1
|
Wang D, Zhao X, Li J, Song Y, Chen W, Cai X, Liu R, Chen Z. Ginkgo biloba extract mediates HT22 cell proliferation and migration after oxygen-glucose deprivation/reoxygenation via regulating RhoA-ROCK2 signalling pathway. Metab Brain Dis 2025; 40:91. [PMID: 39775993 PMCID: PMC11706868 DOI: 10.1007/s11011-024-01502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
Vascular dementia (VD) is a neurocognitive disorder resulting from cerebral vascular disorders, leading to the demise of neurons and cognitive deficits, posing significant health concerns globally. Derived from Ginkgo biloba leaves, EGb761 is a potent bioactive compound widely recognized for its benefits in treating cerebrovascular diseases. Previous studies have demonstrated that the administration of EGb761 to VD rats enhances the proliferation, differentiation, and migration of neurons, effectively alleviating cognitive dysfunction. However, the specific mechanisms by which EGb761 exerts its remedial influence on VD persist in ambiguity. This investigation utilized an integrated approach incorporating network pharmacology with experimental procedures on HT-22 mouse hippocampal neuronal cells amidst oxygen-glucose deprivation and reoxygenation (OGD/R) to delve into certain repercussions of EGb761 on cell proliferation and migration. Results revealed that ras homolog family member A (RHOA) and B-cell lymphoma 2 (BCL-2) are potential targets of Ginkgo biloba leaves. Target genes are mainly enriched in pathways including those involved in growth hormone synthesis, secretion and action and the neurotrophin signalling pathway. Cellular experiments further demonstrated that the application of EGb761 notably enhanced the viability, proliferation, and migration of HT22 cells subjected to OGD/R through RhoA-ROCK2 pathway. In conclusion, our findings indicated that EGb761 significantly enhances neuronal proliferation and migration following OGD/R injury by targeting the RhoA-ROCK2 signalling pathway, thus offering valuable insights into its potential as a treatment for VD.
Collapse
Affiliation(s)
- Dexiu Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P.R. China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Xin Zhao
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China
| | - Jinghan Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Yang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, P.R. China
| | - Ruofan Liu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China.
| | - Zetao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China.
- Subject of Integrated Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, P.R. China.
| |
Collapse
|
2
|
Owczarek M, Herczyńska L, Sitarek P, Kowalczyk T, Synowiec E, Śliwiński T, Krucińska I. Chitosan Nanoparticles-Preparation, Characterization and Their Combination with Ginkgo biloba Extract in Preliminary In Vitro Studies. Molecules 2023; 28:4950. [PMID: 37446611 DOI: 10.3390/molecules28134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Nanoparticles (NPs), due to their size, have a key position in nanotechnology as a spectrum of solutions in medicine. NPs improve the ability of active substances to penetrate various routes: transdermal, but also digestive (active endocytosis), respiratory and injection. Chitosan, an N-deacetylated derivative of chitin, is a natural biodegradable cationic polymer with antioxidant, anti-inflammatory and antimicrobial properties. Cross-linked chitosan is an excellent matrix for the production of nanoparticles containing active substances, e.g., the Ginkgo biloba extract (GBE). Chitosan nanoparticles with the Ginkgo biloba extract (GBE) were obtained by ion gelation using TPP as a cross-linking agent. The obtained product was characterized in terms of morphology and size based on SEM and Zeta Sizer analyses as well as an effective encapsulation of GBE in nanoparticles-FTIR-ATR and UV-Vis analyses. The kinetics of release of the active substance in water and physiological saline were checked. Biological studies were carried out on normal and cancer cell lines to check the cytotoxic effect of GBE, chitosan nanoparticles and a combination of the chitosan nanoparticles with GBE. The obtained nanoparticles contained and released GBE encapsulated in research media. Pure NPs, GBE and a combination of NPs and the extract showed cytotoxicity against tumor cells, with no cytotoxicity against the physiological cell line.
Collapse
Affiliation(s)
- Monika Owczarek
- Łukasiewicz Research Network-Lodz Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Lodz, Poland
- Institute of Materials Science of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Lucyna Herczyńska
- Institute of Materials Science of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Śliwiński
- Department of Medical Biochemistry, Medical University of Lodz, 90-001 Lodz, Poland
| | - Izabella Krucińska
- Institute of Materials Science of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
3
|
Lee MG, Lee SG, Nam KS. Ginkgolide B Suppresses TPA-induced Metastatic Potential in MCF-7 Human Breast Cancer Cells by Inhibiting MAPK/AP-1 Signaling. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Therapeutic Versus Preventative Use of Ginkgo biloba Extract (EGb 761) against Indomethacin-Induced Gastric Ulcer in Mice. Molecules 2022; 27:molecules27175598. [PMID: 36080365 PMCID: PMC9458100 DOI: 10.3390/molecules27175598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022] Open
Abstract
The main bioactive constituents in the standardized Ginkgo biloba leaf extract (EGb 761) are the terpene lactones and flavonoid glycosides. EGb 761’s antioxidant and anti-inflammatory properties have previously been demonstrated. Indomethacin-induced gastric ulcers have a multifactorial etiology and represent a major restriction to its therapeutic utility. The underlying ulcerogenic process involves oxidative and inflammatory biomolecular insults. This study was performed to explore the curative and preventative benefits of EGb 761 in experimentally-induced ulcers. To develop gastric ulcers in mice, indomethacin (40 mg/kg) was administered orally. EGb 761 (200 mg/kg) was given by gavage for 7 days before (preventative) and after (therapeutic) indomethacin administration. The histological alterations and macroscopic mucosal lesions were assessed. In gastric tissue homogenates, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), and inflammatory cytokines were measured. The expressions of cyclooxygenase-2 (COX-2), cytokines, and proliferating cell nuclear antigen (PCNA) in the stomach mucosa were also investigated. The ulcer index, histological alterations, gastric oxidants, and inflammatory biomarkers were all significantly increased by indomethacin. In stomach specimens, it increased COX-2 and PCNA expression. EGb 761 treatments, both prophylactic and therapeutic, resulted in significant reductions in ulcer lesions, nitrosative and oxidative damage, and inflammatory markers, along with the lowering of COX-2 and PCNA expressions. Furthermore, in the fight against stomach ulcers, EGb 761 treatment was found to be more efficient than prevention.
Collapse
|
5
|
Kashyap A, Tripathi G, Tripathi A, Rao R, Kashyap M, Bhat A, Kumar D, Rajhans A, Kumar P, Chandrashekar DS, Mahmood R, Husain A, Zayed H, Bharti AC, Kashyap MK. RNA splicing: a dual-edged sword for hepatocellular carcinoma. Med Oncol 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
Affiliation(s)
- Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Manju Kashyap
- Facultad de Ingeniería Y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Deepak Kumar
- ThermoFisher Scientific, Carlsbad, CA, 92008, USA
| | - Anjali Rajhans
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | | | - Riaz Mahmood
- Department of Biotechnology and Bioinformatics, Kuvempu University, Shankaragatta (Shimoga), Jnanasahyadri, Karnataka, 577451, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India.
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
6
|
Boateng ID. A critical review of Ginkgolic acid in Ginkgo biloba leaves extract (EGb). Toxicity, technologies to remove the ginkgolic acids and its promising bioactivities. Food Funct 2022; 13:9226-9242. [DOI: 10.1039/d2fo01827f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ginkgo biloba leaves extract (EGb) is high in bioactive components (over 170), which are used in food additives, medicine, cosmetics, health products, and other sectors. Nonetheless, ginkgolic acids (GAs) in...
Collapse
|
7
|
Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020; 63:15410-15448. [PMID: 33289552 PMCID: PMC7812702 DOI: 10.1021/acs.jmedchem.0c01449] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, 1), parthenolide (PTL, 2), thapsigargin (TPG, 3), andrographolide (AGL, 4), ginkgolide B (GKL B, 5), jolkinolide B (JKL B, 6), nagilactone E (NGL E, 7), triptolide (TPL, 8), bruceantin (BRC, 9), dichapetalin A (DCT A, 10), and limonin (LMN, 11), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
8
|
Feodorova Y, Tomova T, Minchev D, Turiyski V, Draganov M, Argirova M. Cytotoxic effect of Ginkgo biloba kernel extract on HCT116 and A2058 cancer cell lines. Heliyon 2020; 6:e04941. [PMID: 33005784 PMCID: PMC7509470 DOI: 10.1016/j.heliyon.2020.e04941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
While the pharmacology of Ginkgo biloba leaf extract has been studied extensively, little is known about the pharmacological potential of Ginkgo biloba seeds, although they contain similar active ingredients that are responsible for the therapeutic effects of the leaf extract. In this study we used 70%-methanol Ginkgo biloba kernel extract, quantified its bioactive constituents and tested their cytotoxic effect on two cancer cell lines, A2058 and HCT116, and the non-tumor cell line McCoy-Plovdiv. We studied the biological effect of the extract by real-time analysis in the xCELLigence system, WST-1 assay and LIVE/DEAD viability assay. We show that the extract significantly perturbed the viability of cancer cells in a concentration- and time-dependent manner. In contrast, non-cancerous McCoy-Plovdiv cells sustained their proliferation potential even at high concentrations of the extract. Therefore, we propose that the active constituents of the Ginkgo biloba endosperm extract may interact additively or synergistically to protect against cancer.
