1
|
Zhao X, He MJ, Zhao M, Li HR, Zhuang ZM, Xing Y, Zhang XL, Zhao P. Crude Polygalae Radix after boiling with licorice decoction alleviates intestinal mucosal barrier injury of rats by regulating TLR4/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119661. [PMID: 40120702 DOI: 10.1016/j.jep.2025.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia Willd. (pharmacologically termed Polygalae Radix, PR), a nootropic botanical in traditional Chinese medicine, demonstrates anxiolytic and cognitive-enhancing properties with two millennia of documented therapeutic applications. Long-term or large-dose use of crude Polygalae Radix (CPR) causes intestinal injury, which could be reduced by use of Glycyrrhiza uralensis Fisch. (licorice) decoction-boiled Polygalae Radix. However, the effects of boiling CPR with licorice decoction on reducing intestinal mucosal barrier injury have not been studied. AIM OF THE STUDY Our research mainly focused on the alleviating effects and underlying mechanism of CPR after boiling with licorice decoction on intestinal mucosal barrier injury in rats. METHODS AND MATERIALS SD rats were orally administered CPR and licorice decoction-boiled PR (LPR) extracts respectively for 15 consecutive days. Subsequently, levels of pro-inflammatory cytokines and immunoglobulins were measured, and histopathological changes in intestinal tissues were examined. The mRNA expression levels of pro-inflammatory cytokines were evaluated by qRT-PCR. The expression difference of TLR4/NF-κB signaling pathway key protein and tight junction (TJ) protein were evaluated using Western blotting and immunohistochemistry. RESULTS Processing PR with licorice decoction significantly ameliorated the downregulation of intestinal TJ proteins (occludin, claudin-1, and ZO-1) and elevated serum lipopolysaccharide levels induced by CPR. It alleviated the suppression of intestinal immunoglobulin A, serum immunoglobulin A and immunoglobulin G levels caused by CPR while mitigating intestinal mucosal injury and inflammatory responses. Additionally, processing PR with licorice decoction inhibited CPR-triggered upregulation of TLR4, NF-κB p65, p-NF-κB p65, and p-κBα proteins expression, while preventing IκBα downregulation in intestinal tissues. Furthermore, it significantly suppressed the upregulation of interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) mRNA expression while concurrently inhibiting the secretion levels of these pro-inflammatory cytokines in small intestine. CONCLUSION Our experimental data suggest that licorice decoction boiling effectively prevents CPR-induced reductions in TJ proteins and immunoglobulins expression, alleviates intestinal mucosal barrier injuries, and mediates these effects through suppression of TLR4/NF-κB signaling pathway activation and subsequent production of IL-6, IL-8, and TNF-α.
Collapse
Affiliation(s)
- Xin Zhao
- Medical School, Shandong Xiehe University, Jinan, 250109, PR China; Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Meng-Jiao He
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Meng Zhao
- Medical School, Shandong Xiehe University, Jinan, 250109, PR China
| | - Hao-Ran Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Zi-Ming Zhuang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yue Xing
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Xue-Lan Zhang
- Medical School, Shandong Xiehe University, Jinan, 250109, PR China; Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Pan Zhao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
2
|
Li Y, Tian Y, Zhu L, Lin H, Zhao X, Liu C, Lv Y, Wang Z, Zuo Z, Wang J, Wang Z. Fuzi Lizhong Pill inhibited inflammatory response and promoted colon mucosal healing in dextran sulfate sodium-induced ulcerative colitis mice by down-regulating PI3K/AKT/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119483. [PMID: 39947366 DOI: 10.1016/j.jep.2025.119483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi Lizhong Pill (FLP), a traditional Chinese herbal formula, has been historically used for treating gastrointestinal disorders characterized by cold deficiency patterns. Its application in ulcerative colitis (UC) stems from its warming and tonifying properties. AIM OF THE STUDY To evaluate the efficacy of FLP in the treatment of UC and investigate its mechanism of action. MATERIALS AND METHODS The chemical constituents of FLP were identified using UPLC-Q-Orbitrap HRMS. By establishing a preclinical UC mouse model with DSS and treating with FLP, we evaluated the effect of FLP on UC mice in terms of clinical symptoms, physiological indices, and histopathological examination. The anti-inflammatory and mucosal repair effects of FLP were examined at three levels: cellular, organoid, and animal, using immunohistochemistry, western blotting, RT-PCR, and other techniques. RESULTS We characterized the chemical composition of FLP and identified 99 compounds, including alkaloids, coumarins, and flavonoids. In UC mice, FLP alleviated clinical symptoms such as weight loss, blood in stools, and loose stools in UC mice; significantly reduced DAI scores in UC mice; significantly reversed splenomegaly and thymic atrophy caused by DSS; improved hemorrhage and inflammation-related hematological indices. In vitro and ex vivo studies showed that FLP inhibited the expression of TNF-α and IL-6, promoted the expression of the tight junction proteins ZO-1, Occludin, and Claudin 1, and promoted the proliferation of colonic epithelial cells in vivo. FLP also inhibited the transcription levels of PI3K, Akt, and NF-κB genes, as well as the expression or phosphorylation levels of related proteins in vitro and in vivo. CONCLUSION FLP may play a role in the treatment of UC by inhibiting the inflammatory response and repairing the colonic mucosal barrier by downregulating the PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yilin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Yingying Tian
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Lei Zhu
- China National Accreditation Service for Conformity Assessment, Beijing, 100062, China
| | - Hongsai Lin
- China National Accreditation Service for Conformity Assessment, Beijing, 100062, China
| | - Xinyue Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Chuang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yingnan Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Zijian Wang
- Beijing Tongrentang Technology Co., LTD, Pharmaceutical Factory, Beijing, 100071, China
| | - Zeping Zuo
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Jianfang Wang
- Department of Spleen, Stomach, Liver and Gallbladder, Dongfang Hospital, Beijing University of Chinese Medicine, 100078, China.
| | - Zhibin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100105, China; Beijing Tongrentang Technology Co., LTD, Pharmaceutical Factory, Beijing, 100071, China.
| |
Collapse
|
3
|
Chen L, Xie L, Wang L, Zhan X, Zhuo Z, Jiang S, Miao L, Zhang X, Zheng W, Liu TM, He J, Liu Y. Patchoulene epoxide mitigates colitis and hepatic damage induced by dextran sulfate sodium by regulating the colonic microbiota and purine metabolism. Front Immunol 2025; 16:1509114. [PMID: 40028318 PMCID: PMC11868103 DOI: 10.3389/fimmu.2025.1509114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Ulcerative colitis (UC) is often characterized by dysbiosis of the colonic microbiota and metabolic disturbances, which can lead to liver damage. Patchoulene epoxide (PAO), a tricyclic sesquiterpene derived from the aged essential oil of Pogostemonis Herba, is known for its anti-inflammatory and ulcer-healing properties. However, its dual protective role against UC and liver injury remains largely unexplored. This study aims to elucidate the protective effect and underlying mechanism of PAO against dextran sulfate sodium (DSS)-induced UC and liver injury in mice. Methods Colitis and liver injury in mice were induced by adding 3% DSS to their drinking water continuously for 7 days, and PAO at the doses of 20 and 40 mg/kg was administered orally to mice daily from the first day until the experimental endpoint. Stool consistency scores, blood stool scores, and body weights were recorded weekly. Disease activity index (DAI) was determined before necropsy, where colon and liver tissues were collected for biochemical analyses. Additionally, the fecal microbiome and its metabolites of treated mice were characterized using 16S rRNA amplicon sequencing and metabolomics. Results PAO significantly reduced the disease activity index and mitigated colonic atrophy in UC mice. It also improved colonic and hepatic pathological changes by safeguarding tight and adherens junctions, and suppressing the generation of pro-inflammatory cytokines and lipopolysaccharide. These beneficial effects were attributed to PAO's capability to regulate the colonic microbiota and metabolic processes. PAO was found to enhance the diversity of the colonic microbiota and to shift the microbial balance in UC mice. Specifically, it restored the microbiota from an Akkermansia-dominated state, characteristic of UC, to a healthier Muribaculaceae-dominated composition. Furthermore, PAO corrected the colon metabolic disturbance in UC mice by modulating the purine metabolism, notably increasing the abundance of deoxyadenosine, adenosine and guanine in UC mice. Conclusions The therapeutic effect of PAO on UC and liver injury was mainly attributed to its regulation of colonic microbiota and purine metabolism. These insights emphasize the overall therapeutic benefits of PAO in treating UC and liver injury.
Collapse
Affiliation(s)
- Liping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lili Xie
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lifen Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - Xueli Zhan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Susu Jiang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiming Zheng
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Ismail EN, Zakuan N, Othman Z, Vidyadaran S, Mohammad H, Ishak R. Polyphenols mitigating inflammatory mechanisms in inflammatory bowel disease (IBD): focus on the NF-ƙB and JAK/STAT pathways. Inflammopharmacology 2025; 33:759-765. [PMID: 39636381 PMCID: PMC11842400 DOI: 10.1007/s10787-024-01607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
The term "inflammatory bowel disease" (IBD) refers to a group of chronic inflammatory gastrointestinal disorders, which include ulcerative colitis and Crohn's disease. The necessity for alternative therapeutic approaches is underscored by the fact that although present medicines are successful, they frequently result in considerable adverse effects. Naturally occurring substances included in fruits and vegetables called polyphenols have been shown to have the capacity to control important inflammatory pathways including NF-κB and JAK/STAT, which are essential for the pathophysiology of IBD. The processes by which polyphenols, such as curcumin, EGCG, resveratrol, and quercetin, reduce inflammation are examined in this article. Polyphenols may have therapeutic advantages by blocking the synthesis of cytokines and the activation of immune cells by targeting these pathways. Preclinical study indicates a reduction in intestinal inflammation, which is encouraging. However, more clinical research is needed to determine the clinical relevance of polyphenols in the therapy of IBD, especially with regard to their long-term safety and bioavailability.
