1
|
Ahmed G, Hamadani M, Al-Juhaishi T. The potential of antibody-drug conjugates for effective therapy in diffuse large B-cell lymphoma. Expert Opin Biol Ther 2025; 25:161-173. [PMID: 39798075 DOI: 10.1080/14712598.2025.2453524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.a. payload) attached through a linker to a monoclonal antibody specific to a particular cancer antigen. Payloads include microtubule disruptors or DNA damaging chemicals. After attaching to the antigen, the ADCs are internalized, and the payload is dissociated from ADC by lysozymes and delivered to the intended site for exerting cytotoxic effects. This unique molecular design permits a better balance of efficacy and safety. Loncastuximab tesirine and polatuzumab vedotin are two ADCs approved in the U.S.A. for treatment of DLBCL. AREAS COVERED This review covers the efficacy and safety data of these two drugs. We will review new ADC-based combination regimens and novel constructs in development. EXPERT OPINION ADCs have made a significant impact in improving outcomes of DLBCL patients. Both polatuzumab vedotin and loncastuximab tesirine are established as useful therapeutics options, with polatuzumab vedotin currently approved in first line and relapsed/refractory setting, while loncastuximab tesirine is approved in relapsed setting. ADCs are effective with tolerable safety profile and currently many more ADCs are undergoing clinical trials.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Immunoconjugates/therapeutic use
- Immunoconjugates/adverse effects
- Animals
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/adverse effects
- Benzodiazepines
Collapse
Affiliation(s)
- Gulrayz Ahmed
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
2
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Witkowska M, Majchrzak A, Robak P, Wolska-Washer A, Robak T. The role of antibody therapies in treating relapsed chronic lymphocytic leukemia: a review. Expert Opin Biol Ther 2024; 24:1233-1244. [PMID: 39364800 DOI: 10.1080/14712598.2024.2413365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is one of the most common types of leukemia in adult patients. The landscape of CLL therapy has changed in the last decades with the introduction of antibody-based therapies and novel targeted agents resulting in improved outcomes. AREAS COVERED This article describes the use of monoclonal antibodies, bispecific antibodies and antibody-drug conjugates in the treatment of relapsed and refractory CLL. The mechanism of action and clinical applications and safety of antibody-based therapies, both as monotherapy and in combination with other drugs, are discussed. A literature search was performed using PubMed, Web of Science, and Google Scholar for articles published in English. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION Antibody-based therapeutic strategies have drastically changed the treatment of CLL, as they have introduced the concept of boosting immune responses against tumor cells. While immunotherapy is generally effective, some treatment failure can occur due to antigen loss, mutation, or down-regulation, and this remains the main obstacle to cure. The development of novel antibody therapies, including their combinations with targeted drugs and bispecific antibodies, might help to reduce toxicity and improve efficacy.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Immunotherapy
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Animals
- Immunoconjugates/therapeutic use
- Recurrence
Collapse
Affiliation(s)
- Magdalena Witkowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Agata Majchrzak
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Paweł Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
4
|
Spriano F, Tarantelli C, Cascione L, Gaudio E, Golino G, Scalise L, Cacciapuoti MT, Zucca E, Stathis A, Van Berkel PH, Inghirami G, Zammarchi F, Bertoni F. Targeting CD25+ lymphoma cells with the antibody-drug conjugate camidanlumab tesirine as a single agent or in combination with targeted agents. Br J Haematol 2024; 205:1873-1882. [PMID: 39080847 DOI: 10.1111/bjh.19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/09/2024] [Indexed: 11/17/2024]
Abstract
Camidanlumab tesirine (ADCT-301) is a CD25-specific antibody-drug conjugate (ADC) employing SG3199, a highly cytotoxic DNA minor groove cross-linking pyrrolobenzodiazepine dimer. The ADC has shown early clinical antitumour activity in various cancers, including B- and T-cell lymphomas. We assessed its preclinical activity as a single agent in 57 lymphoma cell lines and in combination with selected drugs in T-cell lymphoma-derived cell lines. Cells were exposed to increasing concentrations of the ADC or SG3199 for 96 h, followed by an MTT proliferation assay. CD25 expression was measured at cell surface and RNA levels. Experiments with PDX-derived cell lines were used for validation studies. Camidanlumab tesirine presented more potent single agent in vitro cytotoxic activity in T- than B-cell lymphomas. In vitro activity was correlated with CD25 cell surface and RNA expression. In vitro activity was correlated with CD25 cell surface and RNA expression. When camidanlumab tesirine-containing combinations were evaluated in four T-cell lymphoma models, the most active partners were everolimus, copanlisib, venetoclax, vorinostat, and pralatrexate, followed by bortezomib, romidepsin, bendamustine, and 5-azacytidine. The strong camidanlumab tesirine single-agent anti-lymphoma activity and the in vitro synergisms with targeted agents identify potential combination partners for future clinical studies.