Collapse
Affiliation(s)
- Yana Feodorova
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria.,Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Teodora Tomova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Danail Minchev
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria.,Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Valentin Turiyski
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Marian Draganov
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| | - Mariana Argirova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd, Plovdiv, 4000, Bulgaria
| |
Collapse
|
9
|
Wang X, Shao QH, Zhou H, Wu JL, Quan WQ, Ji P, Yao YW, Li D, Sun ZJ. Ginkgolide B inhibits lung cancer cells promotion via beclin-1-dependent autophagy. BMC Complement Med Ther 2020; 20:194. [PMID: 32576183 PMCID: PMC7310550 DOI: 10.1186/s12906-020-02980-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Ginkgolide B (GKB) is a major active component of the extracts of Ginkgo biloba leaves, and it has been used as an anti-cancer agent. However, it is unknown whether GKB has the therapeutic effects on lung cancer. Here, we studied the effects of GKB on lung cancer cells. METHODS The effects of GKB on lung cancer cell proliferation and invasion were analyzed by cell counting kit (CCK-8) and cell invasion assays, respectively. Apoptosis was detected by flow cytometry. Western blot analysis was used to confirm the expression of autophagy-associated proteins in GKB-treated cells. Immunofluorescence analysis was used to analyze the level of light chain 3B (LC3B). RESULTS Treatment with GKB time-dependently inhibited the proliferation and decreased the invasive capacity of A549 and H1975 cells. GKB induced apoptosis of these cells, but there was no significant effect on apoptosis compared to the control treatment. GKB-induced inhibition of cell proliferation and GKB-induced cell death were due to autophagy rather than apoptosis. GKB-induced autophagy of lung cancer cells was dependent on beclin-1, and autophagy-induced inhibition of the NLRP3 inflammasome contributed to the anti-tumor effect of GKB. CONCLUSIONS GKB-mediated autophagy of lung cancer cells is beclin-1-dependent and results in inhibition of the NLRP3 inflammasome. Therefore, GKB might be a potential therapeutic candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pharmacy, Putuo People’s Hospital, Shanghai, 200060 China
| | - Qi-Hui Shao
- grid.24516.340000000123704535Department of Traditional Chinese Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Hao Zhou
- Department of Pharmacy, Putuo People’s Hospital, Shanghai, 200060 China
| | - Jun-Lu Wu
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Wen-Qiang Quan
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Ping Ji
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Yi-Wen Yao
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Dong Li
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| | - Zu-Jun Sun
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
10
|
Jung JH, Hwang J, Kim JH, Sim DY, Im E, Park JE, Park WY, Shim BS, Kim B, Kim SH. Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms. Semin Cancer Biol 2019; 68:164-174. [PMID: 31883914 DOI: 10.1016/j.semcancer.2019.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/18/2019] [Accepted: 12/15/2019] [Indexed: 12/24/2022]
Abstract
Though limited success through chemotherapy, radiotherapy and surgery has been obtained for efficient cancer therapy for modern decades, cancers are still considered high burden to human health worldwide to date. Recently repurposing drugs are attractive with lower cost and shorter time compared to classical drug discovery, just as Metformin from Galega officinalis, originally approved for treating Type 2 diabetes by FDA, is globally valued at millions of US dollars for cancer therapy. As most previous reviews focused on FDA approved drugs and synthetic agents, current review discussed the anticancer potential of phytochemicals originally approved for treatment of cardiovascular diseases, diabetes, infectious diarrhea, depression and malaria with their molecular mechanisms and efficacies and suggested future research perspectives.
Collapse
Affiliation(s)
- Ji Hoon Jung
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Ju-Ha Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Eunji Im
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Woon Yi Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Bum-Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea.
| |
Collapse
|
11
|
Silva AM, Silva SC, Soares JP, Martins-Gomes C, Teixeira JP, Leal F, Gaivão I. Ginkgo biloba L. Leaf Extract Protects HepG2 Cells Against Paraquat-Induced Oxidative DNA Damage. PLANTS 2019; 8:plants8120556. [PMID: 31795413 PMCID: PMC6963582 DOI: 10.3390/plants8120556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Ginkgo biloba L. leaf extracts and herbal infusions are used worldwide due to the health benefits that are attributed to its use, including anti-neoplastic, anti-aging, neuro-protection, antioxidant and others. The aim of this study was to evaluate the effect of an aqueous Ginkgo biloba extract on HepG2 cell viability, genotoxicity and DNA protection against paraquat-induced oxidative damage. Exposure to paraquat (PQ), over 24 h incubation at 1.0 and 1.5 µM, did not significantly reduce cell viability but induced concentration and time-dependent oxidative DNA damage. Ginkgo biloba leaf extract produced dose-dependent cytotoxicity (IC50 = 540.8 ± 40.5 µg/mL at 24 h exposure), and short incubations (1 h) produced basal and oxidative DNA damage (>750 and 1500 µg/mL, respectively). However, lower concentrations (e.g., 75 µg/mL) of Ginkgo biloba leaf extract were not cytotoxic and reduced basal DNA damage, indicating a protective effect at incubations up to 4 h. On the other hand, longer incubations (24 h) induced oxidative DNA damage. Co-incubation of HepG2 cells for 4 h, with G. biloba leaf extract (75 µg/mL) and PQ (1.0 or 1.5 µM) significantly reduced PQ-induced oxidative DNA damage. In conclusion, the consumption of Ginkgo biloba leaf extract for long periods at high doses/concentrations is potentially toxic; however, low doses protect the cells against basal oxidative damage and against environmentally derived toxicants that induce oxidative DNA damage.
Collapse
Affiliation(s)
- Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (ECVA, UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (S.C.S.); (C.M.-G.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, (CITAB-UTAD), Quinta de Prados, 5001-801 Vila-Real, Portugal
- Correspondence: (A.M.S.); (I.G.); Tel.: +351-259350921 (A.M.S.); +351-259350734 (I.G.)
| | - Sandra C. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (ECVA, UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (S.C.S.); (C.M.-G.)
- Department of Genetic and Biotechnology, (ECVA, UTAD), Quinta de Prados, 5001-801 Vila-Real, Portugal;
| | - Jorge P. Soares
- Research Center in Sports, Health Sciences and Human Development, ECVA, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Carlos Martins-Gomes
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (ECVA, UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (S.C.S.); (C.M.-G.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, (CITAB-UTAD), Quinta de Prados, 5001-801 Vila-Real, Portugal
| | - João Paulo Teixeira
- National Health Institute Dr. Ricardo Jorge (INSA), Rua Alexandre Herculano 321, 4000-055 Porto, Portugal;
- EPIUnit—Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas, 135, 4050-091 Porto, Portugal
| | - Fernanda Leal
- Department of Genetic and Biotechnology, (ECVA, UTAD), Quinta de Prados, 5001-801 Vila-Real, Portugal;
- BioISI—Biosystems & Integrative Sciences Institute, University of Trás-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Isabel Gaivão
- Department of Genetic and Biotechnology, (ECVA, UTAD), Quinta de Prados, 5001-801 Vila-Real, Portugal;
- The Veterinary and Animal Research Centre, (CECAV-UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (A.M.S.); (I.G.); Tel.: +351-259350921 (A.M.S.); +351-259350734 (I.G.)
| |
Collapse
|
12
|
Czauderna C, Palestino-Dominguez M, Castven D, Becker D, Zanon-Rodriguez L, Hajduk J, Mahn FL, Herr M, Strand D, Strand S, Heilmann-Heimbach S, Gomez-Quiroz LE, Wörns MA, Galle PR, Marquardt JU. Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver. PLoS One 2018; 13:e0209067. [PMID: 30576355 PMCID: PMC6303069 DOI: 10.1371/journal.pone.0209067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepatoma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0–1000 μg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects were detected in all cell lines, EGb761 promoted anti-proliferative and pro-apoptotic effects mainly in hepatoma cells. Consistently, EGb761 treatment caused a significant reduction in colony and sphere forming ability in hepatoma cells and no mentionable changes in IH. Transcriptomic changes involved oxidative stress response as well as key oncogenic pathways resembling Nrf2- and mTOR signaling pathway. Taken together, EGb761 induces differential effects in non-transformed and cancer cells. While treatment confers protective effects in non-malignant cells, EGb761 significantly impairs tumorigenic properties in cancer cells by affecting key oncogenic pathways. Results provide the rational for clinical testing of EGb761 in preventive and therapeutic strategies in human liver diseases.
