1
|
Ability of 2-Chloro-N-(1-(3,4-dimethoxyphenyl)propan-2-yl)-2-phenylacetamide to Stimulate Endogenous Nitric Oxide Synthesis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Papaverine is one of the isoquinoline alkaloids derived from opium which is a vasodilator and smooth muscle relaxant. Using its chemical structure as a basic model, we synthesized 2-chloro-N-(1-(3,4-dimethoxyphenyl)propan-2-yl)-2-phenylacetamide as an isoquinoline precursor (IQP). Aim: Clarifying the nature of the relationship between IQP as a new biologically active molecule and the neurotransmitters acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5-HT), as well as with the nitric oxide (NO). Materials and methods: The IQP compound was tested on the isolated gastric smooth muscle preparations (SMPs) from rats to determine its effects on spontaneous contractile activity. NO concentration in tissue homogenates was determined, and immunohistochemistry was used to visualize the expression of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) in smooth muscle (SM) cells. Results: The data from the isometric measurements suggest that IQP has an additional specific action affecting the intracellular signaling pathways of 5-HT. Using immunohistochemistry, we found that the combination of 5-HT and IQP affected the density and intensity of nNOS-positive cells, which increase significantly in the myenteric plexus and SM cells. Conclusions: In conclusion, IQP is involved in the regulation of intestinal neurons expressing nNOS, affects the function of nNOS/NO, and, by this mechanism, probably regulates the spontaneous contractile activity of gastric SM.
Collapse
|
2
|
Tanahashi Y, Komori S, Matsuyama H, Kitazawa T, Unno T. Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. Int J Mol Sci 2021; 22:E926. [PMID: 33477687 PMCID: PMC7831928 DOI: 10.3390/ijms22020926] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Parasympathetic signalling via muscarinic acetylcholine receptors (mAChRs) regulates gastrointestinal smooth muscle function. In most instances, the mAChR population in smooth muscle consists mainly of M2 and M3 subtypes in a roughly 80% to 20% mixture. Stimulation of these mAChRs triggers a complex array of biochemical and electrical events in the cell via associated G proteins, leading to smooth muscle contraction and facilitating gastrointestinal motility. Major signalling events induced by mAChRs include adenylyl cyclase inhibition, phosphoinositide hydrolysis, intracellular Ca2+ mobilisation, myofilament Ca2+ sensitisation, generation of non-selective cationic and chloride currents, K+ current modulation, inhibition or potentiation of voltage-dependent Ca2+ currents and membrane depolarisation. A lack of ligands with a high degree of receptor subtype selectivity and the frequent contribution of multiple receptor subtypes to responses in the same cell type have hampered studies on the signal transduction mechanisms and functions of individual mAChR subtypes. Therefore, novel strategies such as genetic manipulation are required to elucidate both the contributions of specific AChR subtypes to smooth muscle function and the underlying molecular mechanisms. In this article, we review recent studies on muscarinic function in gastrointestinal smooth muscle using mAChR subtype-knockout mice.
Collapse
Affiliation(s)
- Yasuyuki Tanahashi
- Department of Advanced Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Seiichi Komori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| | - Hayato Matsuyama
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| | - Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan;
| | - Toshihiro Unno
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| |
Collapse
|
3
|
Acid-gastric antisecretory effect of the ethanolic extract from Arctium lappa L. root: role of H +, K +-ATPase, Ca 2+ influx and the cholinergic pathway. Inflammopharmacology 2017; 26:521-530. [PMID: 28755129 DOI: 10.1007/s10787-017-0378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Arctium lappa L., popularly known as burdock, is a medicinal plant used worldwide. The antiulcer and gastric-acid antisecretory effects of ethanolic extract from roots of Arctium lappa (EET) were already demonstrated. However, the mechanism by which the extract reduces the gastric acid secretion remains unclear. Therefore, this study was designed to evaluate the antisecretory mode of action of EET. MATERIALS AND METHODS The effects of EET on H+, K+-ATPase activity were verified in vitro, whereas the effects of the extract on cholinergic-, histaminergic- or gastrinergic-acid gastric stimulation were assessed in vivo on stimulated pylorus ligated rats. Moreover, ex vivo contractility studies on gastric muscle strips from rats were also employed. RESULTS The incubation with EET (1000 µg/ml) partially inhibited H+, K+-ATPase activity, and the intraduodenal administration of EET (10 mg/kg) decreased the volume and acidity of gastric secretion stimulated by bethanechol, histamine, and pentagastrin. EET (100-1000 µg/ml) did not alter the gastric relaxation induced by histamine but decreased acetylcholine-induced contraction in gastric fundus strips. Interestingly, EET also reduced the increase in the gastric muscle tone induced by 40 mM KCl depolarizing solution, as well as the maximum contractile responses evoked by CaCl2 in Ca2+-free depolarizing solution, without impairing the effect of acetylcholine on fundus strips maintained in Ca2+ -free nutritive solution. CONCLUSION Our results reinforce the gastric antisecretory properties of preparations obtained from Arctium lappa, and indicate that the mechanisms involved in EET antisecretory effects include a moderate reduction of the H+, K+-ATPase activity associated with inhibitory effects on calcium influx and of cholinergic pathways in the stomach muscle.
