expression analyses 2 weeks post exposure. Sham-treated mice served as controls. 1 Gy radiation nearly eradicated the primordial follicles and dramatically decreased the primary follicles in both strains. In contrast, larger growing follicles were less affected in the 129 relative to BALB/c strain. Although this TBI paradigm did not induce detectable ovarian fibrosis in either of the strains, we did observe strain-dependent changes in osteopontin (Spp1) expression, a gene involved in wound healing, inflammation, and fibrosis. Ovaries from BALB/c mice exhibited higher baseline Spp1 expression that underwent a significant decrease in response to radiation relative to ovaries from the 129 strain. A correspondingly greater change in the ovarian matrix, as evidenced by reduced ovarian hyaluronan content, was also observed following TBI in BALB/c mice relative to 129 mice. These early changes in the ovary may predispose BALB/c mice to more pronounced late effects of TBI. Taken together, our results demonstrate that aspects of ovarian damage mirror other organ systems with respect to overall strain-dependent radiation sensitivity.
Collapse
Affiliation(s)
- Natalie Quan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lacey R Harris
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ritika Halder
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Camille V Trinidad
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brian W Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Shulamit Horton
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Cho I, Koo BN, Kam EH, Lee SK, Oh H, Kim SY. Bile duct ligation of C57BL/6 mice as a model of hepatic encephalopathy. Anesth Pain Med (Seoul) 2020; 15:19-27. [PMID: 33329785 PMCID: PMC7713851 DOI: 10.17085/apm.2020.15.1.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023] Open
Abstract
Background Bile duct ligation (BDL) has been used for experimental research on hepatic encephalopathy (HE) caused by chronic liver disease. However, little research has been done on a BDL model in C57BL/6 mouse. Therefore, we evaluated the suitability of a BDL model in C57BL/6 mouse for the study of HE and determined which behavioral tests are appropriate for the identification of HE in this model. Methods Twelve to fourteen-week-old male C57BL/6 mice were randomly assigned to either sham group or BDL group. Histological changes in liver were confirmed by hematoxylin/eosin and Masson’s trichrome staining. Liver function alterations were detected by alanine aminotransferase (ALT) and ammonia levels. To identify behavioral changes, open field, elevated plus maze, novel object recognition, and passive avoidance tests were performed. Results Inflammatory liver injury and fibrosis were observed 14 days after BDL. ALT and ammonia levels were significantly higher in BDL group than in sham group. There were no differences in general locomotor activity or anxiety between the groups. No difference was observed between these two groups in the novel object recognition test, but BDL group showed significant learning/memory impairment in the passive avoidance test compared to sham group. Conclusions Fourteen days of BDL in 12–14-week-old male C57BL/6 mice is a clinically relevant model for HE, as these mice have liver fibrosis with impaired liver function, hyperammonemia, and learning/memory impairment. Passive avoidance can be used as the major behavioral test in this model of HE.
Collapse
Affiliation(s)
- Inja Cho
- Department of Anesthesiology and Pain Medicine, Seoul, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Seoul, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Seoul, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Su Kyoung Lee
- Department of Anesthesiology and Pain Medicine, Seoul, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hanseul Oh
- Department of Anesthesiology and Pain Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Seoul, Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|