1
|
Abhinaya SV, Garg N, Sindwani G, Arora MK, Thapar S, Thomas S, Pamecha V, Sarin SK. Comparison of the effect of isoflurane and propofol on liver regeneration after donor hepatectomy - A randomized controlled trial. J Clin Anesth 2025; 104:111859. [PMID: 40347559 DOI: 10.1016/j.jclinane.2025.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/12/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND The biotransformation of inhalational anesthetic agents can result in production of hepatotoxic metabolites, which may potentially impair liver regeneration. Thus, isoflurane and propofol may have differential impacts on liver regeneration after donor hepatectomy. STUDY OBJECTIVE To compare the regeneration liver volume (RgLV) via computed tomography (CT) volumetry on post-operative day (POD) 14 in isoflurane and propofol groups. DESIGN Randomized controlled pilot trial. PATIENTS Sixty donors, who underwent donor hepatectomy. INTERVENTIONS Patients were randomized into isoflurane and propofol group using computer generated random number tables. In isoflurane group, anesthesia was maintained with isoflurane 1-2 % in air‑oxygen mixture. In propofol group, anesthesia was maintained with the target-controlled infusion (TCI) of propofol using a TCI system (Perfusor® Space- B. Braun) at a plasma target concentration of 3-6 μg.ml-1. BIS was recorded in all patients. MEASUREMENTS Liver CT volumetry was assessed at POD 14. MAIN RESULTS RgLV on POD14 was comparable in two groups [449.3(170) & 437.8 (177.8) cm3, [Mean Difference (MD) -11.904 95 % Confidence Interval(CI) -101.83, 78.03 respectively; p = 0.79]. CONCLUSION Administering propofol or isoflurane may not have differential effect on liver regeneration after donor hepatectomy.
Collapse
Affiliation(s)
- S V Abhinaya
- Department of Anaesthesia and Critical care, Institute of liver and biliary sciences, New Delhi, India
| | - Neha Garg
- Department of Anaesthesia, Institute of liver and biliary sciences, New Delhi, India.
| | - Gaurav Sindwani
- Department of Anaesthesia, Institute of liver and biliary sciences, New Delhi, India
| | - Mahesh Kumar Arora
- Department of Anaesthesia, Institute of liver and biliary sciences, New Delhi, India
| | - Shalini Thapar
- Department of Radiology, Institute of liver and biliary sciences, New Delhi, India
| | - Sherin Thomas
- Department of Biochemistry, Institute of liver and biliary sciences, New Delhi, India
| | - Viniyendra Pamecha
- Department of HPB Surgery, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Director and Chancellor, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
2
|
Hu Y, Wang R, An N, Li C, Wang Q, Cao Y, Li C, Liu J, Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front Genet 2023; 14:1332190. [PMID: 38152656 PMCID: PMC10751322 DOI: 10.3389/fgene.2023.1332190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yannan Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Yu L, Yan J, Zhan Y, Li A, Zhu L, Qian J, Zhou F, Lu X, Fan X. Single-cell RNA sequencing reveals the dynamics of hepatic non-parenchymal cells in autoprotection against acetaminophen-induced hepatotoxicity. J Pharm Anal 2023; 13:926-941. [PMID: 37719199 PMCID: PMC10499594 DOI: 10.1016/j.jpha.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 09/19/2023] Open
Abstract
Gaining a better understanding of autoprotection against drug-induced liver injury (DILI) may provide new strategies for its prevention and therapy. However, little is known about the underlying mechanisms of this phenomenon. We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells (NPCs) in autoprotection against DILI, using acetaminophen (APAP) as a model drug. Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice, followed by a higher dose in a secondary challenge. NPC subsets and dynamic changes were identified in the APAP (hepatotoxicity-sensitive) and APAP-resistant (hepatotoxicity-resistant) groups. A chemokine (C-C motif) ligand 2+ endothelial cell subset almost disappeared in the APAP-resistant group, and an R-spondin 3+ endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection. Moreover, the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation. DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group. In addition, the natural killer cell subsets NK-3 and NK-4 and the Sca-1-CD62L+ natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways. Furthermore, macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity. Overall, this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.
Collapse
Affiliation(s)
- Lingqi Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Jun Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingyang Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Sydney, 2006, Australia
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321016, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321016, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Harbin, 150023, China
| |
Collapse
|
5
|
Yazici SE, Gedik ME, Leblebici CB, Kosemehmetoglu K, Gunaydin G, Dogrul AB. Can endocan serve as a molecular "hepatostat" in liver regeneration? Mol Med 2023; 29:29. [PMID: 36849916 PMCID: PMC9972723 DOI: 10.1186/s10020-023-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Intriguingly, liver regeneration after injury does not induce uncontrolled growth and the underlying mechanisms of such a "hepatostat" are still not clear. Endocan, a proteoglycan, was implicated in liver regeneration. It can support the function of hepatocyte growth factor/scatter factor in tissue repair after injury. Endostatin, a 20 kDa C-terminal fragment of collagen XVIII, may modulate the cessation of liver regeneration. eEF2K, a protein kinase that regulates protein synthesis, can regulate angiogenesis. Thus, we investigated the role of endocan, endostatin and eEF2K during normal liver regeneration. METHODS Serum samples and regenerating remnant liver tissues were obtained on various days after partial hepatectomy in rats. mRNA expression levels of Vegf and Pcna were analyzed in addition to immunohistochemical evaluations. Liver tissue protein levels of endostatin, endocan and p-eEF2K/eEF2K were determined with Western blot. Serum levels of endostatin and endocan were assessed with ELISA. RESULTS Pcna expression level in residual liver tissues peaked on day-1, while Vegf expression reached its highest level on days 1-3 after partial hepatectomy (70%). Endocan activity declined gradually on days 1-7. The decrease in liver endocan expression was accompanied by an increase in serum endocan levels. Partial hepatectomy induced a rapid increase in liver endostatin levels. Following its surge on day-1, endostatin expression gradually declined, which was accompanied by a peak in serum endostatin. Finally, partial hepatectomy was shown to regulate eEF2K; thus, increasing protein translation. CONCLUSIONS We revealed possible mechanistic insights into liver regeneration by examining the associations of Pcna, Vegf, endocan, endostatin, eEF2K with hepatic regeneration after partial hepatectomy. Indeed, endocan might serve as a useful biomarker to monitor clinical prognosis in a plethora of conditions such as recovery of donor's remaining liver after living-donor liver transplant. Whether endocan might represent a strategy to optimize liver regeneration when given therapeutically needs to be investigated in future studies.