Collapse
|
4
|
Mamaghani A, Maham M, Dalir-Naghadeh B. Effects of ginger extract on smooth muscle activity of sheep reticulum and rumen. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2013; 4:91-7. [PMID: 25653778 PMCID: PMC4313008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/05/2013] [Accepted: 06/15/2013] [Indexed: 11/06/2022]
Abstract
Reticulorumen hypomotility leads to the impaired physiologic functions of the digestive tract. Prokinetic action of ginger has been demonstrated in the laboratory animals and human. The aim of this study was to evaluate the effect of hydroalcoholic extract of ginger on contraction and motility of reticulum and rumen of ruminants. Collected samples of reticulum and rumen from eight sheep were investigated in vitro. The extract at the concentration of 0.1 and 1.0 mg L(-1) had no effect on any preparations. Contraction of reticulum and rumen preparations was occurred at 10.0 and 100 mg L(-1) concentrations (p < 0.05). Concentration of 1000 mg L(-1) caused a relaxation in preparations contracted with 10.0 and 100 mg L(-1). Likewise, the concentration of 1000 mg L(-1) significantly (p < 0.05) inhibited ACh-induced contraction in both tissues. Six sheep were involved in electromyographic study. Administration of 40 mg kg(-1) of the extract increased the overall frequency of contractions of the reticulum and rumen at the subsequent three days with the prominent increase at the second day (p < 0.05). Results of in vitro study indicated that hydroalcoholic extract of ginger contained spasmogenic and spasmolytic constituents. The results in vivo study represented evidences that the extract may have stimulant effect on reticulorumen motility in 40 mg kg(-1) concentration.
Collapse
Affiliation(s)
- Amin Mamaghani
- Correspondence: Amin Mamaghani. DVM, DVSc Candidate, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. E-mail:
| | | | | |
Collapse
|
5
|
Jalilzadeh-Amin G, Maham M, Dalir-Naghadeh B, Kheiri F. Effects ofMentha longifoliaessential oil on ruminal and abomasal longitudinal smooth muscle in sheep. JOURNAL OF ESSENTIAL OIL RESEARCH 2012. [DOI: 10.1080/10412905.2012.646019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Zhang SY, Cai ZX, Li P, Cai CY, Qu CL, Guo HS. Effect of dendroaspis natriuretic peptide (DNP) on L-type calcium channel current and its pathway. ACTA ACUST UNITED AC 2010; 164:120-5. [PMID: 20594955 DOI: 10.1016/j.regpep.2010.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/05/2010] [Accepted: 05/30/2010] [Indexed: 10/19/2022]
Abstract
Dendroaspis natriuretic peptide (DNP), a newly-described natriuretic peptide, relaxes gastrointestinal smooth muscle. L-type calcium channel currents play an important role in regulating smooth muscle contraction. The effect of DNP on L-type calcium channel currents in gastrointestinal tract is still unclear. This study was designed to investigate the effect of DNP on barium current (I(Ba)) through the L-type calcium channel in gastric antral myocytes of guinea pigs and cGMP-pathway mechanism. The whole-cell patch-clamp technique was used to record L-type calcium channel currents. The content of cGMP in guinea pig gastric antral smooth muscle and perfusion solution was measured using radioimmunoassay. DNP markedly enhanced cGMP levels in gastric antral smooth muscle tissue and in perfusion medium. DNP concentration-dependently inhibited I(Ba) in freshly isolated guinea pig gastric antral circular smooth muscle cells (SMCs) of guinea pigs. DNP-induced inhibition of I(Ba) was partially blocked by LY83583, an inhibitor of guanylate cyclase. KT5823, a cGMP-dependent protein kinase (PKG) inhibitor, almost completely blocked DNP-induced inhibition of I(Ba). However, DNP-induced inhibition of I(Ba) was potentiated by zaprinast, an inhibitor of cGMP-sensitive phosphodiesterase. Taken together, DNP inhibits L-type calcium channel currents via pGC-cGMP-PKG-dependent signal pathway in gastric antral myocytes of guinea pigs.