Collapse
Affiliation(s)
- Carolin Czauderna
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Mayrel Palestino-Dominguez
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, Mexico
| | - Darko Castven
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Diana Becker
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Luis Zanon-Rodriguez
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Jovana Hajduk
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Friederike L. Mahn
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Monika Herr
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
| | - Dennis Strand
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Strand
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Stefanie Heilmann-Heimbach
- Department of Genomics of Institute of Human Genetics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Luis E. Gomez-Quiroz
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, Mexico
| | - Marcus A. Wörns
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Peter R. Galle
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Jens U. Marquardt
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
- Lichtenberg Research Group “Molecular Hepatocarcinogenesis”, Mainz, Germany
- * E-mail:
| |
Collapse
|
13
|
Qi QM, Xue YC, Lv J, Sun D, Du JX, Cai SQ, Li YH, Gu TC, Wang MB. Ginkgolic acids induce HepG2 cell death via a combination of apoptosis, autophagy and the mitochondrial pathway. Oncol Lett 2018; 15:6400-6408. [PMID: 29725398 PMCID: PMC5920365 DOI: 10.3892/ol.2018.8177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
Ginkgolic acids may induce malignant cell death via the B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 apoptosis pathway. Concurrently, apoptosis, autophagy and mitochondrial dysfunction may also be involved in bringing about this endpoint. The anticancer effect of Ginkgolic acids (GAs) was investigated using the HepG2 cell line. The median lethal dose of the GAs of the HepG2 was measured via an MTT assay, the dose-response curves were evaluated and changes in cell morphology were monitored by microscopy. Autophagy in HepG2 cells was down regulated using 3-methyladenine (3-MA) or Beclin-1-specific small interfering RNA (siRNA) and the expression of apoptosis associated proteins caspase-3, Bax/Bcl-2, and the autophagy-associated protein 5 and microtubule-associated protein 1A/1B-light chain 3 in the GA-treated HepG2 cells were all measured by western blot analysis. The level of apoptosis in the GA-treated cells was also assessed using terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling (TUNEL) assay, and the mitochondrial membrane potential (Δψm) was detected by immunofluorescence. The results of the MTT and TUNEL assays indicated that the proliferation of HepG2 cells treated with GAs was significantly reduced compared with the control group, and the rate of the inhibition was dose-dependent. Western blot analysis indicated that treatment with the Gas induced apoptosis and autophagy in the HepG2 cells. The Δψm of the GA-treated HepG2 cells was decreased compared with the control, as monitored by immunofluorescence. However, upon the administration of 3-MA or Beclin-1-specific siRNAs (inhibitors of the autophagy), the expression levels of the apoptosis- and autophagy-associated proteins were decreased. In conclusion, the results of the present study indicated that GAs are potent anticancer agents that function through a combination of the apoptosis, autophagy and mitochondrial pathways.
Collapse
Affiliation(s)
- Qian-Ming Qi
- Department of Medical Laboratory, The 359th Hospital of The People's Liberation Army, Zhenjiang, Jiangsu 212000, P.R. China
| | - Yin-Cun Xue
- Department of General Surgery, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Di Sun
- Department of General Surgery, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Jian-Xin Du
- Department of General Surgery, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Sheng-Qiang Cai
- Department of General Surgery, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Yun-He Li
- Department of General Surgery, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Tian-Cun Gu
- Department of General Surgery, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Mu-Bing Wang
- Department of General Surgery, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China,Correspondence to: Dr Mu-Bing Wang, Department of General Surgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Taizhou, Jiangsu 214500, P.R. China, E-mail:
| |
Collapse
|
14
|
Grollino MG, Raschellà G, Cordelli E, Villani P, Pieraccioli M, Paximadas I, Malandrino S, Bonassi S, Pacchierotti F. Cytotoxicity, genotoxicity and gene expression changes elicited by exposure of human hepatic cells to Ginkgo biloba leaf extract. Food Chem Toxicol 2017; 109:486-496. [DOI: 10.1016/j.fct.2017.09.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 01/04/2023]
|
15
|
Liu T, Zhang J, Chai Z, Wang G, Cui N, Zhou B. Ginkgo biloba extract EGb 761-induced upregulation of LincRNA-p21 inhibits colorectal cancer metastasis by associating with EZH2. Oncotarget 2017; 8:91614-91627. [PMID: 29207671 PMCID: PMC5710951 DOI: 10.18632/oncotarget.21345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
EGb 761, the standard ginkgo biloba extract, is frequently prescribed in traditional Chinese medicine. Currently, there is no research focusing on its role in human colorectal cancer progression. In our study, we determined the anti-metastatic effect of EGb 761 on colorectal cancer cells and further explored the potential underlying regulatory mechanism. The cell migration and invasion assay indicated that EGb 761 treatment of colorectal cancer cells induced inhibition of cell migration and invasion ability in a concentration-dependent manner. To further explore the underlying regulatory mechanisms that may account for these findings, we performed quantitative real-time PCR (RT-qPCR), western blotting and immunoprecipitation analysis. The results showed that EGb 761 induced upregulation of LincRNA-p21 expression in a dose- and time-dependent manner. Overexpression of LincRNA-p21 also suppressed colorectal cancer cell metastasis. Furthermore, EGb 761 as well as LincRNA-p21 inhibited the expression of extracellular matrix protein, fibronectin. More importantly, RNA immunoprecipitation (RIP) and Chromatin immunoprecipitation (ChIP) assays showed that LincRNA-p21 directly interacted with EZH2, and this interaction suppressed the expression of fibronectin. Finally, the gain and loss function assay revealed that EGb 761 inhibited migration, invasion and fibronctin expression by the LincRNA-p21/EZH2 pathway in colorectal cancer cells. Hence, EGb 761 may be a promising treatment regimen for colorectal cancer and restoration of LincRNA-p21 levels may be helpful for enhancing the anti-cancer effect of EGb 761.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Integrated Chinese and Western Medicine Surgery, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Anorectal Surgery, Tianjin Binhai New Area Traditional Chinese Medicine Hospital, Tianjin, China
| | - Junzhong Zhang
- Department of Anorectal Surgery, Tianjin Binhai New Area Traditional Chinese Medicine Hospital, Tianjin, China
| | - Zhongqiu Chai
- Department of Science and Education, Tianjin Binhai New Area Traditional Chinese Medicine Hospital, Tianjin, China
| | - Gang Wang
- Department of Oncology, Ruijin Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Naiqiang Cui
- Department of Integrated Chinese and Western Medicine Surgery, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bing Zhou
- Department of Integrated Chinese and Western Medicine Surgery, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Mostofa R, Ahmed S, Begum MM, Sohanur Rahman M, Begum T, Ahmed SU, Tuhin RH, Das M, Hossain A, Sharma M, Begum R. Evaluation of anti-inflammatory and gastric anti-ulcer activity of Phyllanthus niruri L. (Euphorbiaceae) leaves in experimental rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:267. [PMID: 28511679 PMCID: PMC5434621 DOI: 10.1186/s12906-017-1771-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/08/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND The medicinal plants signify a massive basin of potential phytoconstituents that could be valuable as a substitute to allopathic drugs or considered as an analogue in drug development. Phyllanthus niruri L. (Euphorbiaceae) is generally used in traditional medicine to treat ulcer and inflammation. In this project we investigated the methanolic extract of leaves of Phyllanthus niruri for anti-inflammatory and anti-ulcer activity. METHODS The anti-inflammatory activity of methanol extract of Phyllanthus niruri leaves was evaluated at the doses of 100, 200 and 400 mg/kg, p.o. while using ibuprofen (20 mg/kg, p.o) as the standard drug. The animals used were Swiss albino rats. Inflammation was induced by injecting 0.1 ml carrageenan (1% w/v) into the left hind paw. Paw tissues from the different groups were examined for inflammatory cell infiltration. On the other hand, antiulcer activity of methanolic extract of P. niruri leaves at the doses of 100, 200 and 400 mg/kg, p.o. were examined against ethanol-acid induced gastric mucosal injury in the Swiss albino rats - keeping omeprazole (20 mg/kg, p.o.) as reference. The rats were dissected and the stomachs were macroscopically examined to identify hemorrhagic lesions in the glandular mucosa. RESULTS P. niruri significantly (p < 0.01) decreased carrageenan-induced paw edema; it exhibited a reduction of 46.80%, 55.32% and 69.14% at doses of 100, 200 and 400 mg/kg, respectively. These findings were further supported by the histological study. The methanolic extract also disclosed good protective effect against ethanol-acid induced gastric mucosal injury in the rats. Administration of the extract's doses (100, 200 and 400 mg/kg) demonstrated a significant (p < 0.01) reduction in the ethanol- acid induced gastric erosion in all the experimental groups when compared to the control. The methanolic extract at the higher dose (400 mg/kg) resulted in better inhibition of ethanol-acid induced gastric ulcer as compare to omeprazole (20 mg/kg). Histological studies of the gastric wall revealed that toxic control rats revealed mucosal degeneration, ulceration and migration of numerous inflammatory cells throughout the section. On the other hand, MEPN treatment groups showed significant regeneration of mucosal layer and significantly prevented the formation of hemorrhage and edema. CONCLUSIONS The investigation suggests that methanolic extract of P. niruri leaf possess anti-inflammatory activity and promotes ulcer protection as ascertained by regeneration of mucosal layer and substantial prevention of the formation of hemorrhage and edema.
Collapse
Affiliation(s)
- Ronia Mostofa
- Department of Pharmacy, Primeasia University, Dhaka, 1213 Bangladesh
| | - Shanta Ahmed
- Department of Pharmacy, Primeasia University, Dhaka, 1213 Bangladesh
| | - Mst. Marium Begum
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Taslima Begum
- Department of Pharmacy, Primeasia University, Dhaka, 1213 Bangladesh
| | - Siraj Uddin Ahmed
- Department of Pharmacy, Primeasia University, Dhaka, 1213 Bangladesh
| | | | - Munny Das
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229 Bangladesh
| | - Amir Hossain
- Department of Pharmacy, Primeasia University, Dhaka, 1213 Bangladesh
| | - Manju Sharma
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, 110062 India
| | - Rayhana Begum
- Department of Pharmacy, Primeasia University, Dhaka, 1213 Bangladesh
| |
Collapse
|
17
|
Mei N, Guo X, Ren Z, Kobayashi D, Wada K, Guo L. Review of Ginkgo biloba-induced toxicity, from experimental studies to human case reports. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:1-28. [PMID: 28055331 PMCID: PMC6373469 DOI: 10.1080/10590501.2016.1278298] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ginkgo biloba seeds and leaves have been used as a traditional herbal remedy for thousands of years, and its leaf extract has been consumed as a botanical dietary supplement for decades. Ginkgo biloba extract is a complex mixture with numerous components, including flavonol glycosides and terpene lactones, and is one of the most widely sold botanical dietary supplements worldwide. Concerns about potential health risks for the general population have been raised because of the widespread human exposure to Ginkgo biloba and its potential toxic and carcinogenic activities in rodents. The National Toxicology Program conducted 2-year gavage studies on one Ginkgo biloba leaf extract and concluded that there was clear evidence of carcinogenic activity of this extract in mice based on an increased incidence of hepatocellular carcinoma and hepatoblastoma. Recently, Ginkgo biloba leaf extract has been classified as a possible human carcinogen (Group 2B) by the International Agency for Research on Cancer. This review presents updated information on the toxicological effects from experimental studies both in vitro and in vivo to human case reports (caused by ginkgo seeds or leaves), and also summarizes the negative results from relatively large clinical trials.