Collapse
Affiliation(s)
- Elysha Nur Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Noraina Zakuan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulkefley Othman
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hussin Mohammad
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Reezal Ishak
- Universiti Kuala Lumpur - Institute of Medical Science Technology (UniKL MESTECH), Kajang, Selangor, Malaysia.
| |
Collapse
|
5
|
Shao Y, Mu Q, Wang R, Luo H, Song Z, Wang P, Song J, Ge C, Zhang J, Min J, Wang F. SLC39A10 is a key zinc transporter in T cells and its loss mitigates autoimmune disease. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2817-y. [PMID: 39862347 DOI: 10.1007/s11427-024-2817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Zinc homeostasis plays an essential role in maintaining immune function and is tightly regulated by zinc transporters. We previously reported that the zinc transporter SLC39A10, located in the cell membrane, critically regulates the susceptibility of macrophages to inflammatory stimuli; however, the functional role of SLC39A10 in T cells is currently unknown. Here, we identified two SNPs in SLC39A10 that are associated with inflammatory bowel disease (IBD). We then generated transgenic mice with T cell-specific deletion of Slc39a10 (cKO) and found that its loss not only protects against disease progression in IBD and experimental autoimmune encephalomyelitis (EAE), but also induces massive apoptosis via a p53/p21- and Bcl2-independent process. Mechanistically, we show that Slc39a10 serves as a key zinc importer upon activation of T cell receptor to safeguard DNA replication. Together, these findings provide new mechanistic insights and potential targets for the development of new therapeutic strategies for the treatment and/or prevention of T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Yichang Shao
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qingdian Mu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rong Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongbin Luo
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zijun Song
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Pengfei Wang
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jingshu Song
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chaodong Ge
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Wang X, Ma J, Li W, Hou Z, Li H, Li Y, Wang S, Tie Y. BPA Exacerbates Zinc Deficiency-Induced Testicular Tissue Inflammation in Male Mice Through the TNF-α/NF-κB/Caspase8 Signaling Pathway. Biol Trace Elem Res 2024:10.1007/s12011-024-04464-2. [PMID: 39638945 DOI: 10.1007/s12011-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is toxic to reproduction. Zinc (Zn) plays an important role in male reproductive health. Zn deficiency (ZD) can co-exist with BPA. In order to investigate the specific mechanism of reproductive damage caused by BPA exposure in ZD male mice, a mouse model of ZD, BPA exposure, and their combined exposure was established in this study. Forty 4-week-old SPF male ICR mice with an average body weight of 31.7 ± 4.2 g were divided into four groups including normal Zn diet group 30 mg/(kg•d), BPA exposure group 150 mg/(kg•d), zinc deficiency diet group 7.5 mg/(kg•d), and BPA + ZD combined exposure group (BPA 150 mg/(kg•d) + ZD 7.5 mg/(kg•d)). The mice were kept for 8 weeks. The results showed that the testicular tissue structure was disturbed, and semen quality, serum Zn, testicular tissue Zn, and testicular tissue free Zn ions were decreased in the BPA-exposed and ZD groups. The expression of zinc transporters (ZIP7, ZIP8, ZIP13, and ZIP14) in testicular tissue was changed. The expressions of pro-inflammatory cytokines including TNF-α and IL-1β as well as inflammatory pathway-related proteins (IKB-α, p-IKB-α, NF-κB, p-NF-κB, Caspase8, and Caspase3) were increased, while the expressions of anti-inflammatory cytokines (TGF-β and IL-10) were decreased. The changes in the above indexes in the BPA + ZD group were more obvious. Both BPA exposure and ZD can induce testicular tissue inflammation through the TNF-α/NF-κB/Caspase8 signaling pathway, and BPA further aggravates zinc deficiency-induced testicular tissue inflammation and apoptosis damage.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, 063210, Hebei Province, China.
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Wen Li
- Hebei Chest Hospital, Shijiazhuang, 050041, Hebei, China
| | - Zhan Hou
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - Yuanjing Li
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
| | - Yanqing Tie
- Hebei General Hospital, NO.348 Heping West Road, Xinhua District, Shijiazhuang City, P.R. 050051, Hebei Province, China.
| |
Collapse
|
7
|
Younes OA, Elsherbiny DM, Hanna DMF, Gad AM, Azab SS. Tocilizumab unfolds colo-protective and immunomodulatory effect in experimentally induced ulcerative colitis via mitigating autophagy and ER stress signaling. Inflammopharmacology 2024; 32:3881-3898. [PMID: 39134818 PMCID: PMC11550239 DOI: 10.1007/s10787-024-01527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/05/2024] [Indexed: 11/10/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic, relapsing inflammatory bowel disease (IBD), characterized by chronic inflammation of the gastrointestinal tract. The pathophysiology of UC is complicated and involves several factors including immune, genetic, and environmental factors. Recently, a huge amount of research has concentrated on the role of interleukins including interleukin-6 (IL-6) in its pathophysiology. Thus, this study aims to examine the colo-protective and immunomodulatory effect of Tocilizumab (TCZ) in an experimental model of dextran sulfate sodium (DSS) induced UC. In the current study, we analyzed the inflammatory, immunomodulatory, apoptotic, autophagy, and endoplasmic reticulum (ER) stress markers and other clinical features including stool consistency, rectal bleeding, and edema markers in rats. Our results showed that induction of colitis caused bloody diarrhea and increased IL-6 levels. Treatment with TCZ significantly ameliorated DSS-induced injury via decreasing inflammatory markers of colon injury (IL-6), signal transducer and activator of transcription-3 (STAT-3), and C-reactive protein (CRP). Furthermore, TCZ attenuated the apoptotic marker (caspase-3), and down-regulated endoplasmic reticulum stress sensor proteins (inositol- requiring transmembrane kinase endonuclease-1 (IRE-1) and activated transcription factor-6 (ATF-6)) and autophagy proteins (autophagy-related 16-like protein 1 (ATG16L1) and nucleotide-binding oligomerization domain-containing protein-2 (NOD2)), as compared to DSS group. Altogether, the current data suggest TCZ to be a promising protective therapy against UC.
Collapse
Affiliation(s)
- Omnia A Younes
- Biologicals Unit at General Administration of Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Doaa M Elsherbiny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly NODCAR, Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University Kantara Branch, Ismailia, Egypt
| | - Samar S Azab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
8
|
Duarte Villas Mishima M, Stampini Duarte Martino H, Silva Meneguelli T, Tako E. Effect of food derived bioactive peptides on gut health and inflammatory mediators in vivo: a systematic review. Crit Rev Food Sci Nutr 2024; 64:11974-11984. [PMID: 37574588 DOI: 10.1080/10408398.2023.2245469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Dietary proteins serve as sources of exogenous peptides, after being released from the protein and absorbed, the bioactive peptides can perform several functions in the body. The objective of the current systematic review is to answer the question "How does food derived bioactive peptides can impact on gut health and inflammatory mediators in vivo?" The search was performed at PubMed, Cochrane, and Scopus databases for experimental studies, and the risk of bias was assessed by the SYRCLE tool. The data analysis was conducted following the PRISMA guidelines. Eleven studies performed in animal models evaluating bioactive peptides derived from animal and plant sources were included and evaluated for limitations in heterogeneity, methodologies, absence of information regarding the allocation process, and investigators' blinding. The bioactive peptides demonstrated potential positive effects on inflammation and gut health. The main results identified were a reduction in TNF-α, NF-κB, and TLR4, an improvement in IgA production and in intestinal morphology, with an increase in villi surface area and goblet cell diameter, and Shannon and Simpson indexes were also increased. However, more in vivo studies are still necessary to better elucidate the anti-inflammatory activity and mechanisms by which peptides regulate gut health. PROSPERO (CRD42023416680).
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Tan M, Wang Y, Ji Y, Mei R, Zhao X, Song J, You J, Chen L, Wang X. Inflammatory bowel disease alters in vivo distribution of orally administrated nanoparticles: Revealing via SERS tag labeling technique. Talanta 2024; 275:126172. [PMID: 38692050 DOI: 10.1016/j.talanta.2024.126172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Nanoparticles (NPs) could be uptake orally and exposed to digestive tract through various sources such as particulate pollutant, nanomedicine and food additive. Inflammatory bowel disease (IBD), as a global disease, induced disruption of the intestinal mucosal barrier and thus altered in vivo distribution of NPs as a possible consequence. However, related information was relatively scarce. Herein, in vivo distribution of typical silica (SiO2) and titania (TiO2) NPs was investigated in healthy and IBD models at cell and animal levels via a surface-enhanced Raman scattering (SERS) tag labeling technique. The labeled NPs were composed of gold SERS tag core and SiO2 (or TiO2) shell, demonstrating sensitive and characteristic SERS signals ideal to trace the NPs in vivo. Cell SERS mapping revealed that protein corona from IBD intestinal fluid decreased uptake of NPs by lipopolysaccharide-induced RAW264.7 cells compared with normal intestinal fluid protein corona. SERS signal detection combined with inductively coupled plasma mass spectrometry (ICP-MS) analysis of mouse tissues (heart, liver, spleen, lung and kidney) indicated that both NPs tended to accumulate in lung specifically after oral administration for IBD mouse (6 out of 20 mice for SiO2 and 4 out of 16 mice for TiO2 were detected in lung). Comparatively, no NP signals were detected in all tissues from healthy mice. These findings suggested that there might be a greater risk associated with the oral uptake of NPs in IBD patients due to altered in vivo distribution of NPs.