Collapse
MESH Headings
- Humans
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Interleukin-2 Receptor alpha Subunit/metabolism
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Lymphoma, T-Cell/drug therapy
- Lymphoma, T-Cell/pathology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Cell Proliferation/drug effects
- Drug Synergism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/pathology
Collapse
Affiliation(s)
- Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Gaetanina Golino
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Lorenzo Scalise
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Maria Teresa Cacciapuoti
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Department of Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Anastasios Stathis
- Department of Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | | | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Department of Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| |
Collapse
|
5
|
Tarantelli C, Wald D, Munz N, Spriano F, Bruscaggin A, Cannas E, Cascione L, Gaudio E, Arribas AJ, Manjappa S, Golino G, Scalise L, Cacciapuoti MT, Zucca E, Stathis A, Inghirami G, Van Berkel PH, Rossi D, Caimi PF, Zammarchi F, Bertoni F. Targeting CD19-positive lymphomas with the antibodydrug conjugate loncastuximab tesirine: preclinical evidence of activity as a single agent and in combination therapy. Haematologica 2024; 109:3314-3326. [PMID: 38721745 PMCID: PMC11443381 DOI: 10.3324/haematol.2023.284197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 10/02/2024] Open
Abstract
Antibody-drug conjugates (ADC) represent one of the most successful therapeutic approaches introduced into clinical practice in the last few years. Loncastuximab tesirine (ADCT-402) is a CD19-targeting ADC in which the antibody is conjugated through a protease cleavable dipeptide linker to a pyrrolobenzodiazepine dimer warhead (SG3199). Based on the results of a phase II study, loncastuximab tesirine was recently approved for adult patients with relapsed/refractory large B-cell lymphoma. We assessed the activity of loncastuximab tesirine using in vitro and in vivo models of lymphomas, correlated its activity with levels of CD19 expression, and identified combination partners providing synergy with the ADC. Loncastuximab tesirine was tested across 60 lymphoma cell lines. It had strong cytotoxic activity in B-cell lymphoma cell lines. The in vitro activity was correlated with the level of CD19 expression and intrinsic sensitivity of cell lines to the ADC's warhead. Loncastuximab tesirine was more potent than other anti-CD19 ADC (coltuximab ravtansine, huB4-DGN462), although the pattern of activity across cell lines was correlated. The activity of loncastuximab tesirine was also largely correlated with cell line sensitivity to R-CHOP. Combinatorial in vitro and in vivo experiments identified the benefit of adding loncastuximab tesirine to other agents, especially BCL2 and PI3K inhibitors. Our data support the further development of loncastuximab tesirine for use as a single agent and in combination for patients affected by mature B-cell neoplasms. The results also highlight the importance of CD19 expression and the existence of lymphoma populations characterized by resistance to multiple therapies.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona.
| | - David Wald
- Case Western Reserve University, Cleveland, OH
| | - Nicolas Munz
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Alessio Bruscaggin
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Eleonora Cannas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Alberto J Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne
| | | | - Gaetanina Golino
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Lorenzo Scalise
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | | | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, USI, Lugano
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | | | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona
| | - Paolo F Caimi
- Cleveland Clinic/Case Comprehensive Cancer Center, Cleveland, OH
| | | | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona.