Collapse
Affiliation(s)
- Nan Mei
- a Division of Genetic and Molecular Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Xiaoqing Guo
- a Division of Genetic and Molecular Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Zhen Ren
- b Division of Biochemical Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Daisuke Kobayashi
- c Department of Food and Chemical Toxicology , Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido , Hokkaido , Japan
| | - Keiji Wada
- c Department of Food and Chemical Toxicology , Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido , Hokkaido , Japan
| | - Lei Guo
- b Division of Biochemical Toxicology , National Center for Toxicological Research , Jefferson , Arkansas , USA
| |
Collapse
|
18
|
EGb-761 Attenuates the Anti-proliferative Activity of Fluoride via DDK1 in PC-12 Cells. Neurochem Res 2016; 42:606-614. [DOI: 10.1007/s11064-016-2115-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023]
|
19
|
Cai Z, Wang C, Liu P, Shen P, Han Y, Liu N. Ginkgo biloba extract in combination with sorafenib is clinically safe and tolerable in advanced hepatocellular carcinoma patients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1295-1300. [PMID: 27765348 DOI: 10.1016/j.phymed.2016.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/24/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Sorafenib is the only therapy shown to improve overall survival in advanced hepatocellular carcinoma (HCC). However, the clinical efficacy of sorafenib is limited. Combination therapy targeting multiple signaling pathways may improve outcomes. Ginkgo biloba extract (GBE) has exhibited antitumor activity in multiple human cancers. HYPOTHESIS/PURPOSE This study was designed to evaluate the tolerability and effectiveness of GBE combined with sorafenib in patients with advanced HCC. STUDY DESIGN Patients with advanced HCC were treated with increasing doses of GBE in combination with sorafenib. METHODS We first determined the maximum tolerated dose (MTD) of GBE, then the patients were treated with GBE at the MTD to evaluate its safety and efficacy. 27 patients were enrolled in the first part of our study and treated with sorafenib 400mg twice daily (BID) and increasing doses (cohort 1: 60mg, cohort 2: 120mg, cohort 3: 240mg, cohort 4: 360mg) of GBE once daily (QD). An additional group of 32 new patients next to the 27 described before were accrued for the second part of our study, and all these 32 patients were eligible for the evaluation of toxicity and efficacy. RESULTS No patient in cohort 1 and 2 experienced a dose-limiting toxicity (DLT). One of the ten patients in cohort 3 experienced a DLT. DLT occurred in two of the three initial patients in cohort 4. Cohort 3 (GBE 240mg QD plus sorafenib 400mg BID) was considered to be the MTD. Three patients had a partial response, 21 had stable disease, and 8 had progressive disease. The median times to progression and overall survival were 2.5 and 11.6 months, respectively. Compared with previous study, the toxicities of the combination therapy were similar with those observed in sorafenib monotherapy, GBE in combination with sorafenib slightly improved OS. CONCLUSIONS The combination of GBE (240mg QD) and standard dose sorafenib (400mg BID) is safe and tolerable among patients with advanced HCC. Early signs of antitumor activity may warrant further development of this combination.
Collapse
Affiliation(s)
- Zhen Cai
- Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China
| | - Chunge Wang
- Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China
| | - Peiwen Liu
- Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China
| | - Peng Shen
- Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China
| | - Yingying Han
- Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China
| | - Nawen Liu
- Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China.
| |
Collapse
|
20
|
Ye L, Jia Y, Ji KE, Sanders AJ, Xue K, Ji J, Mason MD, Jiang WG. Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis. Oncol Lett 2015; 10:1240-1250. [PMID: 26622657 DOI: 10.3892/ol.2015.3459] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 02/25/2015] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been a major part of healthcare in China, and has extensively affected medicine and healthcare in surrounding countries over a long period of time. In the fight against cancer, certain anticancer remedies using herbs or herbal formulas derived from TCM have been developed for the management of malignancies. Furthermore, there are clinical trials registered for the use of herbal remedies in cancer management. Herbal medicine has been used as part of combined therapies to reduce the side-effects of chemotherapy, including bone marrow suppression, nausea and vomiting. Herbal remedies have also been used as chemopreventive therapies to treat precancerous conditions in order to reduce the incidence of cancer in high-risk populations. Emerging evidence has revealed that herbal remedies can regulate the proliferation, apoptosis, adhesion and migration of cancer cells. In addition to this direct effect upon cancer cells, a number of herbal remedies have been identified to suppress angiogenesis and therefore reduce tumour growth. The inhibition of tumour growth may also be due to modifications of the host immune system by the herbal treatment. However, the precise mechanisms underlying the therapeutic effects of herbal remedies remain poorly understood and are yet to be fully elucidated. The present study aims to summarize the current literature and clinical trial results of herbal remedies for cancer treatment, with a particular focus on the recent findings and development of the Yangzheng Xiaoji capsule.
Collapse
Affiliation(s)
- Lin Ye
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Yongning Jia
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - K E Ji
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Andrew J Sanders
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Kan Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Malcolm D Mason
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
21
|
Wang Y, Lv J, Cheng Y, Du J, Chen D, Li C, Zhang J. Apoptosis induced by Ginkgo biloba (EGb761) in melanoma cells is Mcl-1-dependent. PLoS One 2015; 10:e0124812. [PMID: 25860257 PMCID: PMC4393283 DOI: 10.1371/journal.pone.0124812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Melanoma is an aggressive skin cancer. Unfortunately, there is currently no chemotherapeutic agent available to significantly prolong the survival of the most patients with metastatic melanomas. Here we report that the Ginkgo biloba extract (EGb761), one of the most widely sold herbal supplements in the world, potently induces apoptosis in human melanoma cells by disturbing the balance between pro- and anti-apoptosis Bcl-2 family proteins. Treatment with EGb761 induced varying degrees of apoptosis in melanoma cell lines but not in melanocytes. Induction of apoptosis was caspase-dependent and appeared to be mediated by the mitochondrial pathway, in that it was associated with reduction in mitochondrial membrane potential and activation of Bax and Bak. Although EGb761 did not cause significant change in the expression levels of the BH3-only Bcl-2 family proteins Bim, Puma, Noxa, and Bad, it significantly downregulated Mcl-1 in sensitive but not resistant melanoma cells, suggesting a major role of Mcl-1 in regulating apoptosis of melanoma cells induced by EGb761. Indeed, siRNA knockdown of Mcl-1 enhanced EGb761-induced apoptosis, which was associated with increased activation of Bax and Bak. Taken together, these results demonstrate that EGb761 kills melanoma cells through the mitochondrial apoptotic pathway, and that Mcl-1 is a major regulator of sensitivity of melanoma cells to apoptosis induced by EGb761. Therefore, EGb761 with or without in combination with targeting Mcl-1 may be a useful strategy in the treatment of melanoma.
Collapse
Affiliation(s)
- Yufang Wang
- Department of Pathophysiology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Junping Lv
- Department of Pharmacology, Beijing Institute of Biomedicine, Beijing, P.R. China
| | - Yao Cheng
- Department of Pathophysiology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jipei Du
- Department of Pathophysiology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Degao Chen
- Department of Pathophysiology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Ji Zhang
- Department of Forensic Genetics, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, P.R. China
- * E-mail:
| |
Collapse
|
22
|
Ginkgo biloba extract decreases non-small cell lung cancer cell migration by downregulating metastasis-associated factor heat-shock protein 27. PLoS One 2014; 9:e91331. [PMID: 24618684 PMCID: PMC3950153 DOI: 10.1371/journal.pone.0091331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/09/2014] [Indexed: 02/05/2023] Open
Abstract
Heat-shock proteins (HSPs) are molecular chaperones that protect proteins from damage. HSP27 expression is associated with cancer transformation and invasion. Ginkgo biloba extract (EGb761), the most widely sold herbal supplement, has antiangiogenic effects and induces tumor apoptosis. Data regarding the effect of EGb761 on HSP expression is limited, particularly in cancer. HSP27 expression in paired tumors and normal lung tissues of 64 patients with non-small cell lung cancer (NSCLC) were detected by real-time PCR, western blotting, and immunohistochemistry. NSCLC cell lines (A549/H441) were used to examine the migratory abilities in vitro. NSCLC tissue showed higher HSP27 expression than normal lung tissue. Kaplan–Meier survival analysis showed that NSCLC patients with low HSP27 expression ratio (<1) had significantly longer survival time than those with a high expression ratio (>1) (p = 0.04). EGb761 inhibited HSP27 expression and migratory ability of A549/H441 cells, which is the same as HSP27-siRNA transfection effect. Moreover, EGb761 treatment activated the AKT and p38 pathways and did not affect the expression of PI3K, ERK, and JNK pathways. HSP27 is a poor prognostic indicator of NSCLC. EGb761 can decrease the migration ability of A549/H441 by inhibiting HSP27 expression most likely through AKT and p38 MAPK pathways activation.