Collapse
Affiliation(s)
- Mingyue Tan
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yunxia Ji
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Song
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
10
|
Wang Y, Ma H, Zhang X, Xiao X, Yang Z. The Increasing Diagnostic Role of Exosomes in Inflammatory Diseases to Leverage the Therapeutic Biomarkers. J Inflamm Res 2024; 17:5005-5024. [PMID: 39081872 PMCID: PMC11287202 DOI: 10.2147/jir.s475102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory diseases provide substantial worldwide concerns, affecting millions of people and healthcare systems by causing ongoing discomfort, diminished quality of life, and increased expenses. In light of the progress made in treatments, the limited effectiveness and negative side effects of present pharmaceuticals need a more comprehensive comprehension of the underlying processes in order to develop more precise remedies. Exosomes, which are tiny vesicles that play a vital role in cell communication, have been identified as prospective vehicles for effective delivery of anti-inflammatory medicines, immunomodulators, and gene treatments. Vesicles, which are secreted by different cells, have a crucial function in communicating between cells. This makes them valuable in the fields of diagnostics and therapies, particularly for inflammatory conditions. Exosomes have a role in regulating the immune system, transporting cytokines, and influencing cell signaling pathways associated with inflammation. They consist of proteins, lipids, and genetic information that have an impact on immune responses and inflammation. Scientists are now investigating exosomes as biomarkers for inflammatory disease. This review article aims to develop non-invasive diagnostic techniques with improved sensitivity and specificity. Purpose of this review is a thorough examination of exosomes in pharmacology, specifically emphasizing their origin, contents, and functions, with the objective of enhancing diagnostic and therapeutic strategies for inflammatory conditions. Gaining a comprehensive understanding of the intricate mechanisms involved in exosome-mediated interactions and their impact on immune responses is of utmost importance in order to devise novel approaches for tackling inflammatory disease and enhancing patient care.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Xiaohua Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Xia Xiao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, People’s Republic of China
| |
Collapse
|
11
|
Zhang X, Shi J, Lu Y, Ji R, Guan Z, Peng F, Zhao C, Gao W, Gao F. Mechanism of oxymatrine in the treatment of cryptosporidiosis through TNF/NF-κB signaling pathway based on network pharmacology and experimental validation. Sci Rep 2024; 14:14469. [PMID: 38914662 PMCID: PMC11196726 DOI: 10.1038/s41598-024-65362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Cryptosporidiosis is a worldwide zoonotic disease. Oxymatrine, an alkaloid extracted and isolated from the plant bitter ginseng, has been reported to have therapeutic effects on cryptosporidiosis. However, the underlying mechanism of its action remains unclear. In this study, we utilized network pharmacology and experimental validation to investigate the mechanism of oxymatrine in the treatment of cryptosporidiosis. First, the potential targets of drugs and diseases were predicted by TCMSP, Gene Cards, and other databases. Following the intersection of drug-disease targets, the DAVID database was used to implement the enrichment analysis of GO functions and KEGG pathways, and then the network diagram of "intersected target-KEGG" relationship was constructed. Autodock 4.2.6 software was used to carry out the molecular docking of core targets to drug components. Based on the establishment of a mouse model of cryptosporidiosis, the validity of the targets in the TNF/NF-κB signaling pathway was confirmed using Western blot analysis and Quantitative Rea-ltime-PCR. A total of 41 intersectional targets of oxymatrine and Cryptosporidium were generated from the results, and five core targets were screened out by network analysis, including RELA, AKT1, ESR1, TNF, and CASP3. The enrichment analysis showed that oxymatrine could regulate multiple gene targets, mediate TNF, Apoptpsis, IL-17, NF-κB and other signaling pathways. Molecular docking experiments revealed that oxymatrine was tightly bound to core targets with stable conformation. Furthermore, we found through animal experiments that oxymatrine could regulate the mRNA and protein expression of IL-6, NF-κB, and TNF-α in the intestinal tissues of post-infected mice through the TNF/NF-κB signaling pathway. Therefore, it can be concluded that oxymatrine can regulate the inflammatory factors TNF-α, NF-κB, and IL-6 through the TNF/NF-κB signaling pathway for the treatment of cryptosporidiosis. This prediction has also been validated by network pharmacology and animal experiments.
Collapse
Affiliation(s)
- Xiaoning Zhang
- College of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jie Shi
- College of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Lu
- College of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Ji
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053, China.
| | - Zhiyu Guan
- College of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China.
| | - Fujun Peng
- College of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunzhen Zhao
- College of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Wei Gao
- College of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Feng Gao
- College of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
12
|
Vilardi A, Przyborski S, Mobbs C, Rufini A, Tufarelli C. Current understanding of the interplay between extracellular matrix remodelling and gut permeability in health and disease. Cell Death Discov 2024; 10:258. [PMID: 38802341 PMCID: PMC11130177 DOI: 10.1038/s41420-024-02015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The intestinal wall represents an interactive network regulated by the intestinal epithelium, extracellular matrix (ECM) and mesenchymal compartment. Under healthy physiological conditions, the epithelium undergoes constant renewal and forms an integral and selective barrier. Following damage, the healthy epithelium is restored via a series of signalling pathways that result in remodelling of the scaffolding tissue through finely-regulated proteolysis of the ECM by proteases such as matrix metalloproteinases (MMPs). However, chronic inflammation of the gastrointestinal tract, as occurs in Inflammatory Bowel Disease (IBD), is associated with prolonged disruption of the epithelial barrier and persistent damage to the intestinal mucosa. Increased barrier permeability exhibits distinctive signatures of inflammatory, immunological and ECM components, accompanied by increased ECM proteolytic activity. This narrative review aims to bring together the current knowledge of the interplay between gut barrier, immune and ECM features in health and disease, discussing the role of barrier permeability as a discriminant between homoeostasis and IBD.
Collapse
Affiliation(s)
- Aurora Vilardi
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Claire Mobbs
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Alessandro Rufini
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
- Department of Biosciences, University of Milan, Milan, 20133, Italy.
| | - Cristina Tufarelli
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
| |
Collapse
|
13
|
Xu W, Hua Z, Wang Y, Tang W, Ou W, Liu F, Yang Y, Ding W, Wang Z, Cui L, Ge W, Gu Y, Wang X, Chen Y, Liu CY, Du P. AMBRA1 promotes intestinal inflammation by antagonizing PP4R1/PP4c mediated IKK dephosphorylation in an autophagy-independent manner. Cell Death Differ 2024; 31:618-634. [PMID: 38424148 PMCID: PMC11094188 DOI: 10.1038/s41418-024-01275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
IκB kinase (IKK) complex is central regulators of the NF-κB pathway, and dysregulation of IKK phosphorylation leads to hyperactivation of proinflammatory response in various chronic inflammatory diseases, including inflammatory bowel disease (IBD). However, the dynamic modulation of IKK phosphorylation and dephosphorylation in intestinal inflammation remains uncharacterized. Here, we found that autophagy/beclin-1 regulator 1 (AMBRA1) was highly expressed in inflamed colons in a colitis mouse model and in clinical IBD samples. Importantly, AMBRA1 deletion significantly decreased proinflammatory cytokine expression and enhanced the therapeutic effect of infliximab on intestinal inflammation. Mechanistically, the N-term F1 domain of AMBRA1 was required for AMBRA1 to competitively interact with protein phosphatase 4 regulatory subunit 1 (PP4R1) and catalytic protein phosphatase 4 (PP4c) to suppress their interactions with IKK, promote the dissociation of the PP4R1/PP4c complex, and antagonize the dephosphorylation activity of this complex towards the IKK complex. In response to TNF-α stimulation, IKKα phosphorylates AMBRA1 at S1043 to stabilize AMBRA1 expression by impairing its binding to Cullin4A (CUL4A) to decrease its CUL4A-mediated K48-linked ubiquitination. Overall, our study identifies an autophagy-independent function of AMBRA1 as a positive modulator of IKK phosphorylation to promote intestinal inflammation, thus providing a new targeted therapeutic strategy for patients with refractory IBD.
Collapse
Affiliation(s)
- Weimin Xu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Zhebin Hua
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Yaosheng Wang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Wenbo Tang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Weijun Ou
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Fangyuan Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Yiqing Yang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Wenjun Ding
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Zhongchuan Wang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Long Cui
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Yubei Gu
- Department of Gastroenterology, Rui Jin Hospital, affiliate to Shanghai Jiao Tong University, school of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Xiaolei Wang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - YingWei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China.
| | - Chen-Ying Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| |
Collapse
|
14
|
Liu Y, Robinson AM, Su XQ, Nurgali K. Krill Oil and Its Bioactive Components as a Potential Therapy for Inflammatory Bowel Disease: Insights from In Vivo and In Vitro Studies. Biomolecules 2024; 14:447. [PMID: 38672464 PMCID: PMC11048140 DOI: 10.3390/biom14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- School of Rural Health, La Trobe University, Melbourne, VIC 3010, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xiao Qun Su
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
15
|
Boeing T, Lima ABF, Busana ME, Mariano LNB, da Silva LM, Silva RDCVD, de Souza P. Characterization of Diclofenac-induced Renal Damage in Normotensive and Hypertensive Rats: A Comparative Analysis. Drug Res (Stuttg) 2024; 74:171-179. [PMID: 38503307 DOI: 10.1055/a-2277-8458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Diclofenac is the non-steroidal anti-inflammatory drug (NSAID) mostly prescribed worldwide, but it is highly associated with hypertension and acute kidney injury. Despite that, little information is available about the renal effects of diclofenac in hypertensive individuals, which led us to carry out this comparative study between the renal effects of this NSAID in normotensive (NTR) and spontaneously hypertensive rats (SHR). METHODS Male Wistar NTR and SHR were orally treated with vehicle (V: 10 mL/kg) or diclofenac sodium (D: 100 mg/kg) once a day for 3 days. Urine volume, electrolytes excretion (Na+, K+, Cl-, and Ca2+), urea, creatinine, pH, and osmolarity were evaluated. Furthermore, blood samples and renal tissue were collected to perform biochemical and histological analysis. RESULTS Diclofenac increased the renal corpuscle and bowman's space in the SHR, while no microscopic changes were observed in the renal tissue of NTR. Regarding the urinary parameters, diclofenac reduced urine volume, pH, osmolarity, and all electrolytes excretion, followed by decreased urea and creatinine levels in both lineages. Moreover, it also induced hyponatremia, hypokalemia, and hypocalcemia in SHR, while reduced glutathione-S-transferase activity, lipid hydroperoxides, and nitrite levels in renal tissue. CONCLUSIONS The data presented herein demonstrated that diclofenac induces renal damage and impaired renal function in both NTR and SHR, but those effects are exacerbated in SHR, as seen by the histological changes and electrolytes balance disturbance, therefore, reinforcing that diclofenac may increase the risks of cardiovascular events in hypertensive patients.