Collapse
Affiliation(s)
- Sinan Efe Yazici
- Department of General Surgery, Hacettepe University School of Medicine, Sihhiye, 06100, Ankara, Turkey
| | - Mustafa Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey
| | - Can Berk Leblebici
- Department of Pathology, Hacettepe University School of Medicine, Sihhiye, 06100, Ankara, Turkey
| | - Kemal Kosemehmetoglu
- Department of Pathology, Hacettepe University School of Medicine, Sihhiye, 06100, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey.
| | - Ahmet Bulent Dogrul
- Department of General Surgery, Hacettepe University School of Medicine, Sihhiye, 06100, Ankara, Turkey.
| |
Collapse
|
6
|
Peng WC, Kraaier LJ, Kluiver TA. Hepatocyte organoids and cell transplantation: What the future holds. Exp Mol Med 2021; 53:1512-1528. [PMID: 34663941 PMCID: PMC8568948 DOI: 10.1038/s12276-021-00579-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, primary hepatocytes have been difficult to expand or maintain in vitro. In this review, we will focus on recent advances in establishing hepatocyte organoids and their potential applications in regenerative medicine. First, we provide a background on the renewal of hepatocytes in the homeostatic as well as the injured liver. Next, we describe strategies for establishing primary hepatocyte organoids derived from either adult or fetal liver based on insights from signaling pathways regulating hepatocyte renewal in vivo. The characteristics of these organoids will be described herein. Notably, hepatocyte organoids can adopt either a proliferative or a metabolic state, depending on the culture conditions. Furthermore, the metabolic gene expression profile can be modulated based on the principles that govern liver zonation. Finally, we discuss the suitability of cell replacement therapy to treat different types of liver diseases and the current state of cell transplantation of in vitro-expanded hepatocytes in mouse models. In addition, we provide insights into how the regenerative microenvironment in the injured host liver may facilitate donor hepatocyte repopulation. In summary, transplantation of in vitro-expanded hepatocytes holds great potential for large-scale clinical application to treat liver diseases.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
7
|
Mariotti V, Fiorotto R, Cadamuro M, Fabris L, Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep 2021; 3:100251. [PMID: 34151244 PMCID: PMC8189933 DOI: 10.1016/j.jhepr.2021.100251] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) includes 5 members (VEGF-A to -D, and placenta growth factor), which regulate several critical biological processes. VEGF-A exerts a variety of biological effects through high-affinity binding to tyrosine kinase receptors (VEGFR-1, -2 and -3), co-receptors and accessory proteins. In addition to its fundamental function in angiogenesis and endothelial cell biology, VEGF/VEGFR signalling also plays a role in other cell types including epithelial cells. This review provides an overview of VEGF signalling in biliary epithelial cell biology in both normal and pathologic conditions. VEGF/VEGFR-2 signalling stimulates bile duct proliferation in an autocrine and paracrine fashion. VEGF/VEGFR-1/VEGFR-2 and angiopoietins are involved at different stages of biliary development. In certain conditions, cholangiocytes maintain the ability to secrete VEGF-A, and to express a functional VEGFR-2 receptor. For example, in polycystic liver disease, VEGF secreted by cystic cells stimulates cyst growth and vascular remodelling through a PKA/RAS/ERK/HIF1α-dependent mechanism, unveiling a new level of complexity in VEFG/VEGFR-2 regulation in epithelial cells. VEGF/VEGFR-2 signalling is also reactivated during the liver repair process. In this context, pro-angiogenic factors mediate the interactions between epithelial, mesenchymal and inflammatory cells. This process takes place during the wound healing response, however, in chronic biliary diseases, it may lead to pathological neo-angiogenesis, a condition strictly linked with fibrosis progression, the development of cirrhosis and related complications, and cholangiocarcinoma. Novel observations indicate that in cholangiocarcinoma, VEGF is a determinant of lymphangiogenesis and of the immune response to the tumour. Better insights into the role of VEGF signalling in biliary pathophysiology might help in the search for effective therapeutic strategies.