Collapse
|
23
|
Ghosh S, Dungdung SR, Choudhury ST, Chakraborty S, Das N. Mitochondria protection with ginkgolide B-loaded polymeric nanocapsules prevents diethylnitrosamine-induced hepatocarcinoma in rats. Nanomedicine (Lond) 2014; 9:441-56. [DOI: 10.2217/nnm.13.56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Hepatocellular carcinoma (HCC) has no successful pharmacotherapeutic remedy. The aim of this study was to ascertain whether ginkgolide B (GB)-loaded polymeric nanocapsules can prevent diethylnitrosamine (DEN)-induced HCC in rats. Materials & methods: GB was fabricated in two types of nanocapsules of which one was polyethylene glycol coated (N1GB) and the other was uncoated (N2GB). These nanocapsules were orally gavaged during DEN-induced HCC development in rats. Results: Nanocapsulation of GB enabled aqueous suspension and slow time-dependent release of the compound. Anticarcinogenic potential of N2GB was reflected by its ability in the management of DEN-induced reactive oxygen species generation, mitochondrial dysfunction, p53, NF-κB, inducible nitric oxide synthase, COX-2 and VEGF expressions, and induction of apoptosis in cancer cells in the rat liver. Conclusion: Positive zeta-potential on N2GB surface might have offered higher hepatic accumulation of GB, especially at the electron-dense organelle mitochondria. Mitochondria protection against DEN-induced oxidative damage ensured HCC prevention. Original submitted 27 June 2012; Revised submitted 4 December 2012; Published online 7 June 2013
Collapse
Affiliation(s)
- Swarupa Ghosh
- Cell Biology & Physiology Division, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata-700032, India
| | - Sandhya Rekha Dungdung
- Cell Biology & Physiology Division, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata-700032, India
| | - Somsubhra Thakur Choudhury
- Drug Development, Diagnostics & Biotechnology Division, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata-700032, India
| | - Somsuta Chakraborty
- Drug Development, Diagnostics & Biotechnology Division, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata-700032, India
| | - Nirmalendu Das
- Drug Development, Diagnostics & Biotechnology Division, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata-700032, India
| |
Collapse
|
24
|
Zhao XD, Dong N, Man HT, Fu ZL, Zhang MH, Kou S, Ma SL. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells. Biomed Rep 2013; 1:797-801. [PMID: 24649031 DOI: 10.3892/br.2013.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/09/2013] [Indexed: 11/06/2022] Open
Abstract
Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway.
Collapse
Affiliation(s)
- Xiao-Dan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Ni Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Hong-Tao Man
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Zhong-Lin Fu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Mei-Hong Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Shuang Kou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Shi-Liang Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| |
Collapse
|
25
|
Lü JM, Yan S, Jamaluddin S, Weakley SM, Liang Z, Siwak EB, Yao Q, Chen C. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro. Med Sci Monit 2012; 18:BR293-298. [PMID: 22847190 PMCID: PMC3560711 DOI: 10.12659/msm.883261] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Several HIV protease mutations, which are resistant to clinical HIV protease inhibitors (PIs), have been identified. There is a great need for second-generation PIs with different chemical structures and/or with an alternative mode of inhibition. Ginkgolic acid is a natural herbal substance and a major component of the lipid fraction in the nutshells of the Ginkgo biloba tree. The objective of this study was to determine whether ginkgolic acid could inhibit HIV protease activity in a cell free system and HIV infection in human cells. MATERIAL/METHODS Purified ginkgolic acid and recombinant HIV-1 HXB2 KIIA protease were used for the HIV protease activity assay. Human peripheral blood mononuclear cells (PBMCs) were used for HIV infection (HIV-1SF162 virus), determined by a p24gag ELISA. Cytotoxicity was also determined. RESULTS Ginkgolic acid (31.2 µg/ml) inhibited HIV protease activity by 60%, compared with the negative control, and the effect was concentration-dependent. In addition, ginkgolic acid treatment (50 and 100 µg/ml) effectively inhibited the HIV infection at day 7 in a concentration-dependent manner. Ginkgolic acid at a concentration of up to 150 µg/ml demonstrated very limited cytotoxicity. CONCLUSIONS Ginkgolic acid effectively inhibits HIV protease activity in a cell free system and HIV infection in PBMCs without significant cytotoxicity. Ginkgolic acid may inhibit HIV protease through different mechanisms than current FDA-approved HIV PI drugs. These properties of ginkgolic acid make it a promising therapy for HIV infection, especially as the clinical problem of viral resistance to HIV PIs continues to grow.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Michael E. DeBakey Department of Surgery, Molecular Surgeon Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
ElMazoudy RH, Attia AA. Efficacy ofGinkgo bilobaon Vaginal Estrous and Ovarian Histological Alterations for Evaluating Anti-Implantation and Abortifacient Potentials in Albino Female Mice. ACTA ACUST UNITED AC 2012; 95:444-59. [DOI: 10.1002/bdrb.21032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/02/2012] [Indexed: 01/13/2023]
Affiliation(s)
- Reda H. ElMazoudy
- Zoology Department; Faculty of Science; Alexandria University; Alexandria; Egypt
| | - Azza A. Attia
- Zoology Department; Faculty of Science; Alexandria University; Alexandria; Egypt
| |
Collapse
|
27
|
Giunta B, Obregon D, Velisetty R, Sanberg PR, Borlongan CV, Tan J. The immunology of traumatic brain injury: a prime target for Alzheimer's disease prevention. J Neuroinflammation 2012; 9:185. [PMID: 22849382 PMCID: PMC3458981 DOI: 10.1186/1742-2094-9-185] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/09/2012] [Indexed: 01/03/2023] Open
Abstract
A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD). The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.
Collapse
Affiliation(s)
- Brian Giunta
- James A. Haley Veterans' Administration Hospital, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Nakahata AM, Mayer B, Ries C, de Paula CAA, Karow M, Neth P, Sampaio MU, Jochum M, Oliva MLV. The effects of a plant proteinase inhibitor from Enterolobium contortisiliquum on human tumor cell lines. Biol Chem 2011; 392:327-36. [PMID: 21781023 DOI: 10.1515/bc.2011.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Supplementary to the efficient inhibition of trypsin, chymotrypsin, plasma kallikrein, and plasmin already described by the EcTI inhibitor from Enterolobium contortisiliquum, it also blocks human neutrophil elastase (K(iapp)=4.3 nM) and prevents phorbol ester (PMA)-stimulated activation of matrix metalloproteinase (MMP)-2 probably via interference with membrane-type 1 (MT1)-MMP. Moreover, plasminogen-induced activation of proMMP-9 and processing of active MMP-2 was also inhibited. Furthermore, the effect of EcTI on the human cancer cell lines HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), K562 and THP-1 (leukemia), as well as on human primary fibroblasts and human mesenchymal stem cells (hMSCs) was studied. EcTI inhibited in a concentration range of 1.0-2.5 μM rather specifically tumor cell viability without targeting primary fibroblasts and hMSCs. Taken together, our data indicate that the polyspecific proteinase inhibitor EcTI prevents proMMP activation and is cytotoxic against tumor cells without affecting normal tissue remodeling fibroblasts or regenerative hMSCs being an important tool in the studies of tumor cell development and dissemination.
Collapse
Affiliation(s)
- Adriana Miti Nakahata
- Departamento de Bioquímica, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio 100, 04044-020, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
El Mesallamy HO, Metwally NS, Soliman MS, Ahmed KA, Abdel Moaty MM. The chemopreventive effect of Ginkgo biloba and Silybum marianum extracts on hepatocarcinogenesis in rats. Cancer Cell Int 2011; 11:38. [PMID: 22040519 PMCID: PMC3225333 DOI: 10.1186/1475-2867-11-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/31/2011] [Indexed: 02/08/2023] Open
Abstract
Background/objective This study was designed to evaluate the potential chemopreventive activities of Ginkgo biloba extract (EGb) and Silybum marianum extract (silymarin) against hepatocarcinogenesis induced by N-nitrosodiethylamine (NDEA) in rats. Methods Rats were divided into 6 groups. Group 1 served as normal control rats. Group 2 animals were intragastrically administrated NDEA at a dose of 10 mg/kg five times a week for 12 weeks to induce hepatocellular carcinoma (HCC). Groups 3 and 4 animals were pretreated with silymarin and EGb respectively. Groups 5 and 6 animals were posttreated with silymarin and EGb respectively. The investigated parameters in serum are alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyltransferase (GGT) and vascular endothelial growth factor (VEGF). The investigated parameters in liver tissue are malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and comet assay parameters. Results In NDEA group, MDA level was elevated with subsequent decrease in GSH level and SOD, GPx and GR activities. In addition, NDEA group revealed a significant increase in serum ALT, AST and GGT activities and VEGF level. Furthermore, NDEA administrated animals showed a marked increase in comet assay parameters. These biochemical alterations induced by NDEA were confirmed by the histopathological examination of rat livers intoxicated with NDEA that showed an obvious cellular damage and well differentiated HCC. In contrast, silymarin+NDEA treated groups (3&5) and EGb+NDEA treated groups (4&6) showed a significant decrease in MDA level and a significant increase in GSH content and SOD, GPx and GR activities compared to NDEA group. Silymarin and EGb also beneficially down-regulated the increase in serum ALT, AST, GGT activities and VEGF level induced by NDEA. In addition, silymarin and EGb significantly decreased comet assay parameters. Histopathological examination of rat livers treated with either silymarin or EGb exhibited an improvement in the liver architecture compared to NDEA group. Conclusions The obtained findings suggested that silymarin and EGb may have beneficial chemopreventive roles against hepatocarcinogenesis through their antioxidant, antiangiogenic and antigenotoxic activities.
