1
|
Ryan MT, Martinez C, Jahns H, Mooney CT, Browne JA, O'Neill EJ, Shiel RE. The comparative performance of a custom Canine NanoString® panel on FFPE and snap frozen liver biopsies. Res Vet Sci 2023; 159:225-231. [PMID: 37172451 DOI: 10.1016/j.rvsc.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Formalin-Fixed Paraffin Embedded (FFPE) biopsies would provide a critical mass of cases to allow investigation of canine liver disease, however their use is often limited by challenges typically associated with transcriptomic analysis. This study evaluates the capability of NanoString® to measure the expression of a broad panel of genes in FFPE liver samples. RNA was isolated from matched histopathologically normal liver samples using FFPE (n = 6) and snap frozen in liquid nitrogen (n = 6) and measured using a custom NanoString® panel. Out of the 40 targets on the panel, 27 and 23 targets were above threshold for non-diseased snap frozen and FFPE tissue respectively. The binding density and total counts were significantly reduced in the FFPE samples relative to the snap frozen samples (p = 0.005, p = 0.01, respectively), confirming a reduction in sensitivity. The concordance between the snap frozen and FFPE samples was high, with correlations (R) ranging between 0.88 and 0.99 between the paired samples. An additional 14 immune-related targets, undetectable the non-diseased FFPE liver, were above threshold when the technique was applied to a series of diseased samples, further supporting their inclusion on this panel. This use of NanoString® based analysis opens up huge opportunity for retrospective evaluation of gene signatures in larger caseloads through harnessing the capacity of archived FFPE samples This information used alongside clinical and histological data will not only afford a way to explore disease etiopathogenesis, it may also offer insight into sub-types of liver disease in dogs, which cannot be discerned using more traditional diagnostic methods.
Collapse
Affiliation(s)
- Marion T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Co. Dublin, Ireland.
| | - Carlos Martinez
- Department of Internal Medicine, AÚNA Especialidades Veterinarias - IVC Evidensia, Valencia, Spain
| | - Hanne Jahns
- School of Veterinary Medicine, University College Dublin, Belfield, Co. Dublin, Ireland
| | - Carmel T Mooney
- School of Veterinary Medicine, University College Dublin, Belfield, Co. Dublin, Ireland
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Co. Dublin, Ireland
| | - Emma J O'Neill
- School of Veterinary Medicine, University College Dublin, Belfield, Co. Dublin, Ireland
| | - Robert E Shiel
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Lo Nigro A, Gallo A, Bulati M, Vitale G, Paini DS, Pampalone M, Galvagno D, Conaldi PG, Miceli V. Amnion-Derived Mesenchymal Stromal/Stem Cell Paracrine Signals Potentiate Human Liver Organoid Differentiation: Translational Implications for Liver Regeneration. Front Med (Lausanne) 2021; 8:746298. [PMID: 34631757 PMCID: PMC8494784 DOI: 10.3389/fmed.2021.746298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
The prevalence of end-stage liver diseases has reached very high levels globally. The election treatment for affected patients is orthotopic liver transplantation, which is a very complex procedure, and due to the limited number of suitable organ donors, considerable research is being done on alternative therapeutic options. For instance, the use of cell therapy, such as the transplantation of hepatocytes to promote liver repair/regeneration, has been explored, but standardized protocols to produce suitable human hepatocytes are still limited. On the other hand, liver progenitor and multipotent stem cells offer potential cell sources that could be used clinically. Different studies have reported regarding the therapeutic effects of transplanted mesenchymal stromal/stem cells (MSCs) on end-stage liver diseases. Moreover, it has been shown that delivery of MSC-derived conditioned medium (MSC-CM) can reduce cell death and enhance liver proliferation in fulminant hepatic failure. Therefore, it is believed that MSC-CM contains many factors that probably support liver regeneration. In our work, we used an in vitro model of human liver organoids to study if the paracrine components secreted by human amnion-derived MSCs (hAMSCs) affected liver stem/progenitor cell differentiation. In particular, we differentiated liver organoids derived from bipotent EpCAM+ human liver cells and tested the effects of hAMSC secretome, derived from both two-dimensional (2D) and three-dimensional (3D) hAMSC cultures, on that model. Our analysis showed that conditioned medium (CM) produced by 3D hAMSCs was able to induce an over-expression of mature hepatocyte markers, such as ALB, NTCP, and CYP3A4, compared with both 2D hAMSC cultures and the conventional differentiation medium (DM). These data were confirmed by the over-production of ALB protein and over-activity of CYP3A4 observed in organoids grown in 3D hAMSC-CM. Liver repair dysfunction plays a role in the development of liver diseases, and effective repair likely requires the normal functioning of liver stem/progenitor cells. Herein, we showed that hAMSC-CM produced mainly by 3D cultures had the potential to increase hepatic stem/progenitor cell differentiation, demonstrating that soluble factors secreted by those cells are potentially responsible for the reaction. This work shows a potential approach to improve liver repair/regeneration also in a transplantation setting.