Collapse
Key Words
- ADPKD, adult dominant polycystic kidney disease
- Anti-Angiogenic therapy
- BA, biliary atresia
- BDL, bile duct ligation
- CCA, cholangiocarcinoma
- CCl4, carbon tetrachloride
- CLDs, chronic liver diseases
- Cholangiocytes
- Cholangiopathies
- DP, ductal plate
- DPM, ductal plate malformation
- DRCs, ductular reactive cells
- Development
- HIF-1α, hypoxia-inducible factor type 1α
- HSCs, hepatic stellate cells
- IHBD, intrahepatic bile ducts
- IL-, interleukin-
- LECs, lymphatic endothelial cells
- LSECs, liver sinusoidal endothelial cells
- Liver repair
- MMPs, matrix metalloproteinases
- PBP, peribiliary plexus
- PC, polycystin
- PDGF, platelet-derived growth factor
- PIGF, placental growth factor
- PLD, polycystic liver diseases
- Polycystic liver diseases
- SASP, senescence-associated secretory phenotype
- TGF, transforming growth factor
- VEGF, vascular endothelial growth factors
- VEGF-A
- VEGF/VEGFR-2 signalling
- VEGFR-1/2, vascular endothelial growth factor receptor 1/2
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Valeria Mariotti
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Romina Fiorotto
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Luca Fabris
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA.,Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Mario Strazzabosco
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Häussinger D, Kordes C. Space of Disse: a stem cell niche in the liver. Biol Chem 2020; 401:81-95. [PMID: 31318687 DOI: 10.1515/hsz-2019-0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Recent evidence indicates that the plasticity of preexisting hepatocytes and bile duct cells is responsible for the appearance of intermediate progenitor cells capable of restoring liver mass after injury without the need of a stem cell compartment. However, mesenchymal stem cells (MSCs) exist in all organs and are associated with blood vessels which represent their perivascular stem cell niche. MSCs are multipotent and can differentiate into several cell types and are known to support regenerative processes by the release of immunomodulatory and trophic factors. In the liver, the space of Disse constitutes a stem cell niche that harbors stellate cells as liver resident MSCs. This perivascular niche is created by extracellular matrix proteins, sinusoidal endothelial cells, liver parenchymal cells and sympathetic nerve endings and establishes a microenvironment that is suitable to maintain stellate cells and to control their fate. The stem cell niche integrity is important for the behavior of stellate cells in the normal, regenerative, aged and diseased liver. The niche character of the space of Disse may further explain why the liver can become an organ of extra-medullar hematopoiesis and why this organ is frequently prone to tumor metastasis.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, Wu P, Jin Y, Zhu J, Li B, Grompe M, Wang B, Nusse R. Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell 2019; 175:1607-1619.e15. [PMID: 30500539 DOI: 10.1016/j.cell.2018.11.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matt Fish
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francis Aguisanda
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrián Álvarez-Varela
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junjie Zhu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Yin L, Wang Y, Guo X, Xu C, Yu G. Comparison of gene expression in liver regeneration and hepatocellular carcinoma formation. Cancer Manag Res 2018; 10:5691-5708. [PMID: 30532592 PMCID: PMC6245377 DOI: 10.2147/cmar.s172945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Liver -cell proliferation occurs in hepatocellular carcinoma (HCC) and liver regeneration (LR). The development and progression of HCC and LR have many similar molecular pathways with very different results. In simple terms, LR is a controllable process of organ recovery and function reconstruction, whereas liver cancer is uncontrollable. Do they share common key pathways and genes? Methods In this study, the dynamic transcriptome profile at ten time points (0, 2, 6, 12, 24, 30, 36, 72, 120, and 168 hours) during LR in rats after two-thirds hepatectomy and eight stages (normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, and very early, early advanced, and very advanced HCC) representing a stepwise carcinogenic process from preneoplastic lesions to end-stage HCC were analyzed in detail. A variety of bioinformatic methods, including MaSigPro, weighted gene-coexpression network analysis, and spatial analysis of functional enrichment, were used to analyze, elucidate, and compare similarities and differences between LR and HCC formation. Results Key biological processes and genes were identified. From the comparison, we found that cell proliferation and angiogenesis were the most significantly dysregulated processes shared by LR and HCC. The pattern of cell-proliferation-related gene expression in progression stage during LR is similar to the transition process from dysplasia to early-stage HCC. LR and HCC showed different expression patterns as a whole. Some key genes, including FYN, XPO1, FOXM1, EZH2, and NRF1, were identified as playing critical roles in both LR and HCC. Conclusion These findings could contribute to revealing the molecular mechanism of development and regulation mechanism of normal and abnormal proliferation, which could provide new ideas and treatment methods for regenerative medicine, oncological drug development, and oncological treatment.
Collapse
Affiliation(s)
- Li Yin
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ; .,Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China
| | - Yahao Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ;
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ;
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ;
| | - Guoying Yu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, ; .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan 453007, China, ;
| |
Collapse
|
11
|
Yang L, Shen ZY, Wang RR, Yin ML, Zheng WP, Wu B, Liu T, Song HL. Effects of heme oxygenase-1-modified bone marrow mesenchymal stem cells on microcirculation and energy metabolism following liver transplantation. World J Gastroenterol 2017; 23:3449-3467. [PMID: 28596681 PMCID: PMC5442081 DOI: 10.3748/wjg.v23.i19.3449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of heme oxygenase-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) on the microcirculation and energy metabolism of hepatic sinusoids following reduced-size liver transplantation (RLT) in a rat model.