Collapse
Affiliation(s)
- Hala O El Mesallamy
- Therapeutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Tahrir st,, Dokki, Giza, Egypt.
| | | | | | | | | |
Collapse
|
30
|
Pszczolkowski MA, Durden K, Sellars S, Cowell B, Brown JJ. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydia pomonella) in apples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10879-10886. [PMID: 21905729 DOI: 10.1021/jf202386c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Codling moth, Cydia pomonella (L.), is a cosmopolitan pest of apple, potentially causing severe damage to the fruit. Currently used methods of combating this insect do not warrant full success or are harmful to the environment. The use of plant-derived semiochemicals for manipulation with fruit-infesting behavior is one of the new avenues for controlling this pest. Here, we explore the potential of Ginkgo biloba and its synthetic metabolites for preventing apple feeding and infestation by neonate larvae of C. pomonella. Experiments with crude extracts indicated that deterrent constituents of ginkgo are present among alkylphenols, terpene trilactones, and flavonol glycosides. Further experiments with ginkgo synthetic metabolites of medical importance, ginkgolic acids, kaempferol, quercetin, isorhamnetin, ginkgolides, and bilobalide, indicated that three out of these chemicals have feeding deterrent properties. Ginkgolic acid 15:0 prevented fruit infestation at concentrations as low as 1 mg/mL, bilobalide had deterrent effects at 0.1 mg/mL and higher concentrations, and ginkgolide B at 10 mg/mL. On the other hand, kaempferol and quercetin promoted fruit infestation by codling moth neonates. Ginkgolic acids 13:0, 15:1, and 17:1, isorhamnetin, and ginkgolides A and C had no effects on fruit infestation-related behavior. Our research is the first report showing that ginkgo constituents influence fruit infestation behavior and have potential applications in fruit protection.
Collapse
Affiliation(s)
- Maciej A Pszczolkowski
- William H. Darr School of Agriculture, Fruit Experiment Station, Missouri State University, 9470 Red Spring Road Mountain Grove, Missouri 65711, United States.
| | | | | | | | | |
Collapse
|
31
|
Lim S, Yoon JW, Kang SM, Choi SH, Cho BJ, Kim M, Park HS, Cho HJ, Shin H, Kim YB, Kim HS, Jang HC, Park KS. EGb761, a Ginkgo biloba extract, is effective against atherosclerosis in vitro, and in a rat model of type 2 diabetes. PLoS One 2011; 6:e20301. [PMID: 21655098 PMCID: PMC3107221 DOI: 10.1371/journal.pone.0020301] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/29/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND EGb761, a standardized Ginkgo biloba extract, has antioxidant and antiplatelet aggregation and thus might protect against atherosclerosis. However, molecular and functional properties of EGb761 and its major subcomponents have not been well characterized. We investigated the effect of EGb761 and its major subcomponents (bilobalide, kaemferol, and quercetin) on preventing atherosclerosis in vitro, and in a rat model of type 2 diabetes. METHODS AND RESULTS EGb761 (100 and 200 mg/kg) or normal saline (control) were administered to Otsuka Long-Evans Tokushima Fatty rats, an obese insulin-resistant rat model, for 6 weeks (from 3 weeks before to 3 weeks after carotid artery injury). Immunohistochemical staining was performed to investigate cell proliferation and apoptosis in the injured arteries. Cell migration, caspase-3 activity and DNA fragmentation, monocyte adhesion, and ICAM-1/VCAM-1 levels were explored in vitro. Treatment with EGb761 dose-dependently reduced intima-media ratio, proliferation of vascular smooth muscle cells (VSMCs) and induced greater apoptosis than the controls. Proliferation and migration of VSMCs in vitro were also decreased by the treatment of EGb761. Glucose homeostasis and circulating adiponectin levels were improved, and plasma hsCRP concentrations were decreased in the treatment groups. Caspase-3 activity and DNA fragmentation increased while monocyte adhesion and ICAM-1/VCAM-1 levels decreased significantly. Among subcomponents of EGb761, kaemferol and quercetin reduced VSMC migration and increased caspase activity. CONCLUSIONS EGb761 has a protective role in the development of atherosclerosis and is a potential therapeutic agent for preventing atherosclerosis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Atherosclerosis/prevention & control
- Caspase 3/metabolism
- Cell Adhesion/drug effects
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclopentanes/pharmacology
- Diabetes Mellitus, Type 2/prevention & control
- Disease Models, Animal
- Furans/pharmacology
- Ginkgo biloba/chemistry
- Ginkgolides/pharmacology
- Humans
- Immunoblotting
- Kaempferols/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Plant Extracts/pharmacology
- Quercetin/pharmacology
- Rats
- Rats, Inbred OLETF
- Reverse Transcriptase Polymerase Chain Reaction
- Tunica Intima/drug effects
- Tunica Intima/metabolism
- Tunica Intima/pathology
- U937 Cells
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ji Won Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seon Mee Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Bong Jun Cho
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ho Seon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyun Ju Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hayley Shin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyo Soo Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
32
|
|
33
|
Babich H, Ackerman NJ, Burekhovich F, Zuckerbraun HL, Schuck AG. Gingko biloba leaf extract induces oxidative stress in carcinoma HSC-2 cells. Toxicol In Vitro 2009; 23:992-9. [DOI: 10.1016/j.tiv.2009.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/21/2009] [Accepted: 06/23/2009] [Indexed: 12/01/2022]
|
34
|
van Patot MCT, Keyes LE, Leadbetter G, Hackett PH. Ginkgo bilobafor Prevention of Acute Mountain Sickness: Does It Work? High Alt Med Biol 2009; 10:33-43. [DOI: 10.1089/ham.2008.1085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Martha C. Tissot van Patot
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
- Altitude Research Center, Division of Emergency Medicine, Department of Surgery, University of Colorado, Denver Colorado
| | - Linda E. Keyes
- Altitude Research Center, Division of Emergency Medicine, Department of Surgery, University of Colorado, Denver Colorado
| | - Guy Leadbetter
- Department of Exercise Physiology, Mesa State College, Grand Junction, Colorado
| | - Peter H. Hackett
- Altitude Research Center, Division of Emergency Medicine, Department of Surgery, University of Colorado, Denver Colorado
- Institute for Altitude Medicine, Telluride, Colorado
| |
Collapse
|
35
|
Koltermann A, Liebl J, Fürst R, Ammer H, Vollmar AM, Zahler S. Ginkgo biloba extract EGb 761 exerts anti-angiogenic effects via activation of tyrosine phosphatases. J Cell Mol Med 2008; 13:2122-2130. [PMID: 19175691 DOI: 10.1111/j.1582-4934.2008.00561.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The standardised Ginkgo biloba extract EGb 761 (Dr. Willmar Schwabe Pharmaceuticals, Karlsruhe, Germany) is one of the most widely used herbal remedies. Indications for this extract range from dementia to peripheral vascular disease, based on well-documented vascular effects. Surprisingly, the actions of EGb 761 on angiogenesis as a function of vascular cells have not been investigated to date. The anti-cancer activity of EGb 761 in vitro and epidemiological data showing reduced risk for ovarian cancer in regular users have prompted us to investigate this issue. We show an anti-angiogenic profile of EGb 761 in vitro (inhibited proliferation, migration and tube formation of endothelial cells) and in vivo in the chicken chorio-allantoic membrane (CAM) assay. An analysis of the underlying mechanisms indicates inhibition of growth factor-induced extracellular signal-regulated kinase (ERK) phosphorylation by EGb 761. Inhibitory effects of EGb 761 on ERK as well as of the upstream kinases map-erk-kinase (MEK) and rapidly growing fibrosarcoma (Raf)-1 could be completely reversed by pre-treatment with sodium vanadate (inhibitor of tyrosine phosphatases). Sodium vanadate also reversed the EGb 761-induced inhibition of endothelial cell migration. Focusing on tyrosine phosphatases upstream of the Raf-MEK-ERK cascade, we identified the tyrosine phosphatase Src homology-2 domain-containing phosphatase 1 (SHP-1) as one target of EGb 761. SHP-1 was rapidly activated by EGb 761, and silencing SHP-1 (siRNA) abrogated reduction of endothelial proliferation by EGb 761. In summary, we identify EGb 761 as a potent anti-angiogenic drug. The underlying mechanism is the activation of protein tyrosine phosphatases, leading to inhibition of the Raf-MEK-ERK pathway. These findings provide a rational basis for using EGb 761 for an additional therapeutic indication: anti-angiogenesis-based tumour prevention and adjuvant therapy.