| |
Collapse
|
6
|
Rivera-Lazarín AL, Calvillo-Rodríguez KM, Izaguirre-Rodríguez M, Vázquez-Guillén JM, Martínez-Torres AC, Rodríguez-Padilla C. Synergistic Enhancement of Chemotherapy-Induced Cell Death and Antitumor Efficacy against Tumoral T-Cell Lymphoblasts by IMMUNEPOTENT CRP. Int J Mol Sci 2024; 25:7938. [PMID: 39063180 PMCID: PMC11276711 DOI: 10.3390/ijms25147938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
T-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL), present significant challenges to treatment due to their aggressive nature and chemoresistance. Chemotherapies remain a mainstay for their management, but the aggressiveness of these cancers and their associated toxicities pose limitations. Immunepotent CRP (ICRP), a bovine dialyzable leukocyte extract, has shown promise in inducing cytotoxicity against various cancer types, including hematological cancers. In this study, we investigated the combined effect of ICRP with a panel of chemotherapies on cell line models of T-ALL and T-LBL (CEM and L5178Y-R cells, respectively) and its impact on immune system cells (peripheral blood mononuclear cells, splenic and bone marrow cells). Our findings demonstrate that combining ICRP with chemotherapies enhances cytotoxicity against tumoral T-cell lymphoblasts. ICRP + Cyclophosphamide (CTX) cytotoxicity is induced through a caspase-, reactive oxygen species (ROS)-, and calcium-dependent mechanism involving the loss of mitochondrial membrane potential, an increase in ROS production, and caspase activation. Low doses of ICRP in combination with CTX spare non-tumoral immune cells, overcome the bone marrow-induced resistance to CTX cell death, and improves the CTX antitumor effect in vivo in syngeneic Balb/c mice challenged with L5178Y-R. This led to a reduction in tumor volume and a decrease in Ki-67 proliferation marker expression and the granulocyte/lymphocyte ratio. These results set the basis for further research into the clinical application of ICRP in combination with chemotherapeutic regimens for improving outcomes in T-cell malignancies.
Collapse
Affiliation(s)
- Ana Luisa Rivera-Lazarín
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Mizael Izaguirre-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - José Manuel Vázquez-Guillén
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
- LONGEVEDEN S.A. De C.V., Guadalupe 67199, Mexico
| |
Collapse
|
7
|
Zoroddu S, Sanna L, Bordoni V, Weidong L, Gadau SD, Carta A, Kelvin DJ, Bagella L. Identification of 3-Aryl-1-benzotriazole-1-yl-acrylonitrile as a Microtubule-Targeting Agent (MTA) in Solid Tumors. Int J Mol Sci 2024; 25:5704. [PMID: 38891892 PMCID: PMC11172098 DOI: 10.3390/ijms25115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Recently, a compound derived from recent scientific advances named 34 has emerged as the focus of this research, the aim of which is to explore its potential impact on solid tumor cell lines. Using a combination of bioinformatics and biological assays, this study conducted an in-depth investigation of the effects of 34. The results of this study have substantial implications for cancer research and treatment. 34 has shown remarkable efficacy in inhibiting the growth of several cancer cell lines, including those representing prostate carcinoma (PC3) and cervical carcinoma (HeLa). The high sensitivity of these cells, indicated by low IC50 values, underscores its potential as a promising chemotherapeutic agent. In addition, 34 has revealed the ability to induce cell cycle arrest, particularly in the G2/M phase, a phenomenon with critical implications for tumor initiation and growth. By interfering with DNA replication in cancer cells, 34 has shown the capacity to trigger cell death, offering a new avenue for cancer treatment. In addition, computational analyses have identified key genes affected by 34 treatment, suggesting potential therapeutic targets. These genes are involved in critical biological processes, including cell cycle regulation, DNA replication and microtubule dynamics, all of which are central to cancer development and progression. In conclusion, this study highlights the different mechanisms of 34 that inhibit cancer cell growth and alter the cell cycle. These promising results suggest the potential for more effective and less toxic anticancer therapies. Further in vivo validation and exploration of combination therapies are critical to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.Z.); (L.S.); (V.B.)
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.Z.); (L.S.); (V.B.)
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.Z.); (L.S.); (V.B.)
| | - Lyu Weidong
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515031, China; (L.W.); (D.J.K.)
| | | | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515031, China; (L.W.); (D.J.K.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.Z.); (L.S.); (V.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
8
|
Zhang C, Yan W, Liu Y, Tang M, Teng Y, Wang F, Hu X, Zhao M, Yang J, Li Y. Structure-based design and synthesis of BML284 derivatives: A novel class of colchicine-site noncovalent tubulin degradation agents. Eur J Med Chem 2024; 268:116265. [PMID: 38430854 DOI: 10.1016/j.ejmech.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Our previous studies have demonstrated that BML284 is a colchicine-site tubulin degradation agent. To improve its antiproliferative properties, 45 derivatives or analogs of BML284 were designed and synthesized based on the cocrystal structure of BML284 and tubulin. Among them, 5i was the most potent derivative, with IC50 values ranging from 0.02 to 0.05 μM against the five tested tumor cell lines. Structure-activity relationship studies verified that the N1 atom of the pyrimidine ring was the key functional group for its tubulin degradation ability. The 5i-tubulin cocrystal complex revealed that the binding pattern of 5i to tubulin is similar to that of BML284. However, replacing the benzodioxole ring with an indole ring strengthened the hydrogen bond formed by the 2-amino group with E198, which improved the antiproliferative activity of 5i. Compound 5i effectively suppressed tumor growth at an intravenous dose of 40 mg/kg (every 2 days) in paclitaxel sensitive A2780S and paclitaxel resistant A2780T ovarian xenograft models, with tumor growth inhibition values of 79.4% and 82.0%, respectively, without apparent side effects, showing its potential to overcome multidrug resistance. This study provided a successful example of crystal structure-guided discovery of 5i as a colchicine-targeted tubulin degradation agent, expanding the scope of targeted protein degradation.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Liu
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaxin Teng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fang Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Min Zhao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jianhong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Al Sbihi A, Alasfour M, Pongas G. Innovations in Antibody-Drug Conjugate (ADC) in the Treatment of Lymphoma. Cancers (Basel) 2024; 16:827. [PMID: 38398219 PMCID: PMC10887180 DOI: 10.3390/cancers16040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Chemoimmunotherapy and cellular therapy are the mainstay of the treatment of relapsed/refractory (R/R) lymphomas. Development of resistance and commonly encountered toxicities of these treatments limit their role in achieving desired response rates and durable remissions. The Antibody-Drug Conjugate (ADC) is a novel class of targeted therapy that has demonstrated significant efficacy in treating various cancers, including lymphomas. To date, three ADC agents have been approved for different lymphomas, marking a significant advancement in the field. In this article, we aim to review the concept of ADCs and their application in lymphoma treatment, provide an analysis of currently approved agents, and discuss the ongoing advancements of ADC development.
Collapse
Affiliation(s)
| | | | - Georgios Pongas
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Hu S, Wu Y, Luan J, Wang S, Fan G. Cost-utility analysis of trastuzumab deruxtecan versus trastuzumab emtansine in HER2-positive metastatic breast cancer in Chinese setting. J Cancer Res Clin Oncol 2023; 149:17933-17942. [PMID: 37964082 DOI: 10.1007/s00432-023-05496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
PURPOSE Trastuzumab deruxtecan (T-DXd) expressed substantial improvement in the progression-free survival and overall survival contrasted with trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer (mBC), becoming the second-line standard of care, promisingly. We aim to estimate the cost-utility of T-DXd versus T-DM1 in HER2-positive mBC from the Chinese healthcare perspective. METHODS A partitioned survival model was applied to examine the cost-utility of T-DXd versus T-DM1. Clinical patients and outcome data were sourced from the DESTINY-Breast 03 trial. Costs and utilities were sourced in Chinese setting. Total costs, quality-adjusted life months (QALMs), and an incremental cost-utility ratios (ICUR) were calculated for cost-utility analysis. The willingness-to-pay threshold was set at $3188/QALM. Univariate, scenario, and probabilistic sensitivity analyses were performed. RESULTS T-DXd group gained ∆QALM of 7.09 months and ∆Cost of $304,503 compared with T-DM1 therapy, which caused an ICUR of $42,936/QALM. The results of sensitivity analyses confirmed the base-case findings. Furthermore, T-DXd must reduce the price to enter the Chinese mainland market. At least when the cycle cost of T-DXd is reduced to $2975, T-DXd has an 83.3% chance of becoming a better choice. CONCLUSIONS T-DXd appears to be not cost effective compared with T-DM1 for HER2-positive mBC patients previously treated with trastuzumab and a taxane.
Collapse
Affiliation(s)
- Shanshan Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yilai Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Anhui, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Anhui, China
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
11
|
Schoenfeld K, Harwardt J, Habermann J, Elter A, Kolmar H. Conditional activation of an anti-IgM antibody-drug conjugate for precise B cell lymphoma targeting. Front Immunol 2023; 14:1258700. [PMID: 37841262 PMCID: PMC10569071 DOI: 10.3389/fimmu.2023.1258700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Cancerous B cells are almost indistinguishable from their non-malignant counterparts regarding their surface antigen expression. Accordingly, the challenge to be faced consists in elimination of the malignant B cell population while maintaining a functional adaptive immune system. Here, we present an IgM-specific antibody-drug conjugate masked by fusion of the epitope-bearing IgM constant domain. Antibody masking impaired interaction with soluble pentameric as well as cell surface-expressed IgM molecules rendering the antibody cytotoxically inactive. Binding capacity of the anti-IgM antibody drug conjugate was restored upon conditional protease-mediated demasking which consequently enabled target-dependent antibody internalization and subsequent induction of apoptosis in malignant B cells. This easily adaptable approach potentially provides a novel mechanism of clonal B cell lymphoma eradication to the arsenal available for non-Hodgkin's lymphoma treatment.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|