METHODS BMMSCs were isolated and cultured in vitro using an adherent method, and then transduced with HO-1-bearing recombinant adenovirus to construct HO-1/BMMSCs. A rat acute rejection model following 50% RLT was established using a two-cuff technique. Recipients were divided into three groups based on the treatment received: normal saline (NS), BMMSCs and HO-1/BMMSCs. Liver function was examined at six time points. The levels of endothelin-1 (ET-1), endothelial nitric-oxide synthase (eNOS), inducible nitric-oxide synthase (iNOS), nitric oxide (NO), and hyaluronic acid (HA) were detected using an enzyme-linked immunosorbent assay. The portal vein pressure (PVP) was detected by Power Lab ML880. The expressions of ET-1, iNOS, eNOS, and von Willebrand factor (vWF) protein in the transplanted liver were detected using immunohistochemistry and Western blotting. ATPase in the transplanted liver was detected by chemical colorimetry, and the ultrastructural changes were observed under a transmission electron microscope.
RESULTS HO-1/BMMSCs could alleviate the pathological changes and rejection activity index of the transplanted liver, and improve the liver function of rats following 50% RLT, with statistically significant differences compared with those of the NS group and BMMSCs group (P < 0.05). In term of the microcirculation of hepatic sinusoids: The PVP on POD7 decreased significantly in the HO-1/BMMSCs and BMMSCs groups compared with that of the NS group (P < 0.01); HO-1/BMMSCs could inhibit the expressions of ET-1 and iNOS, increase the expressions of eNOS and inhibit amounts of NO production, and maintain the equilibrium of ET-1/NO (P < 0.05); and HO-1/BMMSCs increased the expression of vWF in hepatic sinusoidal endothelial cells (SECs), and promoted the degradation of HA, compared with those of the NS group and BMMSCs group (P < 0.05). In term of the energy metabolism of the transplanted liver, HO-1/BMMSCs repaired the damaged mitochondria, and improved the activity of mitochondrial aspartate aminotransferase (ASTm) and ATPase, compared with the other two groups (P <0.05).
CONCLUSION HO-1/BMMSCs can improve the microcirculation of hepatic sinusoids significantly, and recover the energy metabolism of damaged hepatocytes in rats following RLT, thus protecting the transplanted liver.
Collapse
|
12
|
Adas G, Koc B, Adas M, Duruksu G, Subasi C, Kemik O, Kemik A, Sakiz D, Kalayci M, Purisa S, Unal S, Karaoz E. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch Surg 2016; 401:725-40. [PMID: 27094936 DOI: 10.1007/s00423-016-1380-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/08/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE The study aims to determine the effects of mesenchymal stem cell (MSC) therapy and a combination therapy of MSCs transfected with vascular endothelial growth factor (VEGF) for liver regeneration after major resection. METHODS Thirty-eight rats were divided into four groups: group 1: control (sham operation); group 2: control (70 % hepatic resection); group 3: 70 % hepatic resection + systemically transplanted MSCs; and group 4: 70 % hepatic resection + systemically transplanted MSCs transfected with the VEGF gene. MSCs were injected via the portal vein route in study groups 3 and 4. Expression levels of VEGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor (TGF), hepatocyte growth factor (HGF), and augmenter of liver regeneration (ALR) were analyzed in the remnant liver tissue. We investigated the levels of angiogenic factors, VEGF-receptor, angiopoietin-1 (Angpt1) and Angpt2. Biochemical parameters of liver function in blood samples were measured and a histologic assessment of the livers was performed. The postoperative liver weight and volume of each rat were measured 14 days after surgery. RESULTS The expression levels of all measured growth factors were significantly increased in groups 3 and 4 compared to the control groups. The levels of Angpt1 and Angpt2 correlated with levels of VEGF and thus were also significantly higher in the study groups. There were significant differences between the estimated liver weights and volumes of group 4 and the resected controls in group 2. With the exception of portal inflammation, levels of all histological parameters were observed to be higher in MSC-treated groups when compared with the resected controls in group 2. CONCLUSIONS Transplanted stem cells and MSCs transfected with VEGF significantly accelerated many parameters of the healing process following major hepatic resection. After the injection of MSCs and VEGF-transfected MSCs into the portal vein following liver resection, they were engrafted in the liver. They increased bile duct and liver hepatocyte proliferation, and secreted many growth factors including HGF, TGFβ, VEGF, PDGF, EGF, and FGF via paracrine effects. These effects support liver function, regeneration, and liver volume/weight.
Collapse
Affiliation(s)
- Gokhan Adas
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Bora Koc
- Faculty of Medicine, Istanbul Training Hospital, Department of Surgery, Baskent University, Oymaci Sok. No:7, 34662, Altunizade Uskudar, Istanbul, Turkey.
| | - Mine Adas
- Department of Endocrinology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Gokhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Cansu Subasi
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Ozgur Kemik
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Ahu Kemik
- Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Damlanur Sakiz
- Department of Pathology, Bakirköy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Kalayci
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Sevim Purisa
- Faculty of Medicine, Department of Statistics, Istanbul University, Istanbul, Turkey
| | - Seda Unal
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Erdal Karaoz
- Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell), Liv Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Phenotypic Changes in Hepatic Stellate Cells in Response to Toxic Liver Injury. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Fernández-Blanco A, Inda AM, Errecalde AL. DNA synthesis in periportal and perivenous hepatocytes of intact and hepatectomized young mice. J Immunoassay Immunochem 2014; 36:456-63. [PMID: 25369464 DOI: 10.1080/15321819.2014.981828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA synthesis of hepatocytes in two areas of Intact and Hepatectomized young mice liver along a circadian period was studied. DNA synthesis was significantly different at all analyzed time points in Intact and Hepatectomized animals. Differences between periportal and perivenous hepatocytes were found in hepatectomized animals at 04/42 and 08/46 hr of day/hour post-hepatectomy. DNAs peak in periportal hepatocytes regenerating liver occurs 4 hr earlier than in perivenous hepatocytes, probably reflecting their shorter G1 phase. Besides, daily mean values of regenerating livers were higher than those observed in Intact animals, as a consequence of surgical removal.