Collapse
Affiliation(s)
- Anja Koltermann
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - Johanna Liebl
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - Robert Fürst
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - Hermann Ammer
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| |
Collapse
|
36
|
Kotakadi VS, Jin Y, Hofseth AB, Ying L, Cui X, Volate S, Chumanevich A, Wood PA, Price RL, McNeal A, Singh UP, Singh NP, Nagarkatti M, Nagarkatti PS, Matesic LE, Auclair K, Wargovich MJ, Hofseth LJ. Ginkgo biloba extract EGb 761 has anti-inflammatory properties and ameliorates colitis in mice by driving effector T cell apoptosis. Carcinogenesis 2008; 29:1799-806. [PMID: 18567620 DOI: 10.1093/carcin/bgn143] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis is a dynamic, chronic inflammatory condition of the colon associated with an increased colon cancer risk. Ginkgo biloba is a putative antioxidant and has been used for thousands of years to treat a variety of ailments. The aim of this study was to test whether the standardized G.biloba extract, EGb 761, is an antioxidant that can be used to prevent and treat colitis in mice. Here, we show that EGb 761 suppresses the activation of macrophages and can be used to both prevent and treat mouse colitis. Markers of inflammation (iNOS, Cox-2 and tumor necrosis factor-alpha) and inflammatory stress (p53 and p53-phospho-serine 15) are also downregulated by EGb 761. Furthermore, we show that EGb 761 reduces the numbers of CD4+/CD25-/Foxp3- effector T cells in the colon. Interestingly, EGb 761 drives CD4+ effector T cell apoptosis in vitro and in vivo, providing a mechanistic explanation to the reduction in numbers of this cell type in the colon. This current study is in agreement with previous studies supporting a use of EGb 761 as a complementary and alternative strategy to abate colitis and associated colon cancer.
Collapse
Affiliation(s)
- Venkata S Kotakadi
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dias MC, Rodrigues MAM, Reimberg MCH, Barbisan LF. Protective effects of Ginkgo biloba against rat liver carcinogenesis. Chem Biol Interact 2008; 173:32-42. [PMID: 18367157 DOI: 10.1016/j.cbi.2008.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/11/2008] [Accepted: 01/21/2008] [Indexed: 12/19/2022]
Abstract
Ginkgo biloba (EGb) has been proposed as a promising candidate for cancer chemoprevention and has shown protective effects on the liver against chemically induced oxidative injury and fibrosis. The potential beneficial effects of EGb were investigated in two rat liver carcinogenesis bioassays induced by diethylnitrosamine (DEN). In a short-term study for anti-initiating screening, male Wistar rats were fed a basal diet or supplemented diet with 500 or 1000 ppm EGb and initiated 14 days later with a single dose of DEN (100 mg/kg i.p.). The respective groups were killed 24h or 2 weeks after DEN-initiation. Liver samples were collected for the analysis of proliferating cell nuclear antigen (PCNA), transforming growth factor alpha (TGF-alpha), p53, apoptosis and induction of single hepatocytes and minifoci positive for the enzyme glutathione S-transferase P-form (GST-P). In a medium-term study for anti-promoting screening, the animals received a single dose of DEN (200 mg/kg i.p.) and, 2 weeks later, were fed a basal diet or supplemented diet with 500 or 1000 ppm EGb for 6 weeks. All animals underwent 70% partial hepatectomy (PH) at week 3 and killed at week 8. Liver samples were collected to analyze development of preneoplastic foci of altered hepatocytes (FAH) expressing GST-P. In the short-term study, pretreatment of rats with 1000 ppm EGb significantly reduced the rates of cell proliferation, apoptosis and p53, TGF-alpha immunoreactivity and the number of GST-P-positive hepatocytes. In the medium-term study, EGb treatment during the post-initiation stage failed to reduce the development of DEN-induced GST-P-positive foci. Thus, EGb presented inhibitory actions during initiation but not promotion of rat liver carcinogenesis induced by DEN.
Collapse
Affiliation(s)
- Marcos C Dias
- UNESP São Paulo State University, Institute of Biosciences, Department of Morphology, Botucatu, SP 18618-000, Brazil
| | | | | | | |
Collapse
|
38
|
Huang X, Whitworth CA, Rybak LP. Ginkgo Biloba Extract (EGb 761) Protects Against Cisplatin-Induced Ototoxicity in Rats. Otol Neurotol 2007; 28:828-33. [PMID: 17450108 DOI: 10.1097/mao.0b013e3180430163] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS A standardized Ginkgo biloba extract, EGb 761, may have protective effect against cisplatin-induced ototoxicity in rats. BACKGROUND Cisplatin-induced ototoxicity is a major dose-limiting side effect in anticancer chemotherapy. Cisplatin-induced ototoxicity has been correlated to depletion of the cochlear antioxidant system and increased lipid peroxidation. EGb 761 contains potent antioxidants capable of scavenging free radicals, inhibiting nitric oxide synthesis, reducing lipid peroxidation, and protecting against apoptosis. The purpose of this study was to investigate the effect of EGb 761 on cisplatin-induced ototoxicity in rats. METHODS Male Wistar rats were divided into four groups and were treated as follows: 1) vehicle control; 2) cisplatin (13 mg/kg, intraperitoneally) plus vehicle; 3) EGb 761 (200 mg/kg, intraperitoneally); and 4) EGb 761 plus cisplatin. Auditory brainstem responses (ABRs) were measured pretreatment and 72 hours posttreatment, and threshold shifts were analyzed. Endocochlear potentials (EPs) were also obtained at 72 hours posttreatment. Cochleae were harvested and processed for scanning electron microscopy after completion of auditory testing. RESULTS Cisplatin-treated rats showed significant ABR threshold shifts across all frequencies (click, and 2-, 4-, 8-, 16-, and 32-kHz tones) compared with each of the other groups (p < 0.001). Rats treated with EGb 761 plus cisplatin did not show significant ABR threshold shifts (p > 0.05). Similarly, the EPs of cisplatin-treated rats were decreased significantly approximately 50% in comparison with the other groups (p < 0.001). The EPs of EGb 761 plus cisplatin-treated rats were decreased less than 20% compared with vehicle control group or the EGb 761 only group (p < 0.01). The scanning electron microscopy observation indicated severe outer hair cell loss in the basal turn of cochleae of cisplatin-treated rats, whereas outer hair cells remained intact in the rats treated with EGb 761 plus cisplatin. CONCLUSION These results demonstrate that EGb 761 protects against cisplatin-induced ototoxicity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/toxicity
- Cisplatin/toxicity
- Cochlea/pathology
- Cochlea/ultrastructure
- Cochlear Microphonic Potentials
- Evoked Potentials, Auditory, Brain Stem/physiology
- Ginkgo biloba
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/ultrastructure
- Hearing Disorders/chemically induced
- Hearing Disorders/prevention & control
- Male
- Microscopy, Electron, Scanning
- Phytotherapy
- Plant Extracts/therapeutic use
- Rats
- Rats, Wistar
- Temporal Bone/pathology
- Temporal Bone/ultrastructure
Collapse
Affiliation(s)
- Xinyan Huang
- Division of Otolaryngology Head & Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9662, USA
| | | | | |
Collapse
|
39
|
Ye B, Aponte M, Dai Y, Li L, Ho MCD, Vitonis A, Edwards D, Huang TN, Cramer DW. Ginkgo biloba and ovarian cancer prevention: Epidemiological and biological evidence. Cancer Lett 2007; 251:43-52. [PMID: 17194528 DOI: 10.1016/j.canlet.2006.10.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
There is considerable interest in herbal therapies for cancer prevention but often with little scientific evidence to support their use. In this study, we examined epidemiological data regarding effects of commonly used herbal supplements on risk for ovarian cancer and sought supporting biological evidence. 4.2% of 721 controls compared to 1.6% of 668 cases regularly used Ginkgo biloba for an estimated relative risk (and 95% confidence interval) of 0.41 (0.20,0.84) (p=0.01); and the effect was most apparent in women with non-mucinous types of ovarian cancer, RR=0.33 (0.15,0.74) (p=0.007). In vitro experiments with normal and ovarian cancer cells showed that Ginkgo extract and its components, quercetin and ginkgolide A and B, have significant anti-proliferative effects ( approximately 40%) in serous ovarian cancer cells, but little effect in mucinous (RMUG-L) cells. For the ginkgolides, the inhibitory effect appeared to be cell cycle blockage at G0/G1 to S phase. This combined epidemiological and biological data provide supportive evidence for further studies of the chemopreventive or therapeutic effects of Ginkgo and ginkgolides on ovarian cancer.
Collapse
Affiliation(s)
- Bin Ye
- Laboratory of Gynecologic Oncology and Epidemiology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Dana-Farber Cancer Center, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yow CMN, Wong CK, Huang Z, Ho RJ. Study of the efficacy and mechanism of ALA-mediated photodynamic therapy on human hepatocellular carcinoma cell. Liver Int 2007; 27:201-8. [PMID: 17311614 DOI: 10.1111/j.1478-3231.2006.01412.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
OBJECTIVES To examine the efficacy and mechanism of delta- or 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) on a human hepatocellular carcinoma cell line. MATERIALS AND METHODS The optimal uptake of photosensitizer ALA in HepG2 (p53 wild) cells was investigated by means of spectrometric measurement. Cell viability was determined by trypan blue exclusion assay. Morphological apoptotic changes in HepG2 cells before and after ALA-mediated PDT were determined by microscopic examination. Detection of apoptotic bodies was examined by DAPI staining. The changes in p53 expression were revealed by the immunostaining method. RESULTS ALA/protoporphyrin IX (PpIX) was mainly located in the cytoplasm of HepG2 cells. The maximal cellular uptake occurred after 18 h in vitro incubation. The photocytotoxic assay showed that ALA PDT induced 80% killing at 2 mM drug dose and 2 J/cm2 light intensity. Up to 70% of cells showed membrane blebbing and positive DAPI staining, indicating that ALA-PDT-mediated cell death was predominantly via apoptosis. In addition, p53 was upregulated after treatment, implying that p53 might evoke apoptotic cell death. CONCLUSIONS HepG2 cell line is sensitive to ALA-mediated PDT. ALA-PDT induces apoptosis in the HepG2 cell line that may be mediated by a p53-dependent pathway.