Collapse
Affiliation(s)
| | - Alessia Gallo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Matteo Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | | | - Mariangela Pampalone
- Ri.MED Foundation, Palermo, Italy
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | | | - Pier Giulio Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - Vitale Miceli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| |
Collapse
|
3
|
Paramos-de-Carvalho D, Martins I, Cristóvão AM, Dias AF, Neves-Silva D, Pereira T, Chapela D, Farinho A, Jacinto A, Saúde L. Targeting senescent cells improves functional recovery after spinal cord injury. Cell Rep 2021; 36:109334. [PMID: 34233184 DOI: 10.1016/j.celrep.2021.109334] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent senescent cells (SCs) are known to underlie aging-related chronic disorders, but it is now recognized that SCs may be at the center of tissue remodeling events, namely during development or organ repair. In this study, we show that two distinct senescence profiles are induced in the context of a spinal cord injury between the regenerative zebrafish and the scarring mouse. Whereas induced SCs in zebrafish are progressively cleared out, they accumulate over time in mice. Depletion of SCs in spinal-cord-injured mice, with different senolytic drugs, improves locomotor, sensory, and bladder functions. This functional recovery is associated with improved myelin sparing, reduced fibrotic scar, and attenuated inflammation, which correlate with a decreased secretion of pro-fibrotic and pro-inflammatory factors. Targeting SCs is a promising therapeutic strategy not only for spinal cord injuries but potentially for other organs that lack regenerative competence.
Collapse
Affiliation(s)
- Diogo Paramos-de-Carvalho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Isaura Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Margarida Cristóvão
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Filipa Dias
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Dalila Neves-Silva
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Telmo Pereira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Diana Chapela
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - António Jacinto
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular - João Lobo Antunes e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
4
|
Sharawy MH, El-Awady MS, Makled MN. Protective effects of paclitaxel on thioacetamide-induced liver fibrosis in a rat model. J Biochem Mol Toxicol 2021; 35:e22745. [PMID: 33749060 DOI: 10.1002/jbt.22745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is a public health burden that is highly associated with morbidity and mortality. Therefore, this study aims to explore the anti-fibrotic effects of low dose of paclitaxel (PTX) against thioacetamide (TAA)-induced liver fibrosis in rats and the possible mechanisms involved. TAA was administered at a dose of 200 mg/kg twice weekly for 6 weeks in rats to induce liver fibrosis similar to that in humans. Liver dysfunction was shown by increased alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transferase, along with histopathological changes. Liver fibrosis was confirmed by Masson's Trichome staining, increased collagen content, and elevated α-smooth muscle actin (α-SMA) protein expression. In addition, TAA induced liver apoptosis as indicated by the increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in liver tissues. This study demonstrated that the administration of PTX (0.3 mg/kg/i.p.) three times a week for 6 weeks significantly alleviated functional and biochemical changes induced by TAA in addition to improving the liver architecture. PTX attenuated liver fibrosis as reflected by the decreased collagen content and α-SMA protein expression. Additionally, PTX attenuated liver apoptosis as indicated by the decreased TUNEL-positive cells. Moreover, PTX prevented TAA-induced elevation of transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and tissue inhibitor of metalloproteinase 1 (TIMP-1) levels in liver tissues. These findings suggest that the low dose of PTX prevented TAA-induced liver fibrosis in rats, possibly by inhibiting the expression of TGF-β1 and PDGF-BB and subsequently suppressing the apoptosis and the expression of TIMP-1.