Collapse
Affiliation(s)
- A Fernández-Blanco
- a Cátedra de Citología, Histología y Embriología "A", Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Buenos Aires , Argentina
| | | | | |
Collapse
|
15
|
Li J, Yan HT, Che JX, Bai SR, Qiu QM, Ren L, Pan F, Sun XQ, Tian FZ, Li DX, Tang LJ. Effects of neurolytic celiac plexus block on liver regeneration in rats with partial hepatectomy. PLoS One 2013; 8:e73101. [PMID: 24039865 PMCID: PMC3764180 DOI: 10.1371/journal.pone.0073101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Liver regeneration is the basic physiological process after partial hepatectomy (PH), and is important for the functional rehabilitation of the liver after acute hepatic injury. This study was designed to explore the effects of neurolytic celiac plexus block (NCPB) on liver regeneration after PH. We established a model of PH in rats, assessing hepatic blood flow, liver function, and serum CRP, TNF-α, IL-1β and IL-6 concentrations of the residuary liver after PH. Additionally, histopathological studies, immunohistochemistry, and western blotting were also performed. Our results indicated that NCPB treatment after PH improved liver regeneration and survival rates, increased hepatic blood flow, reduced hepatocyte damage, decreased the secretion and release of inflammatory cytokines, increased the expression of B cell lymphoma/leukemia-2 (Bcl-2), and decreased the expression of Bcl-2 associated X protein (Bax). Additionally, Western blotting revealed that the expression of NF-κB p65 and c-Jun were decreased in liver after NCPB. In conclusion, the results of our present study indicate that NCPB treatment has a favorable effect on liver regeneration after PH. We suggest that NCPB can be utilized as an effective therapeutic method to help the functional rehabilitation of the liver after acute hepatic injury or liver cancer surgery.
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesia, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| | - Hong-Tao Yan
- General Surgery Center of PLA, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| | - Jian-Xiang Che
- Department of Anesthesia, the 44 Hospital of PLA, Guiyang, Guizhou Province, P. R. China
| | - Shu-Rong Bai
- Department of Anesthesia, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| | - Qing-Ming Qiu
- Department of Anesthesia, the 44 Hospital of PLA, Guiyang, Guizhou Province, P. R. China
| | - Ling Ren
- Department of Anesthesia, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| | - Fan Pan
- Department of Anesthesia, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| | - Xiao-Qin Sun
- Department of Anesthesia, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| | - Fu-Zhou Tian
- General Surgery Center of PLA, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| | - Dong-Xuan Li
- General Surgery Center of PLA, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| | - Li-Jun Tang
- General Surgery Center of PLA, General Hospital of Chengdu Military Command Area, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
16
|
Fu L, Kitamura T, Iwabuchi K, Ichinose S, Yanagida M, Ogawa H, Watanabe S, Maruyama T, Suyama M, Takamori K. Interplay of neuropilin-1 and semaphorin 3A after partial hepatectomy in rats. World J Gastroenterol 2012; 18:5034-41. [PMID: 23049211 PMCID: PMC3460329 DOI: 10.3748/wjg.v18.i36.5034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the role of neuropilin-1 (Nrp-1) and semaphorin 3A (Sema3A) in sinusoidal remodeling during liver regeneration in rats.
METHODS: Male Wistar/ST rats at 7 wk of age, weighing about 200 g, were used for all animal experiments. In vivo, at 24, 48, 72, 96, 144 and 192 h after two-thirds partial hepatectomy (PHx), the remnant livers were removed. Liver tissues were immunohistochemically stained for Nrp-1, Sema3A and SE-1, a liver sinusoidal endothelial cell (SEC) marker. Total RNA of the liver tissue was extracted and reversely transcribed into cDNA. The mRNA expression of Sema3A was analyzed by quantitative real-time polymerase chain reaction and normalized to that of ribosomal protein S18. In vitro, SECs were isolated from rat liver and cultured in endothelial growth medium containing 20 ng/mL vascular endothelial cell growth factor. Migration of SECs in primary culture was assessed by cell transwell assay with or without recombinant Sema3A. Apoptotic cells were determined by a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling method.