Collapse
Affiliation(s)
- Thaise Boeing
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | | | - Maria Eduarda Busana
- Pharmacy Course, School of Health Sciences, University of Vale do Itajaí, Itajaí, Brazil
| | - Luísa Nathália Bolda Mariano
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Rita de Cássia Vilhena da Silva
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| |
Collapse
|
16
|
Plaza J, Mínguez A, Bastida G, Marqués R, Nos P, Poveda JL, Moret-Tatay I. Genetic Variants Associated with Biological Treatment Response in Inflammatory Bowel Disease: A Systematic Review. Int J Mol Sci 2024; 25:3717. [PMID: 38612528 PMCID: PMC11012229 DOI: 10.3390/ijms25073717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the digestive tract usually characterized by diarrhea, rectal bleeding, and abdominal pain. IBD includes Crohn's disease and ulcerative colitis as the main entities. IBD is a debilitating condition that can lead to life-threatening complications, involving possible malignancy and surgery. The available therapies aim to achieve long-term remission and prevent disease progression. Biologics are bioengineered therapeutic drugs that mainly target proteins. Although they have revolutionized the treatment of IBD, their potential therapeutic benefits are limited due to large interindividual variability in clinical response in terms of efficacy and toxicity, resulting in high rates of long-term therapeutic failure. It is therefore important to find biomarkers that provide tailor-made treatment strategies that allow for patient stratification to maximize treatment benefits and minimize adverse events. Pharmacogenetics has the potential to optimize biologics selection in IBD by identifying genetic variants, specifically single nucleotide polymorphisms (SNPs), which are the underlying factors associated with an individual's drug response. This review analyzes the current knowledge of genetic variants associated with biological agent response (infliximab, adalimumab, ustekinumab, and vedolizumab) in IBD. An online literature search in various databases was conducted. After applying the inclusion and exclusion criteria, 28 reports from the 1685 results were employed for the review. The most significant SNPs potentially useful as predictive biomarkers of treatment response are linked to immunity, cytokine production, and immunorecognition.
Collapse
Affiliation(s)
- Javier Plaza
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (J.P.); (A.M.)
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
| | - Alejandro Mínguez
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (J.P.); (A.M.)
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (G.B.); (P.N.)
| | - Guillermo Bastida
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (G.B.); (P.N.)
| | - Remedios Marqués
- Pharmacy Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (R.M.); (J.L.P.)
| | - Pilar Nos
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (G.B.); (P.N.)
| | - Jose Luis Poveda
- Pharmacy Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (R.M.); (J.L.P.)
| | - Inés Moret-Tatay
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (J.P.); (A.M.)
- General Directorate of Public Health, Council of Healthcare, 46021 Valencia, Spain
| |
Collapse
|
17
|
Voshagh Q, Anoshiravani A, Karimpour A, Goodarzi G, Tehrani SS, Tabatabaei‐Malazy O, Panahi G. Investigating the association between the tissue expression of miRNA-101, JAK2/STAT3 with TNF-α, IL-6, IL-1β, and IL-10 cytokines in the ulcerative colitis patients. Immun Inflamm Dis 2024; 12:e1224. [PMID: 38517042 PMCID: PMC10958669 DOI: 10.1002/iid3.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by numerous factors, such as immune system dysfunction and genetic factors. MicroRNAs (miRNAs) play a crucial role in UC pathogenesis, particularly via the JAK-STAT pathway. Our aim was to investigate the association between miRNA-101 and JAK2-STAT3 signaling pathway with inflammatory cytokines in UC patients. METHODS We enrolled 35 UC patients and 35 healthy individuals as the control group, referred to Shariati Hospital, Tehran, Iran. Patients were diagnosed based on clinical, laboratory, histological, and colonoscopy criteria. RNA and protein extracted from tissue samples. Real-time PCR was used to assess the expression levels of miRNA-101, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-10 genes, while western blot was employed to measure levels of P-STAT3, total STAT3, and JAK2 proteins. RESULTS Expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 significantly increased, while the expression of IL-10 significantly decreased in the case group versus controls. Additionally, miRNA-101 expression was significantly higher in UC patients. A significant correlation between miRNA-101 and IL-6 expression was observed, indicating their relationship and possible impact on cell signaling pathways, JAK2-STAT3. No significant changes were observed in phosphorylated and total STAT3 and JAK2 protein expression. CONCLUSION This study provides evidence of increased miRNA-101 expression in UC tissue, suggesting a potential correlation between miRNA-101 and IL-6 expression and their involvement in the JAK2-STAT3 pathway. The study confirms alterations in UC patients' pro-inflammatory cytokines and anti-inflammatory IL-10. However, further investigations are needed to understand the exact role of miRNA-101 in UC pathogenesis fully.
Collapse
Affiliation(s)
- Qazaleh Voshagh
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Anoshiravani
- Digestive Disease Research Center, Digestive Disease Research InstituteTehran University of Medical SciencesTehranIran
| | - Amin Karimpour
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| | - Golnaz Goodarzi
- Department of Pathobiology and Laboratory Sciences, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and MetabolismIran University of Medical ScienceTehranIran
| | - Ozra Tabatabaei‐Malazy
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Li ZY, Lin LH, Liang HJ, Li YQ, Zhao FQ, Sun TY, Liu ZY, Zhu JY, Gu F, Xu JN, Hao QY, Zhou DS, Zhai HH. Lycium barbarum polysaccharide alleviates DSS-induced chronic ulcerative colitis by restoring intestinal barrier function and modulating gut microbiota. Ann Med 2023; 55:2290213. [PMID: 38061697 PMCID: PMC10836275 DOI: 10.1080/07853890.2023.2290213] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE This study examined the protective effects and mechanism of Lycium barbarum polysaccharides (LBP) in the context of intestinal barrier function and intestinal microbiota in mice with dextran sulfate sodium (DSS)-induced chronic ulcerative colitis (UC). METHODS C57BL/6J male mice were assigned to a standard normal diet without DSS (control group), a normal diet with DSS (DSS group, 2% DSS given discontinuously for 3 weeks) or a normal diet supplemented with LBP (1% dry feed weight, LBP group, 2% DSS given discontinuously for 3 weeks) for a total of 8 weeks, at which point colonic tissues and caecal contents were collected. RESULTS LBP exerted a significant effect against colitis by increasing body weight, colon length, DAI and histopathological scores. LBP inhibited proinflammatory cytokines (IL-1β, IL-6, iNOS and TNF-α) expression, improved anti-inflammatory cytokine (IL-10) expression, promoted the expression of tight junction proteins (Occludin and ZO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2) activation and decreased Claudin-2 expression to maintain the intestinal mucosal barrier. In addition, the abundances of some probiotics (Ruminococcaceae, Lactobacillus, Butyricicoccus, and Akkermansia) were decreased with DSS treatment but increased obviously with LBP treatment. And LBP reduced the abundance of conditional pathogens associated with UC (Mucispirillum and Sutterella). Furthermore, LBP improved the production of short-chain fatty acids (SCFAs), including acetic acid, propionic acid, butyric acid and isobutyric acid. CONCLUSION LBP can alleviate DSS-induced UC by regulating inflammatory cytokines and tight junction proteins. Moreover, LBP promotes probiotics, suppresses conditional pathogens and increases SCFAs production, showing a strong prebiotic effect.
Collapse
Affiliation(s)
- Zhi-Yu Li
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Lan-Hui Lin
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - He-Jun Liang
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ya-Qi Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fu-Qian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Yi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zi-Yu Liu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jing-Yi Zhu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Feng Gu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jia-Ning Xu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi-Yuan Hao
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - De-Shan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui-Hong Zhai
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Vezza T, Molina-Tijeras JA, Rodríguez-Nogales A, Garrido-Mesa J, Cádiz-Gurrea MDLL, Segura-Carretero A, González-Tejero MR, Rodríguez-Cabezas ME, Gálvez J, Algieri F. The Antioxidant Properties of Salvia verbenaca Extract Contribute to Its Intestinal Antiinflammatory Effects in Experimental Colitis in Rats. Antioxidants (Basel) 2023; 12:2071. [PMID: 38136191 PMCID: PMC10741154 DOI: 10.3390/antiox12122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammation with unpredictable symptom fluctuations. While there is no effective cure for IBD, various treatments aim to manage symptoms and improve the quality of life for affected individuals. In recent years, there has been growing interest in the potential benefits of certain natural plants and herbs in the management of IBD. In this regard, this study aimed to evaluate the immunomodulatory and anti-inflammatory effects of a well-characterized extract of Salvia verbenaca (S. verbenaca) in an experimental model of colitis in rats. Interestingly, the daily administration of S. verbenaca (10 and 25 mg/kg) effectively alleviated colitis symptoms, as evidenced by reduced weight/length ratio and colonic damage. Moreover, it reduced oxidative stress markers (MPO and GSH), decreased pro-inflammatory cytokine expression (Il-6, Il-12a, Il-1β, Il-23, Icam-1, Mcp-1, Cinc-1), and preserved the integrity of the intestinal barrier (Villin, Muc-2, Muc-3). These effects suggest S. verbenaca extract could represent a potential complementary candidate to treat gastrointestinal disorders. Its beneficial actions can be related to its antioxidant properties as well as the downregulation of the immune response, which can result in the improvement in the intestine epithelial barrier.