Collapse
Affiliation(s)
- Shu-Ying Zhang
- Department of Internal Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| | | | | | | | | | | |
Collapse
|
7
|
Singh J, Mehendiratta V, Del Galdo F, Jimenez SA, Cohen S, DiMarino AJ, Rattan S. Immunoglobulins from scleroderma patients inhibit the muscarinic receptor activation in internal anal sphincter smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1206-13. [PMID: 19779020 PMCID: PMC2850093 DOI: 10.1152/ajpgi.00286.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Systemic sclerosis (SSc) IgGs affecting the M(3)-muscarinic receptor (M(3)-R) have been proposed to be responsible for the gastrointestinal (GI) dysmotility in this disease. However, the effect of SSc IgGs on smooth muscle cell (SMC) function has not been studied. We determined the effect of SSc IgGs on the muscarinic receptor activation by bethanechol (BeCh; methyl derivate of carbachol) in SMC and smooth muscle strips from rat internal anal sphincter. IgGs were purified from GI-symptomatic SSc patients and normal volunteers, with protein G-Sepharose columns. SMC lengths were determined via computerized digital micrometry. The presence of M(3)-R and IgG-M(3)-R complex was determined by Western blot. IgGs from SSc patients but not from normal volunteers caused significant and concentration-dependent inhibition of BeCh response (P < 0.05). The maximal shortening of 22.2 +/- 1.2% caused by 10(-4) M BeCh was significantly attenuated to 8.3 +/- 1.2% by 1 mg/ml of SSc IgGs (P < 0.05). Experiments performed in smooth muscle strips revealed a similar effect of SSc IgG that was fully reversible. In contrast to the effect on BeCh, the SSc IgGs caused no significant effect (P > 0.05) on K(+) depolarization and alpha(1)-adrenoceptor activation by phenylephrine. Western blot studies revealed the specific presence of SSc IgG-M(3)-R complex. SSc IgGs attenuated M(3)-R activation, which was reversible with antibody removal. These data suggest that SSc GI dysmotility may be caused by autoantibodies that inhibit the muscarinic neurotransmission. Future treatment of SSc patients may be directed at the removal or neutralization of these antibodies.
Collapse
Affiliation(s)
- Jagmohan Singh
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and
| | | | - Francesco Del Galdo
- 2Scleroderma Center and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sergio A. Jimenez
- 2Scleroderma Center and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - Satish Rattan
- 1Department of Medicine, Division of Gastroenterology and Hepatology, and
| |
Collapse
|
8
|
Niederberger MD, Hirsbrunner G, Steiner A, Brechbühl M, Meylan M. In vitro effects of bethanechol on abomasal and duodenal smooth muscle preparations from dairy cows with left displacement of the abomasum and from healthy dairy cows. Vet J 2009; 184:88-94. [PMID: 19272820 DOI: 10.1016/j.tvjl.2009.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/18/2008] [Accepted: 01/10/2009] [Indexed: 11/25/2022]
Abstract
This study investigated the effects of bethanechol (BeCh) on abomasal and duodenal smooth muscle preparations from dairy cows with left displacement of the abomasum (LDA) and from healthy dairy cows, and determined the role of muscarinic acetylcholine receptor subtypes 2 and 3 (M(2) and M(3)) in mediating contraction. Concentration-response curves for BeCh, with or without prior incubation with an M(2) antagonist (AF-DX 116) or an M(3) antagonist (4-DAMP), were established and evaluated. BeCh induced a significant, concentration-dependant increase in the contractility variables for all locations in both groups of cows. The inhibiting effect of 4-DAMP was stronger than that of AF-DX 116, which suggested that contractions were mediated by M(3) and to a lesser extent by M(2). The basal tone of abomasal smooth muscle was reduced in cows with LDA, which indicated hypotonia. The use of BeCh as a prokinetic drug in cows with gastrointestinal motility disorder warrants further investigation.