Collapse
Affiliation(s)
- Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Wang C, Liu Y, He D. Diverse effects of platelet-derived growth factor-BB on cell signaling pathways. Cytokine 2019; 113:13-20. [DOI: 10.1016/j.cyto.2018.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
|
6
|
Al-Adham EK, Hassan AI, Shebl A, Hazem MM. Evaluation of the therapeutic effects of rice husk nanosilica combined with platelet-derived growth factor in hepatic veno-occlusive disease. Biochem Cell Biol 2018; 96:682-694. [PMID: 29301090 DOI: 10.1139/bcb-2017-0248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Veno-occlusive disease is an important pattern of hepatotoxicity associated with antineoplastic drugs. The study investigated the possible therapeutic effects of RHS nanoparticles combined with a PDGF on veno-occlusive disease (VOD) in liver elicited in rats with DAC. In this work, nanosilica (SiO2) was successfully prepared from rice husk, and its physicochemical characteristics were investigated using EDX, XRD, N2 adsorption-desorption isotherm, SEM, and TEM. Forty-eight male Sprague-Dawely rats were distributed into 6 groups, with 8 rats in each. The first group served as the control. In the second group, animals were infused with DAC (0.015 mg/kg; 1-3 days) by intraperitoneal injection (i.p.). In the third group, rats were injected i.p. with DAC, and then at 24 h following the last dose of DAC, received nano-RHS incorporated with PDGF twice a week for 4 weeks. In the fourth group, normal animals were injected with RHS. In the fifth group, normal rats received PDGF, and in the sixth group, normal rats received nano-RHS combined with PDGF. The prepared nanosilica showed type II adsorption isotherm characteristic for mesoporous materials with a specific surface area of 236 m2/g. TEM imaging confirmed the production of nanoparticles via the followed preparation procedure. Radical scavenging potential for nano-RHS was determined using two different in-vitro assays: DPPH, and ABTS radicals. The results of this work show that administration of nano-RHS combined with PDGF significantly reversed the oxidative stress effects of DAC as evidenced by a decrease in liver function. It can be concluded that the nano-RHS combined with PDGF is useful in preventing oxidative stress and hepatic VOD induced by chemotherapy such as DAC.
Collapse
Affiliation(s)
- Eithar K Al-Adham
- a Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Giza, Egypt
| | - Amal I Hassan
- a Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Giza, Egypt
| | - Ahmed Shebl
- b Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - M M Hazem
- b Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
7
|
Ding H, Wen Z. Overexpression of C‑sis inhibits H2O2‑induced Buffalo rat liver cell apoptosis in vitro and alleviates liver injury in a rat model of fulminant hepatic failure. Int J Mol Med 2018; 42:873-882. [PMID: 29786113 PMCID: PMC6034937 DOI: 10.3892/ijmm.2018.3684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/04/2018] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate the role of the C‑sis gene in the apoptosis of hepatocytes in vitro and in the liver function of a rat model of fulminant hepatic failure (FHF). Buffalo rat liver (BRL) cells were treated with hydrogen peroxide (H2O2) to induce apoptosis and then transfected with a C‑sis overexpression vector. A rat model of FHF was established, and C‑sis was overexpressed. The mRNA and protein expression of C‑sis were examined using reverse transcription‑polymerase chain reaction and western blot analyses, respectively. Cell viability was assessed by CCK8, and a TUNEL assay was used to examine cell apoptosis. Flow cytometry was used for cell cycle detection. Hematoxylin and eosin staining was used for histological examination. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) were also examined in the rats. The results showed that C‑sis was successfully overexpressed in the cells and rat model. Compared with H2O2‑treated BRL cells, the overexpression of C‑sis significantly inhibited cell apoptosis, promoted cell viability, and decreased the expression of cleaved caspase-3. Similar results were observed in the FHF rats treated with the C‑sis overexpression plasmid, compared with those treated with empty plasmids. In addition, in the FHF rats overexpressing C‑sis, histological examination showed that liver injury was alleviated, the levels of ALT and AST were significantly decreased, and mortality rate was significantly decreased, compared with those observed in the rats treated with empty plasmids. In conclusion, the overexpression of C‑sis inhibited the H2O2‑induced apoptosis of BRL cells in vitro, and alleviated liver injury, improved liver function, and decreased mortality rates in rat models of FHF.