Collapse
Affiliation(s)
- Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Jose Garrido-Mesa
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.d.l.L.C.-G.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; (M.d.l.L.C.-G.); (A.S.-C.)
| | | | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francesca Algieri
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (T.V.); (J.A.M.-T.); (J.G.-M.); (J.G.); (F.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
20
|
Mishima MDV, Martino HSD, Kolba N, Shah DD, Grancieri M, Dos Santos KMO, Lima JP, Da Silva BP, Gonzalez de Mejia E, Tako E. Effects of Intra-Amniotic Administration of the Hydrolyzed Protein of Chia ( Salvia hispanica L.) and Lacticaseibacillus paracasei on Intestinal Functionality, Morphology, and Bacterial Populations, In Vivo ( Gallus gallus). Nutrients 2023; 15:nu15081831. [PMID: 37111052 PMCID: PMC10144735 DOI: 10.3390/nu15081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
As a protein source, chia contains high concentrations of bioactive peptides. Probiotics support a healthy digestive tract and immune system. Our study evaluated the effects of the intra-amniotic administration of the hydrolyzed chia protein and the probiotic Lacticaseibacillus paracasei on intestinal bacterial populations, the intestinal barrier, the inflammatory response, and brush border membrane functionality in ovo (Gallus gallus). Fertile broiler (Gallus gallus) eggs (n = 9/group) were divided into 5 groups: (NI) non-injected; (H2O) 18 MΩ H2O; (CP) 10 mg/mL hydrolyzed chia protein; (CPP) 10 mg/mL hydrolyzed chia protein + 106 colony-forming unit (CFU) L. paracasei; (P) 106 CFU L. paracasei. The intra-amniotic administration was performed on day 17 of incubation. At hatching (day 21), the animals were euthanized, and the duodenum and cecum content were collected. The probiotic downregulated the gene expression of NF-κβ, increased Lactobacillus and E. coli, and reduced Clostridium populations. The hydrolyzed chia protein downregulated the gene expression of TNF-α, increased OCLN, MUC2, and aminopeptidase, reduced Bifidobacterium, and increased Lactobacillus. The three experimental groups improved in terms of intestinal morphology. The current results suggest that the intra-amniotic administration of the hydrolyzed chia protein or a probiotic promoted positive changes in terms of the intestinal inflammation, barrier, and morphology, improving intestinal health.
Collapse
Affiliation(s)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Nikolai Kolba
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | | | - Janine Passos Lima
- Embrapa Agroindústria de Alimentos, Av. das Américas 29.501, Rio de Janeiro 23020-470, RJ, Brazil
| | - Bárbara Pereira Da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elad Tako
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:4454. [PMID: 36901885 PMCID: PMC10003013 DOI: 10.3390/ijms24054454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic non-specific inflammation in the gastrointestinal (GI) tract, primarily affecting the ileum and colon. The incidence of IBD has risen sharply in recent years. Despite continuous research efforts over the past decades, the aetiology of IBD is still not fully understood and only a limited number of drugs are available for its treatment. Flavonoids, a ubiquitous class of natural chemicals found in plants, have been widely used in the prevention and treatment of IBD. However, their therapeutic efficacy is unsatisfactory due to poor solubility, instability, rapid metabolism, and rapid systemic elimination. With the development of nanomedicine, nanocarriers can efficiently encapsulate various flavonoids and subsequently form nanoparticles (NPs), which greatly improves the stability and bioavailability of flavonoids. Recently, progress has also been made in the methodology of biodegradable polymers that can be used to fabricate NPs. As a result, NPs can significantly enhance the preventive or therapeutic effects of flavonoids on IBD. In this review, we aim to evaluate the therapeutic effect of flavonoid NPs on IBD. Furthermore, we discuss possible challenges and future perspectives.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ying Liu
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
22
|
Zhou N, Wu N, Yao Y, Chen S, Xu M, Yin Z, Zhao Y, Tu Y. Anti-inflammatory effects of tripeptide WLS on TNF-α-induced HT-29 cells and DSS-induced colitis in mice. Food Funct 2022; 13:9496-9512. [PMID: 35993870 DOI: 10.1039/d2fo01235a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease is a chronic disease of the intestinal tract, which is related to increased levels of various inflammatory mediators. This study aims to explore the anti-inflammatory mechanism of small molecular peptide WLS and its alleviating effect on inflammatory bowel disease (IBD). In TNF-α-induced HT-29 cells, WLS inhibited IL-8 secretion, decreased gene expression of pro-inflammatory cytokines IL-8, IL-6, IL-1β, and TNF-α, and inhibited the activation of MAPK/NF-κB signaling pathways. In the dextran sulfate sodium salt (DSS) induced colitis mouse model, WLS inhibited weight loss and disease activity index scores, increased colon length, improved colon histopathology, inhibited secretion of IL-6 and TNF-α in the colon, and down-regulated gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, IFN-γ, IL-17A). This study revealed that WLS was a novel small molecule peptide with anti-inflammatory activity and may be a potential candidate for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Na Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
23
|
Priya S, Burns MB, Ward T, Mars RAT, Adamowicz B, Lock EF, Kashyap PC, Knights D, Blekhman R. Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nat Microbiol 2022; 7:780-795. [PMID: 35577971 PMCID: PMC9159953 DOI: 10.1038/s41564-022-01121-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
While gut microbiome and host gene regulation independently contribute to gastrointestinal disorders, it is unclear how the two may interact to influence host pathophysiology. Here we developed a machine learning-based framework to jointly analyse paired host transcriptomic (n = 208) and gut microbiome (n = 208) profiles from colonic mucosal samples of patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome. We identified associations between gut microbes and host genes that depict shared as well as disease-specific patterns. We found that a common set of host genes and pathways implicated in gastrointestinal inflammation, gut barrier protection and energy metabolism are associated with disease-specific gut microbes. Additionally, we also found that mucosal gut microbes that have been implicated in all three diseases, such as Streptococcus, are associated with different host pathways in each disease, suggesting that similar microbes can affect host pathophysiology in a disease-specific manner through regulation of different host genes. Our framework can be applied to other diseases for the identification of host gene-microbiome associations that may influence disease outcomes.
Collapse
Affiliation(s)
- Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Tonya Ward
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Beth Adamowicz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
24
|
Zhang Z, Yu PF, Gu GL, Zhang YH, Wang YM, Dong ZW, Yang HR. Diffuse invasive signet ring cell carcinoma in total colorectum caused by ulcerative colitis: A case report and review of literature. World J Clin Cases 2022; 10:1729-1737. [PMID: 35211616 PMCID: PMC8855258 DOI: 10.12998/wjcc.v10.i5.1729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/05/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diffuse invasive signet ring cell carcinoma of the colorectum is extremely rare clinically. This type of colorectal cancer has certain clinical, pathological and biological characteristics that are different from ordinary colorectal cancer. CASE SUMMARY A 31-year-old young woman was admitted to the hospital for nearly 1 wk due to recurrent symptoms of mucopurulent bloody stools and abdominal distension. Preoperative colonoscopy showed a ring-shaped intestinal wall mass 10 cm from the rectum to the anus. Three pieces of tumor tissue were removed for examination. The pathological results showed rectal mucinous adenocarcinoma. The patient underwent laparoscopic exploration under general anesthesia, and then laparoscopic total colorectal resection, ileal pouch-anal anastomosis and ileostomy were performed. The patient was switched to a FOLFOX + cetuximab regimen. After the fifth cycle, the patient was unable to tolerate further treatment due to tumor progression and multiple organ dysfunction, and died at the end of May 2020. Overall survival was 7 mo. CONCLUSION Carcinogenesis of ulcerative colitis is different from sporadic colon cancer, and the overall prognosis is extremely poor.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Peng-Fei Yu
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Guo-Li Gu
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Yu-Hui Zhang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yu-Ming Wang
- Health Team, 93656 Troop of Chinese People's Liberation Army, Beijing 101113, China
| | - Zhi-Wei Dong
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Hai-Rui Yang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| |
Collapse
|
25
|
Zhang H, Ta N, Shen H, Wang H. Effects of Jian Pi Qing Chang Hua Shi decoction on mucosal injuries in a 2,4,6-trinitrobenzene sulphonic acid-induced inflammatory bowel disease rat model. PHARMACEUTICAL BIOLOGY 2021; 59:683-695. [PMID: 34110957 PMCID: PMC8204966 DOI: 10.1080/13880209.2021.1928240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
CONTEXT Jian Pi Qing Chang Hua Shi decoction (JPQCHSD) has been considered as an effective remedy for the treatment of inflammatory bowel disease (IBD) in Chinese traditional medicine. OBJECTIVE We evaluated the efficacy of JPQCHSD on 2-4-6-trinitrobenzene sulphonic acid (TNBS)-induced IBD rats and the responsible mechanisms. MATERIALS AND METHODS Except the rats of the control group (50% ethanol), Sprague-Dawley rats (180 ± 20 g) induced by TNBS (150 mg/kg in 50% ethanol), received water extract of JPQCHSD daily at 0, 9.5, 19, or 38 g/kg for 12 days. The rats were sacrificed, and their colons were removed to evaluate the disease activity index. Malondialdehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), immunoglobulin A (IgA), tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and nuclear factor-κB were evaluated. RESULTS JPQCHSD extract significantly reduced the disease activity index of TNBS-induced colitis with a median effective dose (ED50) of 26.93 g/kg. MPO and MDA were significantly reduced in the 19 and 38 g/kg groups (ED50 values 37.38 and 53.2 g/kg, respectively). The ED50 values for the increased SOD and IgA were 48.98 and 56.3 g/kg. ED50 values for inhibition of TNF-α, IL-1β, and IL-6 were 32.66, 75.72, and 162.06 g/kg, respectively. DISCUSSION JPQCHSD promoted mucosal healing in IBD rats via its anti-inflammation, immune regulation, and antioxidation properties. CONCLUSIONS JPQCHSD has healing function on IBD. Further clinical trials are needed to demonstrate its efficacy and tolerance to IBD.