RESULTS: In vitro, immunohistochemistry study revealed that Sema3A and Nrp-1 were constitutively expressed in hepatocytes and SECs, respectively, in normal rat liver tissues. Nrp-1 expression in SECs was quantified by the percentage of immunostained area with anti-Nrp-1 antibody in relation to the area stained with SE-1. Between 24 h and 96 h following resection of liver, Nrp-1 expression in SECs was transiently increased. Compared with the baseline (5.2% ± 0.1%), Nrp-1 expression in SECs significantly increased at 24 h (17.3% ± 0.7%, P < 0.05), 48 h (39.1% ± 0.6%, P < 0.01), 72 h (46.9% ± 4.5%, P < 0.01) and 96 h (29.9% ± 3.8%, P < 0.01) after PHx, then returned to the basal level at termination of liver regeneration. Interestingly, the expression of Sema3A was inversely associated with that of Nrp-1 in liver after PHx. Sema3A mRNA expression was significantly reduced by about 75% over the period 24-144 h after PHx (P < 0.05), and returned to basal levels at 192 h after PHx. In vitro, SECs isolated from rats after PHx (PHx-SECs) were observed to migrate to the lower chamber of the cell transwell system after incubation for 24 h, but not cells from normal rats (CONT-SECs), indicating that mobility of PHx-SECs increases as compared with that of CONT-SECs. Moreover, recombinant Sema3A significantly attenuated migration in PHx-SECs in primary culture (vehicle-treated 100% ± 7.9% vs Sema3A-treated 42.6% ± 5.4%, P < 0.01), but not in CONT-SECs. Compared with CONT-SECs, the apoptotic rate of PHx-SECs decreased by 78.3% (P < 0.05). There was no difference in apoptosis between CONT-SECs that were treated with vehicle and Sema3A. However, in PHx-SECs, apoptosis was induced by the presence of 5 nmol Sema3A for 24 h (vehicle-treated 21.7% ± 7.6% vs Sema3A-treated 104.3% ± 8.9%, P < 0.05). In addition, immunohistochemistry confirmed the increased expression of Nrp-1 in PHx-SECs, while it was noted to a lesser extent in CONT-SECs.
CONCLUSION: The interplay of Nrp-1 and Sema3A shown in our results may lead to a better understanding of interaction between sinusoidal remodeling and SECs during liver regeneration.
Collapse
|
17
|
Robinson S, Manas D, Pedley I, Mann D, White S. Systemic chemotherapy and its implications for resection of colorectal liver metastasis. Surg Oncol 2011; 20:57-72. [DOI: 10.1016/j.suronc.2009.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 10/07/2009] [Accepted: 10/26/2009] [Indexed: 12/29/2022]
|
18
|
Transplantation of porcine hepatocytes cultured with polylactic Acid-o-carboxymethylated chitosan nanoparticles promotes liver regeneration in acute liver failure rats. JOURNAL OF DRUG DELIVERY 2011; 2011:797503. [PMID: 21603218 PMCID: PMC3095446 DOI: 10.1155/2011/797503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/18/2011] [Accepted: 01/31/2011] [Indexed: 01/14/2023]
Abstract
In this study, free porcine hepatocytes suspension (Group A), porcine hepatocytes embedded in collagen gel (Group B), porcine hepatocytes cultured with PLA-O-CMC nanoparticles and embedded in collagen gel (Group C), and PLA-O-CMC nanoparticles alone (Group D) were transplanted into peritoneal cavity of ALF rats, respectively. The result showed that plasma HGF levels were elevated post-transplantation with a peak at 12 hr. The rats in Group C showed highest plasma HGF levels at 2, 6, 12, 24 and 36 hr post-transplantation and lowest HGF level at 48 hr. Plasma VEGF levels were elevated at 48 hr post-transplantation with a peak at 72 hr. The rats in Group C showed highest plasma HGF levels at 48, 72, and 96 hr post-transplantation. The liver functions in Group C were recovered most rapidly. Compared with Group B, Group C had significant high liver Kiel 67 antigen labeling index (Ki-67 LI) at day 1 post-HTx (P < .05). Ki-67 LI in groups B and C was higher than that in groups A and D at days 5 and 7 post-HTx. In conclusion, intraperitoneal transplantation of porcine hepatocytes cultured with PLA-O-CMC nanoparticles and embedded in collagen gel can promote significantly liver regeneration in ALF rats.
Collapse
|
19
|
Namisaki T, Yoshiji H, Noguchi R, Ikenaka Y, Kitade M, Kaji K, Shirai Y, Aihara Y, Yoshii J, Yanase K, Tsujimoto T, Kawaratani H, Fukui H. The vascular endothelial growth factor (VEGF) receptor-2 is a major regulator of VEGF-mediated salvage effect in murine acute hepatic failure. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:16. [PMID: 20731881 PMCID: PMC2933582 DOI: 10.1186/2040-2384-2-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/24/2010] [Indexed: 01/22/2023]
Abstract
Although administration of the vascular endothelial growth factor (VEGF), a potent angiogenic factor, could improve the overall survival of destroyed sinusoidal endothelial cells (SEC) in chemically induced murine acute hepatic failure (AHF), the mechanistic roles of the VEGF receptors have not been elucidated yet. The respective roles of VEGF receptors; namely, Flt-1 (VEGFR-1: R1) and KDR/Flk-1 (VEGFR-2: R2), in the D-galactosamine (Gal-N) and lipopolysaccharide (LPS)-induced AHF were elucidated with specific neutralizing monoclonal antibody against R1 and R2 (R1-mAb and R2-mAb, respectively). The serum ALT elevation, with a peak at 24 h after Gal-N+LPS intoxication, was markedly augmented by means of the R1-mAb and R2-mAb. The aggregative effect of R2-mAb was more potent than that of R1-mAb, and the survival rate was 70% in the R2-mAb-treated group and 100% in the other groups. The results of SEC destruction were almost parallel to those of the ALT changes. Our in-vitro study showed that R1-mAb and R2-mAb significantly worsened the Gal-N+LPS-induced cytotoxicity and apoptosis of SEC mediated by caspase-3, which were almost of similar magnitude to those in the in-vivo study. In conclusion, these results indicated that R2 is a major regulator of the salvage effect of VEGF on the maintenance of SEC architecture and the anti-apoptotic effects against chemically-induced murine AHF.