Collapse
Affiliation(s)
- Hao Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Ma R, Chen J, Liang Y, Lin S, Zhu L, Liang X, Cai X. Sorafenib: A potential therapeutic drug for hepatic fibrosis and its outcomes. Biomed Pharmacother 2017; 88:459-468. [PMID: 28122312 DOI: 10.1016/j.biopha.2017.01.107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/16/2022] Open
|
9
|
Chen CF, Feng X, Liao HY, Jin WJ, Zhang J, Wang Y, Gong LL, Liu JJ, Yuan XH, Zhao BB, Zhang D, Chen GF, Wan Y, Guo J, Yan HP, He YW. Regulation of T cell proliferation by JMJD6 and PDGF-BB during chronic hepatitis B infection. Sci Rep 2014; 4:6359. [PMID: 25219359 PMCID: PMC4163673 DOI: 10.1038/srep06359] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/24/2014] [Indexed: 01/31/2023] Open
Abstract
T cell functional exhaustion during chronic hepatitis B virus (HBV) infection may contribute to the failed viral clearance; however, the underlying molecular mechanisms remain largely unknown. Here we demonstrate that jumonji domain-containing protein 6 (JMJD6) is a potential regulator of T cell proliferation during chronic HBV infection. The expression of JMJD6 was reduced in T lymphocytes in chronic hepatitis B (CHB) patients, and this reduction in JMJD6 expression was associated with impaired T cell proliferation. Moreover, silencing JMJD6 expression in primary human T cells impaired T cell proliferation. We found that JMJD6 promotes T cell proliferation by suppressing the mRNA expression of CDKN3. Furthermore, we have identified platelet derived growth factor-BB (PDGF-BB) as a regulator of JMJD6 expression. PDGF-BB downregulates JMJD6 expression and inhibits the proliferation of human primary T cells. Importantly, the expression levels of JMJD6 and PDGF-BB in lymphocytes from CHB patients were correlated with the degree of liver damage and the outcome of chronic HBV infection treatment. Our results demonstrate that PDGF-BB and JMJD6 regulate T cell function during chronic HBV infection and may provide insights for the treatment strategies for CHB patients.
Collapse
Affiliation(s)
- Cai-Feng Chen
- 1] MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China [2]
| | - Xia Feng
- 1] Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China [2]
| | - Hui-Yu Liao
- 1] Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China [2]
| | - Wen-Jing Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Zhang
- Diagnosis and Treatment Center of Liver Fibrosis, 302 Hospital, Beijing, China
| | - Yu Wang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Lu-Lu Gong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Jing-Jun Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Xiao-Hui Yuan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Bin-Bin Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Ding Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Guo-Feng Chen
- Diagnosis and Treatment Center of Liver Fibrosis, 302 Hospital, Beijing, China
| | - Ying Wan
- Biomedical Analysis Center, The Third Military Medical University, Chongqing, China
| | - Jian Guo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hui-Ping Yan
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
10
|
Yang YY, Liu RS, Lee PC, Yeh YC, Huang YT, Lee WP, Lee KC, Hsieh YC, Lee FY, Tan TW, Lin HC. Anti-VEGFR agents ameliorate hepatic venous dysregulation/microcirculatory dysfunction, splanchnic venous pooling and ascites of NASH-cirrhotic rat. Liver Int 2014; 34:521-34. [PMID: 23998651 DOI: 10.1111/liv.12299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/28/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Antivascular endothelial growth factor receptor (VEGFR) agents improve hepatic fibrosis and portal hypertension in cirrhosis. Detail interactions among recruited/activated leucocytes, hepatic angiogenesis and fibrogenesis, splanchnic