Collapse
Affiliation(s)
- C M N Yow
- Department of Health Technology Informatics, Hong Kong Polytechnic University, Hung Hom, HKSAR, China.
| | | | | | | |
Collapse
|
41
|
Rajaraman G, Chen J, Chang TKH. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 2006; 217:225-33. [PMID: 17045319 DOI: 10.1016/j.taap.2006.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/18/2022]
Abstract
The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations > or =75 mug/ml and > or =750 mug/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 mug/ml once every 24 h for 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [(14)C]-leucine incorporation. At the level present in a modulating concentration (50 mug/ml) of the extract, ginkgolide A (0.55 mug/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A.
Collapse
Affiliation(s)
- Ganesh Rajaraman
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
42
|
Ezoulin MJM, Dong CZ, Liu Z, Li J, Chen HZ, Heymans F, Lelièvre L, Ombetta JE, Massicot F. Study of PMS777, a new type of acetylcholinesterase inhibitor, in human HepG2 cells. Comparison with tacrine and galanthamine on oxidative stress and mitochondrial impairment. Toxicol In Vitro 2006; 20:824-31. [PMID: 16472967 DOI: 10.1016/j.tiv.2006.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 12/06/2005] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
Acetylcholinesterase inhibitors are commonly used as cognitive enhancers for dementia in aged people. Among them, tacrine (THA) but not galanthamine, was shown to exhibit hepatotoxicity which reduces its clinical use. PMS777, both a PAF antagonist and a new potent acetylcholinesterase inhibitor was recently demonstrated to reverse scopolamine-induced amnesia in mice without toxicity. In the present study, the effects of THA, galanthamine and PMS777 were compared in HepG2 cells on the oxidative parameters involved in the reported hepatotoxicity of THA. THA (> or = 10 microM) induced an oxidative stress as shown by elevated ROS and MDA production and by a decrease in GSH level. Moreover, mitochondrial membrane potential and redox status were decreased. At low concentrations (< or =10 microM), there was no significant disturbance. None of the oxidative stress markers was affected by PMS777 up to the maximum concentration tested and it is suggested that PMS777 is not cytotoxic for HepG2 cells. Galanthamine was also without cytotoxicity. Our results suggest that the toxic effect of THA above 10 microM may be caused by drug-induced mitochondrial energization impairment and destabilisation of membrane phospholipids associated with an oxidative stress. In contrast by preventing these dysfunctions, PMS777 could be safer than THA.
Collapse
Affiliation(s)
- M J M Ezoulin
- Unité de Pharmacochimie Moléculaire et Systèmes Membranaires (EA2381), Université Paris 7-Denis Diderot, Case 7066, 2, Place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Eli R, Fasciano JA. An adjunctive preventive treatment for cancer: Ultraviolet light and ginkgo biloba, together with other antioxidants, are a safe and powerful, but largely ignored, treatment option for the prevention of cancer. Med Hypotheses 2006; 66:1152-6. [PMID: 16483725 DOI: 10.1016/j.mehy.2005.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 12/14/2005] [Indexed: 01/24/2023]
Abstract
Cancer has surpassed heart disease as the leading cause of death in the United States. The mortality rate for cancer is high (roughly 42%), and it increases dramatically with increasing age, especially in patients between the ages of 40 and 60 years old. Currently, the efforts at cancer prevention have been minimal. The drugs developed so far are expensive and have serious side effects. There are at least 18 vitamin D-sensitive cancers. Ultraviolet light, and specifically ultraviolet B (UVB), could reduce cancer by the limited exposure of suitable skin areas to UVB of an intensity and duration insufficient to produce skin cancer. An irrational fear of skin cancer is preventing this idea from being implemented. Though skin cancer incidence is significant, mortality from skin cancer is relatively rare. Roughly 1,000,000 Americans will be affected by skin cancer but only 10,000 deaths are expected in 2005 (a 1% mortality rate). Skin cancer is easily detected and often cured by excisional biopsy alone. Current practice among practicing clinicians is to use a prescription drug substitute for UV light, calcitriol (1-25 dihydroxycholcalciferol). However, high levels of (calcitriol) are dangerous, and there is no consensus on just what a high dose or a safe dose is. Apart from skin cancer, UV light exposure possesses few risks. Additionally, a number of botanical agents such as ginkgo biloba, vitamins E and C, carotenoids, selenium and proanthocyanidins can prevent the risk of skin cancer. Ginkgo biloba also possess the following additional cancer chemopreventive qualities: (1) promoting apoptosis of cancer cells; (2) an anti-clastogenic effect on chromosomes by repairing and reconstituting broken and damaged chromosomes; (3) a powerful therapeutic effect on the treatment of fibrosis-related cancer; (4) a therapeutic effect on free radical-induced cancer; (5) a therapeutic effect on the treatment of cancer incident to the result of numerous carcinogens; (6) a therapeutic effect on preventing free radical-induced cancer; (7) an enhancing effect on radiation therapy in the treatment of cancer; and (8) a therapeutic effect on reducing the size of cancer tumors. Ginkgo biloba is widely-used and has few adverse effects. The proposed preventive treatment for cancer consists of short intermittent exposure of the least sensitive areas of the body to sunlight and/or artificial ultraviolet light. The routine testing of plasma vitamin D levels help monitor the effectiveness of the treatment and periodic checkups with a dermatologist help monitor the safety.
Collapse
|
44
|
Ezoulin MJM, Li J, Wu G, Dong CZ, Ombetta JE, Chen HZ, Massicot F, Heymans F. Differential effect of PMS777, a new type of acetylcholinesterase inhibitor, and galanthamine on oxidative injury induced in human neuroblastoma SK-N-SH cells. Neurosci Lett 2005; 389:61-5. [PMID: 16095823 DOI: 10.1016/j.neulet.2005.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 11/27/2022]
Abstract
In the search for highly selective and potent cholinesterase inhibitors (AChEI) being able to improve oxidative injury, PMS777, a tetrahydrofuran derivative, was designed as a novel dual PAF and acetylcholinesterase inhibitor. The aim of this study was to investigate the modulatory effects of PMS777 and galanthamine, another AChEI, on the oxidative injury induced in neuronal cells. The SK-N-SH cells stimulated with LPS+IL-(1beta) were selected to investigate the direct inhibitory effect of PMS777 and galanthamine. LPS+IL-(1beta) induced oxidative injury as assessed by ROS production (29%), GSH depletion (11%) and loss of mitochondrial activity (22%). GSH depletion was never decreased by either drug. In contrast, ROS production and mitochondrial activity were totally prevented by addition of PMS777 but not galanthamine. PMS777 also inhibits butylcholinesterase and it shows selectivity for acetylcholinesterase. Thus, this PAF antagonist inaugurates a new type of AChEI, able to fight oxidative injury. Therefore, PMS777 could be of interest on patients with cognitive impairments and inflammatory damage, as in AD.
Collapse
Affiliation(s)
- Miezan J-M Ezoulin
- Unité de Pharmacochimie Moléculaire et Systèmes Membranaires (EA2381), Université Paris 7-Denis Diderot, Case 7066, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen F, Leick V. The protozoan Tetrahymena as a bioindicator to screen bioactive substances. J Microbiol Methods 2004; 59:233-41. [PMID: 15369859 DOI: 10.1016/j.mimet.2004.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 07/12/2004] [Indexed: 11/19/2022]
Abstract
Tetrahymena thermophila has been used as a "swimming receptor" to study its chemotaxis in the presence of various bioactive substances from herbal plants. Chemotaxis of this ciliated protozoan is, in part, controlled by a cyclic GMP-dependent protein kinase (PKG), which can adjust ciliary beating. In this paper, the effects of Ginkgo biloba extract (GBE) and its main functional constituents, terpene lactones, flavonol glycosides and aglycones, on the chemotaxis and PKG activity of ciliates, were systematically investigated. GBE and its constituents exerted significant inhibition of chemotaxis and PKG activity in cells of T. thermophila. The minimal concentrations to completely inhibit chemotaxis of T. thermophila were 12, 25, 50, 100, 300, 400, 400, 500 microM, 2 mg/ml for isorhamnetin, kaempferol, quercetin, myricetin, isoquercitrin, quercetin-3-beta-d-galactoside, rutin, quercitrin, and GBE, respectively. The IC(50) values for PKG were 14, 17, 20, 25, 186, 78 microM, 0.157 mg/ml for isorhamnetin, kaempferol, quercetin, myricetin, isoquercitrin, rutin and GBE, respectively. The results indicate that the chemotaxis inhibition by GBE and its constituents and their effects on PKG are similar. This suggests that T. thermophila may be a potential experimental organism for screening other bioactive substances.
Collapse
Affiliation(s)
- Fusheng Chen
- Food Science and Technology College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P.R. China.
| | | |
Collapse
|