Collapse
Affiliation(s)
- Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Ryuichi Noguchi
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Yasuhide Ikenaka
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Yusaku Shirai
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Yosuke Aihara
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Junichi Yoshii
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Koji Yanase
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Tatsuhiro Tsujimoto
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| | - Hiroshi Fukui
- Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
20
|
Angiogenesis: multiple masks in hepatocellular carcinoma and liver regeneration. Hepatol Int 2010; 4:537-47. [PMID: 21063476 DOI: 10.1007/s12072-010-9192-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 07/09/2010] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is naturally resistant to radiotherapy and cytotoxic chemotherapy, leaving surgery as the mainstream therapeutic approach. However, the 5-year recurrence rate after curative resection is as high as 61.5%. The background hepatitis B- or C-induced cirrhosis and the presence of micrometastases at the time of surgery have been regarded as two main causes of recurrence. Recently, accumulating evidence suggests that growth factors and cytokines released during the physiological process of post-surgical liver regeneration could induce the activation of dormant micrometastatic lesions. The establishment of neovasculature to support either liver regeneration or HCC growth involves multiple cell types including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and circulating endothelial progenitors. The crosstalks among these cells are driven by multiple molecules and signaling pathways, including vascular endothelial growth factors and their receptors, platelet-derived growth factor, the angiopoietin/Tie family, hepatocyte growth factor/c-Met signaling, and others. Anti-angiogenic agent targeting liver cancer vasculature has been reported to be able to generate limited survival benefit of the patients. In this review, discussions are focused on various angiogenic mechanisms of HCC and liver regeneration, as well as the prevailing anti-angiogenic strategies.
Collapse
|
21
|
Sugiyama Y, Takabe Y, Nakakura T, Tanaka S, Koike T, Shiojiri N. Sinusoid development and morphogenesis may be stimulated by VEGF-Flk-1 signaling during fetal mouse liver development. Dev Dyn 2010; 239:386-97. [PMID: 19918884 DOI: 10.1002/dvdy.22162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Early morphogenesis of hepatic sinusoids was histochemically and experimentally analyzed, and the importance of VEGF-Flk-1 signaling in the vascular development was examined during murine liver organogenesis. FITC-gelatin injection experiments into young murine fetuses demonstrated that all primitive sinusoidal structures were confluent with portal and central veins, suggesting that hepatic vessel development may occur via angiogenesis. At 12.5-14.5 days of gestation, VEGF receptors designated Flk-1, especially their mature form, were highly expressed in endothelial cells of primitive sinusoidal structures and highly phosphorylated on their tyrosine residues. At the same time, VEGF was also detected in hepatoblasts/hepatocytes, hemopoietic cells, and megakaryocytes of the whole liver parenchyma. Furthermore, the addition of VEGF to E12.5 liver cell cultures significantly induced the growth and branching morphogenesis of sinusoidal endothelial cells. Therefore, VEGF-Flk-1 signaling may play an important role in the growth and morphogenesis of primitive sinusoids during fetal liver development.
Collapse
Affiliation(s)
- Yoshinori Sugiyama
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka City, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Angiogenesis and disruption of liver vascular architecture have been linked to progression to cirrhosis and liver cancer (HCC) in chronic liver diseases, which contributes both to increased hepatic vascular resistance and portal hypertension and to decreased hepatocyte perfusion. On the other hand, recent evidence shows that angiogenesis modulates the formation of portal-systemic collaterals and the increased splanchnic blood flow which are involved in the life threatening complications of cirrhosis. Finally, angiogenesis plays a key role in the growth of tumours, suggesting that interference with angiogenesis may prevent or delay the development of HCC. This review summarizes current knowledge on the molecular mechanisms of liver angiogenesis and on the consequences of angiogenesis in chronic liver disease. On the other hand, it presents the different strategies that have been used in experimental models to counteract excessive angiogenesis and its potential role in preventing transition to cirrhosis, development of portal hypertension and its consequences, and its application in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mercedes Fernández
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Apoptosis and Regeneration of Sinusoidal Endothelial Cells After Extended Cold Preservation and Transplantation of Rat Liver. Transplantation 2007; 84:1483-91. [DOI: 10.1097/01.tp.0000290188.38041.f1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Abstract
Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
25
|
Abstract
Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
26
|
Cheng Y, Liu YF, Zhang JL, Li TM, Zhao N. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats. World J Gastroenterol 2007; 13:2862-6. [PMID: 17569125 PMCID: PMC4395641 DOI: 10.3748/wjg.v13.i20.2862] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether the elevated vascular endothelial growth factor (VEGF) expression produced by the transfected vascular endothelial cells (VECs) could stimulate angiogenesis of the graft islets and exert its effect on the graft function.
METHODS: Thirty diabetic recipient rats were divided into three groups (n = 10 per group). In the control group, 300 IEQ islets were transplanted in each rat under the capsule of the right kidney, which were considered as marginal grafts. In the VEC group, VEC together with the islets were transplanted in each rat. In the VEGF group, VEC transfected by pIRES2-EGFP/VEGF165 plasmid and the islets were transplanted in each rat. Blood glucose and insulin levels were evaluated every other day after operation. Intravenous glucose tolerance test (IVGTT) was performed 10 d after the transplantation. Hematoxylin and eosin (HE) staining was used to evaluate the histological features of the graft islets. Immunohistochemical staining was used to detect insulin-6, VEGF and CD34 (MVD) expression in the graft islets.