blood pooling, decreased hepatic veins to fluctuated splanchnic blood volume (hepatic venous dysregulation), portal hypertensive syndrome and ascites have never explored in cirrhosis. Our study used two anti-VEGFR agents - brivanib and sorafenib - to elucidate the relationship between above abnormalities of nonalcoholic steatohepatitis (NASH)-cirrhotic rats. MATERIALS AND METHODS NASH-cirrhotic rats received 2-week brivanib, sorafenib or vehicle (NASH-cirrhotic+briv, NASH-cirrhotic+soraf and NASH-cirrhotic rats) were included for various measurements. RESULTS In comparison with NASH-cirrhotic rats, significant decreased plasma VEGF, fibroblast growth factor, platelet-derived growth factor, hepatic tumour necrosis factor (TNFα), IL-1β, IL-6, IL-17 were accompanied by decreased leucocyte mass/activity ((99 m) Tc-phytate and (18) F-FDG SPECT/PET/CT scans), hepatic leucocytes recruitment/microvascular density (fluorescence-enhanced intravital microscopy) and hydroxyproline content, and increased hepatic blood flow in NASH-cirrhotic+briv and NASH-cirrhotic+soraf rats. In addition, increased hepatic microvasculatures compliance-related improved buffering effect of portal vein to acute mannitol infusion was associated with decreased circulating nitric oxide and aldosterone, plasma volume expansion (dye dilution method), splanchnic blood pooling ((99 m) Tc-RBC SPECT/PET/CT scans), peripheral hypotension, portal hypertension and ascites in brivanib and sorafenib-treated NASH-cirrhotic rats. CONCLUSION Besides antifibrotic, antiangiogenic and portal hypertensive effects, chronic antagonism of anti-VEGFR with brivanib and sorafenib improves hepatic blood flow, hepatic venous dysregulation, inhibits leucocytes recruitment/activation, splanchnic blood pooling and ascites formation in NASH-cirrhotic rats. Thus, brivanib and sorafenib might be ideal therapeutic agents in cirrhotic patients suffering from severe haemodynamic disarrangement and ascites.
Collapse
Affiliation(s)
- Ying-Ying Yang
- Division of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bai Q, An J, Wu X, You H, Ma H, Liu T, Gao N, Jia J. HBV promotes the proliferation of hepatic stellate cells via the PDGF-B/PDGFR-β signaling pathway in vitro. Int J Mol Med 2012; 30:1443-50. [PMID: 23042547 DOI: 10.3892/ijmm.2012.1148] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/10/2012] [Indexed: 12/25/2022] Open
Abstract
The activation of hepatic stellate cells (HSCs) is closely associated with liver fibrosis in chronic hepatitis B virus (HBV) infection. However, the molecular mechanisms leading to HSC activation remain unclear. It has been reported that the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-β (PDGFR-β) signaling pathway is involved in this process. Thus, we investigated whether HBV and its protein contribute to HSC proliferation by the PDGF-B/PDGFR-β signaling pathway. HBV particles were purified from the supernatant of HepG2.2.15 cells by ultracentrifugation and the cell lines carrying HBV preS, e, c or x genes were obtained. After incubation with HBV particles or co-cultured with the cell lines expressed in the viral protein, the proliferation of LX-2 cells, an HSC cell line, were detected by flow cyto-metry and real-time PCR and the expression of molecules related to the PDGF-B/PDGFR-β signaling pathway were further measured. Our results indicated that HBV particles, c and x proteins promoted LX-2 proliferation and increased the mRNA levels of PDGF-B, PDGFR-β, collagen-I and α-smooth muscle actin (α-SMA), as well as the phosphorylation of PDGFR-β; however, the expression protein levels of PDGF-B and PDGFR-β remained unchanged. In conclusion, HBV particles and HBV c and x proteins promote HSC proliferation and fibrogenesis in vitro and the PDGF-B/PDGFR-β signaling pathway is important in this process.