Collapse
Affiliation(s)
- Markus D Niederberger
- Clinic for Ruminants, Vetsuisse Faculty of the University of Berne, Bremgartenstrasse 109a, 3001 Berne, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Anisuzzaman ASM, Morishima S, Suzuki F, Tanaka T, Muramatsu I. Identification of M1 muscarinic receptor subtype in rat stomach using a tissue segment binding method, and the effects of immobilization stress on the muscarinic receptors. Eur J Pharmacol 2008; 599:146-51. [DOI: 10.1016/j.ejphar.2008.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/12/2008] [Accepted: 10/05/2008] [Indexed: 11/27/2022]
|
10
|
Buehler M, Steiner A, Meylan M, Portier CJ, Mevissen M. In vitro effects of bethanechol on smooth muscle preparations from abomasal fundus, corpus, and antrum of dairy cows. Res Vet Sci 2008; 84:444-51. [PMID: 17632190 DOI: 10.1016/j.rvsc.2007.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 04/10/2007] [Accepted: 05/11/2007] [Indexed: 11/26/2022]
Abstract
Abomasal displacement has been associated with gastric hypomotility. The supply of prokinetic drugs available to address this problem is insufficient. The goal of the study was to investigate the effect of the muscarinic agonist bethanechol (BeCh) on contractility parameters of smooth muscle preparations from several regions of the bovine abomasum (fundus, corpus, and antrum). Cumulative concentration-response curves were constructed using BeCh in vitro with and without pre-incubation with antagonists targeted at M(2) and M(3) muscarinic acetylcholine receptor (mAChR) subtypes. In all preparations investigated, BeCh induced a significant and concentration-dependent increase in all contractility parameters investigated. The maximal attainable effect (V(max)) was more pronounced in circular specimens, and V(max) of antral specimens in circular orientation were significantly lower when compared to the other preparations. Both antagonists caused a rightward shift of the concentration-response curve, suggesting that the effect of BeCh is mediated at least partly by M(2) and M(3) AChRs.
Collapse
Affiliation(s)
- M Buehler
- Clinic for Ruminants, Vetsuisse Faculty of the University of Berne, Berne, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Pfeiffer JBR, Mevissen M, Steiner A, Portier CJ, Meylan M. In vitro effects of bethanechol on specimens of intestinal smooth muscle obtained from the duodenum and jejunum of healthy dairy cows. Am J Vet Res 2007; 68:313-22. [PMID: 17331022 PMCID: PMC2739133 DOI: 10.2460/ajvr.68.3.313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. SAMPLE POPULATION Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. PROCEDURES Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (A(max)), and area under the curve (AUC) were evaluated. RESULTS Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M(3) antagonists (more commonly for basal tone than for A(max) and AUC). The M(2) receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M(3) receptor antagonists were generally more potent than the M(2) receptor antagonists. In a protection experiment, an M(3) receptor antagonist was less potent than when used in combination with an M(2) receptor antagonist. Receptor antagonists for M(1) and M(4) did not affect contractility variables. CONCLUSIONS AND CLINICAL RELEVANCE Bethanechol acting on muscarinic receptor sub-types M(2) and M(3) may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows.
Collapse
Affiliation(s)
- Julia B R Pfeiffer
- Clinic for Ruminants, Vetsuisse Faculty, University of Berne, 3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Kitazawa T, Hashiba K, Cao J, Unno T, Komori SI, Yamada M, Wess J, Taneike T. Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: Studies with muscarinic receptor knockout mice. Eur J Pharmacol 2007; 554:212-22. [PMID: 17113073 DOI: 10.1016/j.ejphar.2006.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/27/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
Functional roles of muscarinic acetylcholine receptors in the regulation of mouse stomach motility were examined using mice genetically lacking muscarinic M(2) receptor and/or M(3) receptor and their corresponding wild-type (WT) mice. Single application of carbachol (1 nM-30 microM) produced concentration-dependent contraction in antral and fundus strips from muscarinic M(2) receptor knockout (M(2)R-KO) and M(3) receptor knockout (M(3)R-KO) mice but not in those from M(2) and M(3) receptors double knockout (M(2)/M(3)R-KO) mice. A comparison of the concentration-response curves with those for WT mice showed a significant decrease in the negative logarithm of EC(50) (pEC(50)) value (M(2)R-KO) or amplitude of maximum contraction (M(3)R-KO) in the muscarinic receptor-deficient mice. The tonic phase of carbachol-induced contraction was decreased in gastric strips from M(3)R-KO mice. Antagonistic affinity for 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) or 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) indicated that the contractile responses in M(2)R-KO and M(3)R-KO mice were mediated by muscarinic M(3) and M(2) receptors, respectively. Electrical field stimulation (EFS, 0.5-32 Hz) elicited frequency-dependent contraction in physostigmine- and N(omega)-nitro-L-arginine methylester (l-NAME)-treated fundic and antral strips from M(2)R-KO and M(3)R-KO mice, but the cholinergic contractile components decreased significantly compared with those in WT mice. In gastric strips from M(2)/M(3)R-KO mice, cholinergic contractions elicited by EFS were not observed but atropine-resistant contractions were more conspicuous than those in gastric strips from WT mice. Gastric emptying in WT mice and that in M(2)/M(3)R-KO mice were comparable, suggesting that motor function of the stomach in the KO mice did not differ from that in the WT mice. The results indicate that both muscarinic M(2) and M(3) receptors but not other subtypes mediate carbachol- or EFS-induced contraction in the mouse stomach but that the contribution of each receptor to concentration-response relationships is distinguishable. Although there was impairment of nerve-mediated cholinergic responses in the stomach of KO mice, gastric emptying in KO mice was the same as that in WT mice probably due to the compensatory enhancement of the non-cholinergic contraction pathway.