Collapse
Affiliation(s)
- Huicun Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Na Ta
- Center Hospital of Beijing Daxing District Caiyu Town, Beijing, China
| | - Hong Shen
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine Yanqing Hospital, Beijing, China
| |
Collapse
|
26
|
de Paula-Silva M, da Rocha GHO, Broering MF, Queiroz ML, Sandri S, Loiola RA, Oliani SM, Vieira A, Perretti M, Farsky SHP. Formyl Peptide Receptors and Annexin A1: Complementary Mechanisms to Infliximab in Murine Experimental Colitis and Crohn's Disease. Front Immunol 2021; 12:714138. [PMID: 34603288 PMCID: PMC8484756 DOI: 10.3389/fimmu.2021.714138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 02/02/2023] Open
Abstract
Non-responsiveness to anti-TNF-α therapies presents relevant rates in inflammatory bowel disease patients, presenting the need to find biomarkers involved in therapeutic efficacy. Herein, we demonstrate that higher levels of colonic formyl peptide receptor 1 and annexin A1 correlate with histological recovery in Crohn’s disease patients under remission. Using the dextran sulfate sodium colitis model in mice, we suggest that infliximab induces annexin A1 expression and secretion in activated intestinal leukocytes. Conversely, this mechanism might stimulate epithelial formyl peptide receptors, inducing wound healing and consequent histological remission. Our data indicate that assessing intestinal expressions of formyl peptide receptors and annexin A1 might provide precious information on the disease activity and responsiveness to infliximab in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Marina de Paula-Silva
- Department of Clinical and Toxicological Analyses, University of São Paulo (USP), São Paulo, Brazil.,Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London (QMUL), London, United Kingdom
| | | | - Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, University of São Paulo (USP), São Paulo, Brazil
| | - Maria Luíza Queiroz
- Gastroenterology Service, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, University of São Paulo (USP), São Paulo, Brazil
| | - Rodrigo Azevedo Loiola
- Department of Clinical and Toxicological Analyses, University of São Paulo (USP), São Paulo, Brazil
| | - Sonia Maria Oliani
- Department of Biology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Andrea Vieira
- Gastroenterology Service, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Mauro Perretti
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London (QMUL), London, United Kingdom
| | | |
Collapse
|
27
|
Kim JT, Napier DL, Kim J, Li C, Lee EY, Weiss HL, Wang Q, Evers BM. Ketogenesis alleviates TNFα-induced apoptosis and inflammatory responses in intestinal cells. Free Radic Biol Med 2021; 172:90-100. [PMID: 34087430 PMCID: PMC8355065 DOI: 10.1016/j.freeradbiomed.2021.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
The disturbance of strictly regulated self-regeneration in mammalian intestinal epithelium is associated with various intestinal disorders, particularly inflammatory bowel diseases (IBDs). TNFα, which plays a critical role in the pathogenesis of IBDs, has been reported to inhibit production of ketone bodies such as β-hydroxybutyrate (βHB). However, the role of ketogenesis in the TNFα-mediated pathological process is not entirely known. Here, we showed the regulation and role of HMGCS2, the rate-limiting enzyme of ketogenesis, in TNFα-induced apoptotic and inflammatory responses in intestinal epithelial cells. Treatment with TNFα dose-dependently decreased protein and mRNA expression of HMGCS2 and its product, βHB production in human colon cancer cell lines HT29 and Caco2 cells and mouse small intestinal organoids. Moreover, the repressed level of HMGCS2 protein was found in intestinal epithelium of IBD patients with Crohn's disease and ulcerative colitis as compared with normal tissues. Furthermore, knockdown of HMGCS2 enhanced and in contrast, HMGCS2 overexpression attenuated, the TNFα-induced apoptosis and expression of pro-inflammatory chemokines (CXCL1-3) in HT29, Caco2 cells and DLD1 cells, respectively. Treatment with βHB or rosiglitazone, an agonist of PPARγ, which increases ketogenesis, attenuated TNFα-induced apoptosis in the intestinal epithelial cells. Finally, HMGCS2 knockdown enhanced TNFα-induced reactive oxygen species (ROS) generation. In addition, hydrogen peroxide, the major ROS contributing to intestine injury, decreased HMGCS2 expression and βHB production in the intestinal cells and mouse organoids. Our findings demonstrate that increased ketogenesis attenuates TNFα-induced apoptosis and inflammation in intestinal cells, suggesting a protective role for ketogenesis in TNFα-induced intestinal pathologies.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | | | - Jinhwan Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Chang Li
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery, Lexington, KY, 40536, USA
| | | | - Qingding Wang
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
28
|
Mandlik DS, Mandlik SK, Patel S. Protective effect of sarsasapogenin in TNBS induced ulcerative colitis in rats associated with downregulation of pro-inflammatory mediators and oxidative stress. Immunopharmacol Immunotoxicol 2021; 43:571-583. [PMID: 34338577 DOI: 10.1080/08923973.2021.1955919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel condition considered by oxido-nitrosative stress and the release of pro-inflammatory cytokines that affects the mucosal lining of the colon. Sarsasapogenin (SG), as an active component, has been found in many plants, and it exhibits potential protective effects, such as anti-inflammatory, antioxidant, anti-psoriasis, anti-arthritis, anti-asthma, anti-depressant and anti-cancer. However, the effects of SG on UC remain unknown. OBJECTIVE The purpose of this study was to investigate the effects of SG on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced UC in rats. METHOD Thirty Wistar rats were randomized into five groups: (i) Normal control, (ii) Disease control (TNBS), (iii) Sarsasapogenin (SG) (50 µg/rat), (iv) Fluticasone (FC) (50 µg/rat), (v) Sarsasapogenin + Fluticasone (SG + FC) (25 µg/rat). UC was induced in rats by trans-rectal instillation of TNBS (10 mg/kg). SG, FC and SG + FC were administered for 11 days and on the 8th day colitis was induced. Several molecular, biochemical and histological alterations were evaluated in the colon tissue. All treatment group results were compared to the TNBS group results. RESULT The study results revealed that treatment of rats with SG and SG + FC combination significantly decreased the colon weight/length ratio, macroscopic inflammation score, lesions score, diarrhea score and adhesion score. Combination treatment in rats significantly reduced the production of biochemical parameters, proinflammatory cytokines, haematological parameters, serum IgE levels and restored the oxidative stress markers. SG and SG + FC treatment also considerably restored the histopathological changes induced by TNBS. CONCLUSION Thus, SG and SG + FC combination could alter the disease progression and could be a hopeful therapeutic target for the management of UC by reducing its dose in combination with FC to elude the long term adverse effects of FC.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Satish K Mandlik
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
29
|
Wang C, Han Z, Wu Y, Lu X, Tang X, Xiao J, Li N. Enhancing stability and anti-inflammatory properties of curcumin in ulcerative colitis therapy using liposomes mediated colon-specific drug delivery system. Food Chem Toxicol 2021; 151:112123. [PMID: 33744379 DOI: 10.1016/j.fct.2021.112123] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Curcumin liposomes (CUR-LPs) was identified by evaluating morphology, appearance, zeta potential, particle diameter, and drug encapsulation efficiency. The results indicated that particle diameter, surface charge and polydispersity index (PDI) of curcumin (CUR)-loaded anionic liposomes were 167 nm, -34 mV and 0.09, respectively. CUR-LPs is high stable pseudo-pH-sensitive nanoparticles system which has a favorable stability in simulated gastric fluid and slower degradation rate allowing CUR sustained release for prolonged times in simulated intestinal fluid. Within 1 h, the CUR consumption was 21.82% in simulated gastric fluid (SGF) and 27.32% in simulated intestinal fluid (SIF), respectively. CUR-LPs could attenuate clinical symptoms including weight loss, diarrhea and fecal bleeding. Especially, it could also prevent dextran sulfate sodium salt (DSS)-inducedcolon tissue damage and colon shortening, and reduce the production of malondialdehyde (MDA), colonic myeloperoxidase (MPO), Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in animal model. Our study illustrated that liposomes (LPs) was a potential carrier to develop the colon-specific drug delivery system incorporating CUR for treating ulcerative colitis.
Collapse
Affiliation(s)
- Chaofan Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, PR China.
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at 10Manoa, Honolulu, HI, 96822, USA.
| | - Yuhao Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, PR China.
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, PR China.
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, PR China.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food 12Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, E-32004, Ourense, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, PR China.
| |
Collapse
|
30
|
Kakuta K, Dohi K, Yamamoto T, Fujimoto N, Shimoyama T, Umegae S, Ito M. Coronary Microvascular Dysfunction Restored After Surgery in Inflammatory Bowel Disease: A Prospective Observational Study. J Am Heart Assoc 2021; 10:e019125. [PMID: 33899514 PMCID: PMC8200729 DOI: 10.1161/jaha.120.019125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background We aimed to investigate the presence and severity of coronary microvascular dysfunction (CMD) in inflammatory bowel disease (IBD) including Crohn disease and ulcerative colitis and to elucidate the influence of surgical resection of the diseased intestines on CMD by assessing coronary flow velocity reserve (CFVR) using transthoracic Doppler echocardiography. Methods and Results Thirty‐seven patients with IBD (aged 44±15 years; 22 patients with Crohn disease and 15 patients with ulcerative colitis) and 30 controls (aged 46±12 years) were enrolled. For CFVR measurement, coronary flow velocity was recorded at rest and during hyperemia by ADP infusion using transthoracic Doppler echocardiography, and CFVR <2.5 defined CMD. CFVR measurement was repeated before and within 1 year after surgery. CFVR was similarly and significantly lower in patients with Crohn disease and those with ulcerative colitis than controls (Crohn disease: 2.92±1.03 [P<0.05 versus controls], ulcerative colitis: 2.99±0.65 [P<0.05 versus controls], and controls: 3.84±0.75). Multiple linear regression analysis showed that the presence of IBD and baseline hs‐CRP (high‐sensitivity C‐reactive protein) were independently associated with low CFVR among all study participants (β=−0.403 [P=0.001] and −0.237 [P=0.037], respectively). Hyperemic coronary flow velocity significantly improved after surgery only in patients with IBD who had CMD. CFVR significantly improved in patients with IBD who had both CMD and non‐CMD, and the extent of CFVR improvements were greater in patients with CMD than non‐CMD. Multiple linear regression analysis showed that the reduction of hs‐CRP was independently associated with improvement of hyperemic coronary flow velocity and CFVR among all patients with IBD (β=−0.481 [P=0.003] and β=−0.334 [P=0.043], respectively). Conclusions IBD is associated with CMD, which improved after surgical resection of diseased intestines.