Collapse
Affiliation(s)
- Qixuan Bai
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Maass T, Thieringer FR, Mann A, Longerich T, Schirmacher P, Strand D, Hansen T, Galle PR, Teufel A, Kanzler S. Liver specific overexpression of platelet-derived growth factor-B accelerates liver cancer development in chemically induced liver carcinogenesis. Int J Cancer 2011; 128:1259-68. [PMID: 20506153 DOI: 10.1002/ijc.25469] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A genetic basis of hepatocellular carcinoma (HCC) has been well-established and major signaling pathways, such as p53, Wnt-signaling, transforming growth factor-β (TGF-β) and Ras pathways, have been identified to be essential to HCC development. Lately, the family of platelet-derived growth factors (PDGFs) has shifted to the center of interest. We have reported on spontaneously developing liver fibrosis in PDGF-B transgenic mice. Since HCC rarely occurs in healthy liver, but dramatically increases at the cirrhosis stage of which liver fibrosis is a preliminary stage, we investigated liver cancer development in chemically induced liver carcinogenesis in these mice. HCC induction was performed by treatment of the mice with diethylnitrosamine and phenobarbital. At an age of 6 months, the tumor development of these animals was analyzed. Not only the development of dysplastic lesions in PDGF-B transgenic mice was significantly increased but also their malignant transformation to HCC. Furthermore, we were able to establish a key role of PDGF-B signaling at diverse stages of liver cancer development. Here, we show that development of liver fibrosis is likely through upregulation of TGF-β receptors by PDGF-B. Additionally, overexpression of PDGF-B also leads to an increased expression of β-catenin as well as vascular endothelial growth factor and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), all factors with established roles in carcinogenesis. We were able to extend the understanding of key genetic regulators in HCC development by PDGF-B and decode essential downstream signals.
Collapse
Affiliation(s)
- Thorsten Maass
- Department of Medicine I, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Putative roles of hepatitis B x antigen in the pathogenesis of chronic liver disease. Cancer Lett 2009; 286:69-79. [PMID: 19201080 DOI: 10.1016/j.canlet.2008.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 11/18/2008] [Accepted: 12/02/2008] [Indexed: 12/18/2022]
Abstract
Under most circumstances, hepatitis B virus (HBV) is noncytopathic. However, hepatocellular regeneration that accompanies each bout of hepatitis appears to be associated with increased integration of HBV DNA fragments expressing the virus encoded hepatitis B x antigen (HBxAg). Intrahepatic HBxAg staining correlates with the intensity and progression of chronic liver disease (CLD), and additional work has shown that HBxAg blocks immune mediated killing by Fas and by tumor necrosis factor alpha (TNFalpha). This is not only associated with the blockage of caspase activities by HBxAg, but also by the constitutive stimulation of hepatoprotective pathways, such as nuclear factor kappa B (NF-kappaB), phosphoinositol 3-kinase (PI3K), and beta-catenin (beta-catenin). HBxAg also appears to promote fibrogenesis, by stimulating the production of fibronectin. HBxAg also stimulates the production and activity of transforming growth factor beta1 (TGFbeta1) by several mechanisms, thereby promoting the profibrogenic and tumorigenic properties of this important cytokine. In addition, HBxAg appears to remodel the extracellular matrix (ECM) by altering the expression of several matrix metalloproteinases (MMPs), which may promote tumor metastasis. Hence, HBxAg appears to promote chronic infection by preventing immune mediated apoptosis of infected hepatocytes, by promoting the establishment and persistence of fibrosis and cirrhosis preceding the development of HCC, and by promoting the remodeling of EMC during tumor progression.