RESULTS: Blood glucose and insulin levels in the VEGF group restored to normal 3 d after transplantation. In contrast, diabetic rats receiving the same islets with or without normal VECs displayed moderate hyperglycemia and insulin, without a significant difference between these two groups. IVGTT showed that both the amplitude of blood glucose induction and the kinetics of blood glucose in the VEGF group restored to normal after transplantation. H&E and immunohistochemical staining showed the presence of a large amount of graft islets under the capsule of the kidney, which were positively stained with insulin-6 and VEGF antibodies in the VEGF group. In the cell masses, CD34-stained VECs were observed. The similar masses were also seen in the other two groups, but with a fewer positive cells stained with insulin-6 and CD34 antibodies. No VEGF-positive cells appeared in these groups. Microvessel density (MVD) was significantly higher in the VEGF group compared to the other two groups.
CONCLUSION: Elevated VEGF production by trans-fected vascular endothelial cells in the site of islet transplantation stimulates angiogenesis of the islet grafts. The accelerated islet revascularization in early stage could improve the outcome of islet transplantation, and enhance the graft survival.
Collapse
Affiliation(s)
- Ying Cheng
- Organ Transplant Unit of First Affiliated Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang 110001, Liaoning Province, China.
| | | | | | | | | |
Collapse
|
27
|
Papastefanou VP, Bozas E, Mykoniatis MG, Grypioti A, Garyfallidis S, Bartsocas CS, Nicolopoulou-Stamati P. VEGF isoforms and receptors expression throughout acute acetaminophen-induced liver injury and regeneration. Arch Toxicol 2007; 81:729-41. [PMID: 17431590 DOI: 10.1007/s00204-007-0201-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/28/2007] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP) is a widely-used analgesic and a known hepatotoxic agent. Vascular endothelial growth factor (VEGF) is a growth factor with multiple functional roles. VEGF plays an important role in angiogenesis and hepatic regeneration. The aim of this study was to determine the expression of VEGF isoforms and its receptors throughout liver regeneration after the administration of a toxic dose of APAP in rats. Ten groups of adult male rats received a dose of 3.5 g/kg b.w. of APAP per os. The rats were killed post administration at 0-288 h. Blood and liver tissue were extracted. Determination of serum transaminases and alkaline phosphatase activities was performed. Liver injury and regeneration were assessed with hematoxylin-eosin specimens, morphometric analysis, hepatic thymidine kinase assay and Ki-67 expression. Reverse transcription-polymerase chain reaction and immunohistochemical methods were used for assessment of VEGF isoforms and receptors differential expression. High activities of aspartate aminotransferase were observed at 24 and 36 h with another peak of activity at 192 h post administration. Alanine aminotransferase was highest at 36 h. Alkaline phosphatase was increased post 24 h being higher at 72,192 and 240 h. Centrilobular necrosis was observed at 48-72 h and thorough restoration of the liver microarchitecture was observed at 288 h. Liver regeneration lasted from 24-192 h according to the results from thymidine kinase activity and Ki-67 expression. VEGF and VEGF receptor-2 m-RNA levels presented with a three-peak pattern of expression at 12-24, 72-96 and 192-240 h post administration. Significant difference was noted between periportal and centrilobular immunohistochemical expression. VEGF proves to play a critical role during APAP-induced liver regeneration as it presents with three points of higher expression. The first two time points are associated with the initial inflammatory reaction to the noxious stimulus and the hepatocyte regenerative process where as the third one is indicative of the potential involvement of VEGF in processes of remodeling.
Collapse
Affiliation(s)
- Vasilios P Papastefanou
- Department of Experimental Pharmacology, Medical School, University of Athens, Mikras Asias 75, Goudi, 115 27 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
28
|
Eichhorn ME, Kleespies A, Angele MK, Jauch KW, Bruns CJ. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch Surg 2007; 392:371-9. [PMID: 17458577 DOI: 10.1007/s00423-007-0150-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND Angiogenesis, the formation of new blood vessels from the endothelium of the existing vasculature, is fundamental in tumor growth, progression, and metastasis. Inhibiting tumor angiogenesis is a promising strategy for treatment of cancer and has been successfully transferred from preclinical to clinical application in recent years. Whereas conventional therapeutic approaches, e.g. chemotherapy and radiation, are focussing on tumor cells, antiangiogenic therapy is directed against the tumor supplying blood vessels. MATERIALS AND METHODS This review will summarize important molecular mechanisms of tumor angiogenesis and advances in the design of antiangiogenic drugs. Furthermore, clinical implications of antiangiogenic therapy in surgical oncology will be discussed. RESULTS First antiangiogenic drugs have been approved for treatment of advanced solid tumors in several countries. Leading antiangiogenic drugs are designed to inhibit vascular endothelial growth factor-mediated tumor angiogenesis. Combining antiangiogenic agents with conventional chemotherapy or radiation is currently investigated clinically with great emphasis to realize a multimodal tumor therapy, targeting both the tumor cell and tumor vascular compartment. CONCLUSION Antiangiogenic tumor therapy represents a promising strategy for treatment of cancer and will most likely exhibit its clinical potential in combination with established standard tumor therapies in the future.
Collapse
Affiliation(s)
- M E Eichhorn
- Department of Surgery, Klinikum Grosshadern, University of Munich, Marchioninistr. 15, 80337 Munich, Germany
| | | | | | | | | |
Collapse
|