Collapse
Affiliation(s)
- Kentaro Kakuta
- Department of Cardiology and Nephrology Mie University Graduate School of Medicine Tsu Japan.,Department of Cardiology Japan Community Health Care Organization Yokkaichi Hazu Medical Center Yokkaichi Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology Mie University Graduate School of Medicine Tsu Japan
| | - Takayuki Yamamoto
- Inflammatory Bowel Disease Center Japan Community Health care Organization Yokkaichi Hazu Medical Center Yokkaichi Japan
| | - Naoki Fujimoto
- Department of Cardiology and Nephrology Mie University Graduate School of Medicine Tsu Japan
| | - Takahiro Shimoyama
- Inflammatory Bowel Disease Center Japan Community Health care Organization Yokkaichi Hazu Medical Center Yokkaichi Japan
| | - Satoru Umegae
- Inflammatory Bowel Disease Center Japan Community Health care Organization Yokkaichi Hazu Medical Center Yokkaichi Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology Mie University Graduate School of Medicine Tsu Japan
| |
Collapse
|
31
|
Rana T, Korolkova OY, Rachakonda G, Williams AD, Hawkins AT, James SD, Sakwe AM, Hui N, Wang L, Yu C, Goodwin JS, Izban MG, Offodile RS, Washington MK, Ballard BR, Smoot DT, Shi XZ, Forbes DS, Shanker A, M’Koma AE. Linking bacterial enterotoxins and alpha defensin 5 expansion in the Crohn's colitis: A new insight into the etiopathogenetic and differentiation triggers driving colonic inflammatory bowel disease. PLoS One 2021; 16:e0246393. [PMID: 33690604 PMCID: PMC7942995 DOI: 10.1371/journal.pone.0246393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 02/05/2023] Open
Abstract
Evidence link bacterial enterotoxins to apparent crypt-cell like cells (CCLCs), and Alpha Defensin 5 (DEFA5) expansion in the colonic mucosa of Crohn's colitis disease (CC) patients. These areas of ectopic ileal metaplasia, positive for Paneth cell (PC) markers are consistent with diagnosis of CC. Retrospectively, we: 1. Identified 21 patients with indeterminate colitis (IC) between 2000-2007 and were reevaluation their final clinical diagnosis in 2014 after a followed-up for mean 8.7±3.7 (range, 4-14) years. Their initial biopsies were analyzed by DEFA5 bioassay. 2. Differentiated ulcer-associated cell lineage (UACL) analysis by immunohistochemistry (IHC) of the CC patients, stained for Mucin 6 (MUC6) and DEFA5. 3. Treated human immortalized colonic epithelial cells (NCM460) and colonoids with pure DEFA5 on the secretion of signatures after 24hr. The control colonoids were not treated. 4. Treated colonoids with/without enterotoxins for 14 days and the spent medium were collected and determined by quantitative expression of DEFA5, CCLCs and other biologic signatures. The experiments were repeated twice. Three statistical methods were used: (i) Univariate analysis; (ii) LASSO; and (iii) Elastic net. DEFA5 bioassay discriminated CC and ulcerative colitis (UC) in a cohort of IC patients with accuracy. A fit logistic model with group CC and UC as the outcome and the DEFA5 as independent variable differentiator with a positive predictive value of 96 percent. IHC staining of CC for MUC6 and DEFA5 stained in different locations indicating that DEFA5 is not co-expressed in UACL and is therefore NOT the genesis of CC, rather a secretagogue for specific signature(s) that underlie the distinct crypt pathobiology of CC. Notably, we observed expansion of signatures after DEFA5 treatment on NCM460 and colonoids cells expressed at different times, intervals, and intensity. These factors are key stem cell niche regulators leading to DEFA5 secreting CCLCs differentiation 'the colonic ectopy ileal metaplasia formation' conspicuously of pathogenic importance in CC.
Collapse
Affiliation(s)
- Tanu Rana
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Olga Y. Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Amanda D. Williams
- Department of Biology, Lipscomb University, Nashville, Tennessee, United States of America
| | - Alexander T. Hawkins
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Samuel D. James
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Tennessee Valley Health Systems VA Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Graduate Studies and Research, Nashville, Tennessee, United States of America
| | - Nian Hui
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Li Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jeffrey S. Goodwin
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Michael G. Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Regina S. Offodile
- Department of Professional and Medical Education, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Mary K. Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Billy R. Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Duane T. Smoot
- Department of Medicine, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Xuan-Zheng Shi
- Department of Medicine, University of Texas Medical Branch (UTMB) in Galveston, Galveston, Texas, United States of America
| | - Digna S. Forbes
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
| | - Amosy E. M’Koma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, Tennessee, United States of America
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States of America
| |
Collapse
|
32
|
Crespo-Facorro B, Ruiz-Veguilla M, Vázquez-Bourgon J, Sánchez-Hidalgo AC, Garrido-Torres N, Cisneros JM, Prieto C, Sainz J. Aripiprazole as a Candidate Treatment of COVID-19 Identified Through Genomic Analysis. Front Pharmacol 2021; 12:646701. [PMID: 33762960 PMCID: PMC7982825 DOI: 10.3389/fphar.2021.646701] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Antipsychotics modulate expression of inflammatory cytokines and inducible inflammatory enzymes. Elopiprazole (a phenylpiperazine antipsychotic drug in phase 1) has been characterized as a therapeutic drug to treat SARS-CoV-2 infection in a repurposing study. We aim to investigate the potential effects of aripiprazole (an FDA approved phenylpiperazine) on COVID-19-related immunological parameters. Methods: Differential gene expression profiles of non-COVID-19 vs. COVID-19 RNA-Seq samples (CRA002390 project in GSA database) and drug-naïve patients with non-affective psychosis at baseline and after three months of aripiprazole treatment were identified. An integrative transcriptomic analyses of aripiprazole effects on differentially expressed genes in COVID-19 patients was performed. Findings: 82 out the 377 genes (21.7%) with expression significantly altered by aripiprazole have also their expression altered in COVID-19 patients and in 93.9% of these genes their expression is reverted by aripiprazole. The number of common genes with expression altered in both analyses is significantly higher than expected (Fisher's Exact Test, two tail; p value = 3.2e-11). 11 KEGG pathways were significantly enriched with genes with altered expression both in COVID-19 patients and aripiprazole medicated non-affective psychosis patients (p adj<0.05). The most significant pathways were associated to immune responses and mechanisms of hyperinflammation-driven pathology (i.e.,"inflammatory bowel disease (IBD)" (the most significant pathway with a p adj of 0.00021), "Th1 and Th2 cell differentiation" and "B cell receptor signaling pathway") that have been also associated with COVID19 clinical outcome. Interpretation: This exploratory investigation may provide further support to the notion that a protective effect is exerted by aripiprazole (phenylpiperazine) by modulating the expression of genes that have shown to be altered in COVID-19 patients. Along with many ongoing studies and clinical trials, repurposing available medications could be of use in countering SARS-CoV-2 infection, but require further studies and trials.
Collapse
Affiliation(s)
- Benedicto Crespo-Facorro
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio-IBIS, Sevilla, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
| | - Miguel Ruiz-Veguilla
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio-IBIS, Sevilla, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
| | - Javier Vázquez-Bourgon
- Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
- Department of Psychiatry, University Hospital Marques de Valdecilla - Instituto de Investigacion Marques de Valdecilla (IDIVAL), Santander, Spain
- Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Ana C. Sánchez-Hidalgo
- Spanish Network for Research in Mental Health (CIBERSAM), Sevilla, Spain
- Seville Biomedical Research Centre (IBiS), Sevilla, Spain
| | - Nathalia Garrido-Torres
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio-IBIS, Sevilla, Spain
| | - Jose M. Cisneros
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocio, University of Seville, Salamanca, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain
| | - Jesus Sainz
- Spanish National Research Council (CSIC), Institute of Biomedicine and Biotechnology of Cantabria, Santander, Spain
| |
Collapse
|
33
|
Sulfated polysaccharide extracted from seaweed Gracilaria caudata attenuates acetic acid-induced ulcerative colitis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Tarris G, de Rougemont A, Charkaoui M, Michiels C, Martin L, Belliot G. Enteric Viruses and Inflammatory Bowel Disease. Viruses 2021; 13:v13010104. [PMID: 33451106 PMCID: PMC7828589 DOI: 10.3390/v13010104] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), is a multifactorial disease in which dietary, genetic, immunological, and microbial factors are at play. The role of enteric viruses in IBD remains only partially explored. To date, epidemiological studies have not fully described the role of enteric viruses in inflammatory flare-ups, especially that of human noroviruses and rotaviruses, which are the main causative agents of viral gastroenteritis. Genome-wide association studies have demonstrated the association between IBD, polymorphisms of the FUT2 and FUT3 genes (which drive the synthesis of histo-blood group antigens), and ligands for norovirus and rotavirus in the intestine. The role of autophagy in defensin-deficient Paneth cells and the perturbations of cytokine secretion in T-helper 1 and T-helper 17 inflammatory pathways following enteric virus infections have been demonstrated as well. Enteric virus interactions with commensal bacteria could play a significant role in the modulation of enteric virus infections in IBD. Based on the currently incomplete knowledge of the complex phenomena underlying IBD pathogenesis, future studies using multi-sampling and data integration combined with new techniques such as human intestinal enteroids could help to decipher the role of enteric viruses in IBD.
Collapse
Affiliation(s)
- Georges Tarris
- Department of Pathology, University Hospital of Dijon, F 21000 Dijon, France; (G.T.); (L.M.)