Collapse
|
14
|
Patsenker E, Popov Y, Wiesner M, Goodman SL, Schuppan D. Pharmacological inhibition of the vitronectin receptor abrogates PDGF-BB-induced hepatic stellate cell migration and activation in vitro. J Hepatol 2007; 46:878-87. [PMID: 17258347 DOI: 10.1016/j.jhep.2006.11.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/07/2006] [Accepted: 11/13/2006] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS Activated hepatic stellate cells (HSC) play a central role in the development of liver fibrosis. Platelet-derived growth factor (PDGF)-BB and the integrin alphavbeta3 mediate mesenchymal cell migration and proliferation. However, their contribution and interaction during fibrogenic activation of HSC remains unclear. To this aim we investigated if PDFGF-BB and alphavbeta3 interact, and how far small molecular inhibitors of alphavbeta3 modulate PDGF-BB and serum-induced migration, proliferation and fibrogenic activation of HSC. METHODS Rat and human HSC were subjected to migration and proliferation assays in the presence or absence of a peptide or a nonpeptide alphavbeta3 inhibitor. Activation of mitogen-activated protein kinases (ERK1/2, p38), Akt, focal adhesion kinase (FAK), paxillin and beta3 integrin was evaluated by phospho-specific Western blotting. Fibrosis related transcripts were determined by quantitative real-time PCR. RESULTS PDGF-BB-stimulated HSC migration which was blocked dose-dependently by the alphavbeta3 antagonists, with complete inhibition at 10(-6)M. alphavbeta3 blockage did not affect cell viability or proliferation, while it decreased phosphorylation of FAK, paxillin, beta3 integrin and p38, but not of ERK1/2 or Akt. alphavbeta3 inhibition led to downregulation of certain profibrogenic transcripts, while it upregulated fibrolytic MMP-13 mRNA. CONCLUSIONS Inhibition of integrin alphavbeta3 leads to abrogation of migration of HSC stimulated with PDGF-BB and to an antifibrogenic gene expression pattern.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Institute of Clinical Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 2007; 11:147-60. [PMID: 17292826 DOI: 10.1016/j.ccr.2006.11.023] [Citation(s) in RCA: 401] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/11/2006] [Accepted: 11/16/2006] [Indexed: 11/16/2022]
Abstract
TGFbeta acts as a tumor suppressor in normal epithelial cells and early-stage tumors and becomes an oncogenic factor in advanced tumors. The molecular mechanisms involved in the malignant function of TGFbeta are not fully elucidated. We demonstrate that high TGFbeta-Smad activity is present in aggressive, highly proliferative gliomas and confers poor prognosis in patients with glioma. We discern the mechanisms and molecular determinants of the TGFbeta oncogenic response with a transcriptomic approach and by analyzing primary cultured patient-derived gliomas and human glioma biopsies. The TGFbeta-Smad pathway promotes proliferation through the induction of PDGF-B in gliomas with an unmethylated PDGF-B gene. The epigenetic regulation of the PDGF-B gene dictates whether TGFbeta acts as an oncogenic factor inducing PDGF-B and proliferation in human glioma.
Collapse
Affiliation(s)
- Alejandra Bruna
- Medical Oncology Program, Vall d'Hebron University Hospital Research Institute, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shin JW, Son JY, Oh SM, Han SH, Wang JH, Cho JH, Cho CK, Yoo HS, Lee YW, Lee MM, Hu XP, Son CG. An herbal formula, CGX, exerts hepatotherapeutic effects on dimethylnitrosamine-induced chronic liver injury model in rats. World J Gastroenterol 2006; 12:6142-6148. [PMID: 17036385 PMCID: PMC4088107 DOI: 10.3748/wjg.v12.i38.6142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 07/08/2006] [Accepted: 07/22/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the therapeutic effect of Chunggan extract (CGX), a modified traditional Chinese hepatotherapeutic herbal, on the dimethylnitrosamine (DMN)-induced chronic liver injury model in rats. METHODS Liver injuries were induced in Wistar rats by injection of DMN (ip, 10 mg/mL per kg) for 3 consecutive days per week for 4 wk. The rats were administered with CGX (po, 100 or 200 mg/kg per day) or distilled water as a control daily for 4 wk starting from the 15(th) d of the DMN treatment. Biochemical parameters (serum albumin, bilirubin, ALP, AST and ALT), lipid peroxides, hydroxyproline, as well as histological changes in liver tissues were analyzed. In addition, gene expression of TNF-alpha, TGF-beta, TIMP-1, TIMP-2, PDGF-beta, and MMP-2, all of which are known to be associated with liver fibrosis, were analyzed using real-time PCR. RESULTS CGX administration restored the spleen weight to normal after having been increased by DMN treatment. Biochemical analysis of the serum demonstrated that CGX significantly decreased the serum level of ALP (P < 0.05), ALT (P < 0.01), and AST (P < 0.01) that had been elevated by DMN treatment. CGX administration moderately lowered lipid peroxide production and markedly lowered hydroxyproline generation caused by DMN treatment in accordance with histopathological examination. DMN treatment induced a highly up-regulated expression of TNF-alpha, TGF-beta, TIMP-1, TIMP-2, PDGF-beta, and MMP-2. Of these, the gene expression encoding PDGF-beta and MMP-2 was still further enhanced 2 wk after secession of the 4-wk DMN treatment, and was remarkably ameliorated by CGX administration. CONCLUSION CGX exhibits hepatotherapeutic proper-ties against chronic hepatocellular destruction and consequential liver fibrosis.