Collapse
Affiliation(s)
- Takio Kitazawa
- Department of Pharmacology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Unno T, Matsuyama H, Okamoto H, Sakamoto T, Yamamoto M, Tanahashi Y, Yan HD, Komori S. Muscarinic cationic current in gastrointestinal smooth muscles: signal transduction and role in contraction. ACTA ACUST UNITED AC 2006; 26:203-17. [PMID: 16879487 DOI: 10.1111/j.1474-8673.2006.00366.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1 The muscarinic receptor plays a key role in the parasympathetic nervous control of various peripheral tissues including gastrointestinal tract. The neurotransmitter acetylcholine, via activating muscarinic receptors that exist in smooth muscle, produces its contraction. 2 There is the opening of cationic channels as an underlying mechanism. The opening of cationic channels results in influxes of Ca2+ via the channels into the cell and also via voltage-dependent Ca2+ channels which secondarily opened in response to the depolarization, providing an amount of Ca2+ for activation of the contractile proteins. 3 Electrophysiological and pharmacological studies have shown that the cationic channels as well as muscarinic receptors exist in many visceral smooth muscle cells. However, the activation mechanisms of the cationic channels are still unclear. 4 In this article, we summarize the current knowledge of the muscarinic receptor-operated cationic channels, focusing on the receptor subtype, G protein and other signalling molecules that are involved in activation of these channels and on the molecular characteristics of the channel. This will improve strategies aimed at developing new selective pharmacological agents and understanding the activation mechanism and functions of these channels in physiological systems.
Collapse
Affiliation(s)
- T Unno
- Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Marti M, Mevissen M, Althaus H, Steiner A. In vitro effects of bethanechol on equine gastrointestinal contractility and functional characterization of involved muscarinic receptor subtypes. J Vet Pharmacol Ther 2005; 28:565-74. [PMID: 16343290 DOI: 10.1111/j.1365-2885.2005.00693.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate the effect of bethanechol (BeCh) on contractility patterns of smooth muscle preparations of equine duodenum descendens, jejunum, caecum and pelvic flexure in vitro. Concentration-response relationships were developed for BeCh using in vitro assays with and without preincubation of muscarinic (M) receptor antagonists for M2 and M3 receptors. BeCh induced a significant, concentration-dependent increase in contractile response in equine intestine in specimens with circular orientation. The maximal effect was largest for jejunal specimens with no difference in EC50 within the different locations investigated. The M2 antagonist, AF-DX 116, caused a rightward shift of the concentration-response curve and the M3 antagonist, 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide), almost completely inhibited the effect of BeCh over the entire concentration-response curve. These data provide evidence that, although the effect of BeCh is predominantly mediated by M3 receptors, M2 muscarinic receptors also play a role in BeCh-induced contraction in specimens of equine intestine. The involvement of other muscarinic receptor subtypes cannot be excluded. Further studies are necessary to understand the effect of BeCh in vivo including diseased animals.
Collapse
Affiliation(s)
- M Marti
- Clinic for Ruminants, Department of Clinical Veterinary Medicine and Division of Veterinary Pharmacology and Toxicology, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|