Collapse
Affiliation(s)
- Jang-Woo Shin
- East-West Cancer Center, Dunsan Oriental Hospital of Oriental medical College of Daejeon University, 1136 Dunsan-dong, Seo-gu, Daejeon 302-122, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Anatol P, Robert F, Danuta P. Effect of interferon alpha2b plus ribavirin treatment on selected growth factors in respect to inflammation and fibrosis in chronic hepatitis C. World J Gastroenterol 2005; 11:1854-8. [PMID: 15793880 PMCID: PMC4305890 DOI: 10.3748/wjg.v11.i12.1854] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Growth factors (GF) that participate in regeneration and apoptosis have an important role in chronic liver diseases. We analyzed serum GF concentration during antiviral treatment and correlated it with morphological liver failure in chronic hepatitis C.
METHODS: The levels of GF were determined in sera by ELISA method in 0, 16, 32 and 48 wk of therapy in 40 patients treated with IFNα2b (9 MU sc/wk) and RBV (1.2 g/d) and in 25 healthy subjects. Blind liver biopsies were done before treatment with histological grading and staging examination.
RESULTS: The hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were markedly elevated prior the treatment and decreased during the therapy, although they did not reach the normal level. In non-responding (NR) patients, HGF and EGF were higher than that in responders (R), however differences were not significant. Before the treatment thrombopoietin (TPO) level was significantly lower in R than in NR (P<0.03). Platelet-derived growth factor (PDGF) concentration was lower in chronic hepatitis C than in healthy subjects and decreased during the treatment. A significant positive correlation was observed between inflammatory activity in the liver tissue and the concentration of HGF (in R: r = 0.4, in NR: r = 0.5), TPO (R: r = 0.6), and a significant negative correlation between this activity and EGF (R: r = -0.6) and PDGF (R: r = -0.5). Serum HGF concentration was higher in more advanced fibrosis (R: r = 0.5, P<0.05; NR: r = 0.4, P<0.03).
CONCLUSION: The decrease in PDGF can be an effective prognostic marker of the treatment and HCV elimination. Decreasing HGF, EGF, and PDGF can influence the inhibition of inflammatory and fibrotic processes in the liver during the antiviral treatment.
Collapse
Affiliation(s)
- Panasiuk Anatol
- Department of Infectious Diseases, Medical University of Bialystok, 15-540 Bialystok, Zurawia str. 14, Poland.
| | | | | |
Collapse
|
18
|
Abdel Aziz MT, El-Asmar MF, Atta HM, Nassar YH, Shaker OG, El-Fattah MMA, El-Ansary AK, Fouad HH, Roshdy NK, Hosni HA, Rashed LA, Sabry DA. Gene Expression of Heme Oxygenase-1: Relationship to Fibrogenic and Apoptotic Factors in Murine Schistosomiasis. J Clin Biochem Nutr 2005; 36:67-78. [DOI: 10.3164/jcbn.36.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|