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, F 21000 Dijon, France;
| | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, F 21000 Dijon, France;
| | - Maëva Charkaoui
- Department of Hepatogastroenterology, University Hospital of Dijon, F 21000 Dijon, France; (M.C.); (C.M.)
| | - Christophe Michiels
- Department of Hepatogastroenterology, University Hospital of Dijon, F 21000 Dijon, France; (M.C.); (C.M.)
| | - Laurent Martin
- Department of Pathology, University Hospital of Dijon, F 21000 Dijon, France; (G.T.); (L.M.)
| | - Gaël Belliot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, F 21000 Dijon, France;
- Correspondence: ; Tel.: +33-380-293-171; Fax: +33-380-293-280
| |
Collapse
|
35
|
Talathi S, Baig KRKK. Biosimilars in inflammatory bowel disease. J Dig Dis 2020; 21:610-620. [PMID: 32920972 DOI: 10.1111/1751-2980.12940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/11/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
The advent of biologics has changed outcomes in many chronic conditions, including inflammatory bowel disease (IBD). Biologics have been used for the induction and remission of ulcerative colitis and Crohn's disease for almost two decades and are effective in patients who used to fail conventional treatment with steroids, immunomodulators. The use of biologics in the treatment of IBD has increased over the last few years, partly due to the rise in its incidence and the use of biologics as a first-line treatment in severe disease as well as in complicated diseases like penetrating/fistulating Crohn's disease. However, their use is associated with a significant burden to the society with respect to healthcare costs, resulting in the premature discontinuation of therapy in some patients, leading to exacerbations and complications. The introduction of biosimilars a decade ago seems to be a promising approach to reducing the costs related to therapy. Since their introduction, numerous studies conducted in adults and some in children show the efficacy of biosimilars with a similar side-effect profile to biologics. This review discusses the history of biosimilars in the treatment of IBD, enumerates several such studies and discusses the possibility of using biosimilars in the future.
Collapse
Affiliation(s)
- Saurabh Talathi
- Department of Pediatrics, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
36
|
Arya VS, Kanthlal SK, Linda G. The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions. J Food Biochem 2020; 44:e13369. [PMID: 32885438 DOI: 10.1111/jfbc.13369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is one of the major complications of the gastrointestinal tract, characterized by chronic inflammation, which disturbs the quality of life of the affected individuals. Genetic predisposition, immune, inflammatory, and enzyme-mediated signaling cascades are the primary mechanisms involved in the pathogenesis of the disease. Currently, the treatment strategy involves the maintenance of remission and induction of inflammation by anti-inflammatory agents and immune suppressants. Polyphenol-containing diets, including fruits and vegetables of regular use, possess anti-inflammatory, and antioxidant potential through the inhibition of major contributing pathways to IBD. This review discusses the role of these dietary polyphenols in downregulating the major signaling cascades in IBD. Our review encourages the development of nutritional strategies to improve the efficiency of current therapies for IBD and reduce the risks of side effects associated with conventional therapy. PRACTICAL APPLICATIONS: At present, almost every third person in society is under stress and having chronic disorders like diabetes, arthritis, allergy, cardiovascular disease, IBD, etc. This insists on the direct/indirect role of changes in the lifestyle for such deterioration in society. This review would emphasize the medicinal value of polyphenols present in fruits and vegetables for chronic inflammatory disorders. This concept portrays the food components which have the potential to promote health, improve general well-being, and reduce the risk of IBD. We propose to add fruits with bioactive polyphenols in the regular diet to help in preventing the immune-mediated intestinal chronic inflammatory syndrome and reduce the risks of colorectal cancer development.
Collapse
Affiliation(s)
- V S Arya
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - S K Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Geevarghese Linda
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
37
|
Ghimire H, Hu X, Qin G, Unil Perera AG. Optimizing infrared spectral discrimination to enhance disease diagnostics: monitoring the signatures of inflammatory bowel diseases with anti-TNFα therapy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4679-4694. [PMID: 32923071 PMCID: PMC7449716 DOI: 10.1364/boe.394895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 05/28/2023]
Abstract
This study presents an application of infrared spectroscopy of sera for monitoring the efficacy of anti-TNFα therapy for inflammatory bowel diseases. Understanding the therapeutic response includes the analysis of absorption bands representing constituent molecules. Interleukin-10 knockout mouse model of the diseases with anti-TNFα treatment was used. The discrimination potential is optimized by analyzing data with curve fitting. It shows; antibody therapy markedly ameliorated the disease, concurring with earlier mucosal immunology and pathophysiologic studies. This technique may thus also be useful for the evaluation of mucosal healing or other therapeutic modalities of gastrointestinal tract diseases keeping the endoscopic tests as confirmatory.
Collapse
Affiliation(s)
- Hemendra Ghimire
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
- Interactions of radiation with matter laboratories, Georgia State University, Atlanta, GA 30303, USA
| | - Xinjie Hu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Gengsheng Qin
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
- Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - A. G. Unil Perera
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
- Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
- Interactions of radiation with matter laboratories, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
38
|
Hassanpour S, Rezaei H, Razavi SM. Anti-nociceptive and antioxidant activity of betaine on formalin- and writhing tests induced pain in mice. Behav Brain Res 2020; 390:112699. [PMID: 32417277 DOI: 10.1016/j.bbr.2020.112699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023]
Abstract
Pain is a physiological response which is mediated via the central and peripheral nervous system. Betaine, is a methyl glycine derivative and a commonly used nutrient supplement. The main purpose of the current paper is to determine the possible anti-nociceptive and antioxidant activity and sedative effect of betaine in mice. Adult male albino mice were divided into two categories, formalin and writhing tests. In the formalin test, mice were injected with betaine (10, 20 and 30 mg/kg) or morphine (5 mg/kg). For co-injections mice received betaine (30 mg/kg) + naloxone (2 mg/kg) or atropine (1 mg/kg), chlorpheniramine (20 mg/kg), flumazenil (5 mg/kg), cimetidine (12.5 mg/kg) and cyproheptadine (4 mg/kg). Then the formalin test was done and paw licking time was determined. In the writhing test, injections were the same but the animals were injected with acetic acid (0.6 %) and the percentage of writhing inhibition was recorded. At the end of the study, blood antioxidant levels were determined. According to the results, betaine reduced the pain response in a dose-dependent manner. Co-administration of the naloxone + betaine or flumazenil + betaine significantly decreased the anti-nociceptive effect of betaine on the licking and biting time of the injected paw and inhibited the number of writhing movements. Betaine decreased malondialdehyde (MDA) and improved superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels in formalin receiving mice. No adverse locomotion and sedation effect were observed in betaine-treated mice. These findings suggest that betaine has anti-nociceptive and antioxidant activity in mice, and its anti-nociceptive role interacts with opioidergic and GABA receptors.
Collapse
Affiliation(s)
- Shahin Hassanpour
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hadis Rezaei
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Mojtaba Razavi
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
39
|
Zhang X, Deng QH, Deng JH, Wang SJ, Chen Q. Lovastatin derivative dehydrolovastatin ameliorates ulcerative colitis in mice by suppressing NF-κB and inflammatory cytokine expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:137-147. [PMID: 32140037 PMCID: PMC7043998 DOI: 10.4196/kjpp.2020.24.2.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Ulcerative colitis (UC) is associated with intestinal immune imbalance and inflammatory response. Because dehydrolovastatin (DLVT), a derivative of lovastatin, has been recently shown to inhibit inflammation and relieve immune arthritis induced by chemical stimuli, we studied its effect and possible mechanism on UC induced by dextran sulfate sodium. The BALB/c mice were classified into six groups: normal control group, model group, DLVT high dose group, DLVT low dose group, salazosulfapyridine (SASP) group and lovastatin (LVT) group. The disease activity indices of UC and pathological changes were investigated. The myeloperoxidase (MPO) activity in colon tissue and inflammatory factors such as IL-6, IL-10, IL-17, and TNF-α in the serum were analyzed by ELISA, while the expression of NF-κB p65 protein in colon tissue was detected by immunohistochemistry and western blot. DLVT relieved the disease activity indices and pathological damage of the UC mice. Furthermore, DLVT significantly decreased MPO activity and improved the imbalance of inflammatory cytokines through inhibiting the expression of NF-κB p65. Meanwhile, the positive drug of SASP has a similar effect to DLVT, but the effect of DLVT in both decreasing IL-17, TNF-α, and increasing IL-10 was significantly stronger than that of SASP. These results suggest that DLVT may ameliorates the symptoms of UC.
Collapse
Affiliation(s)
- Xu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610072, Sichuan Province, P.R. China
| | - Qing-Hua Deng
- Chongqing Medical and Pharmaceutical College, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing City 401331, P.R. China
| | - Jian-Hua Deng
- People's Hospital of Shizhu County, Chongqing City 409100, P.R. China
| | - Sheng-Ju Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610072, Sichuan Province, P.R. China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City 610072, Sichuan Province, P.R. China
| |
Collapse
|
40
|
Batista JA, Magalhães DDA, Sousa SG, Ferreira JDS, Pereira CMC, Lima JVDN, de Albuquerque IF, Bezerra NLSD, de Brito TV, Monteiro CEDS, Franco AX, Di Lenardo D, Oliveira LA, Feitosa JPDA, de Paula RCM, Barros FCN, Freitas ALP, de Oliveira JS, Vasconcelos DFP, Soares PMG, Barbosa ALDR. Polysaccharides derived from Morinda citrifolia Linn reduce inflammatory markers during experimental colitis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112303. [PMID: 31614204 DOI: 10.1016/j.jep.2019.112303] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are many reports of pharmacological activities of extracts and fractions of different vegetable-derived products in the scientific literature and in folk medicine. Ethnopharmacological use of these products by various communities continues to be extensively explored, and they account for more than half of all medications used worldwide. Polysaccharides (PLS) extracted from plants such as Morinda Citrifolia Linn present therapeutic potential in treatment of inflammatory bowel diseases (IBD) such as ulcerative colitis (UC). AIM OF THE STUDY To evaluate the anti-inflammatory action of Noni-PLS against the intestinal damage in UC induced by acetic acid in mice. MATERIALS AND METHODS In acetic acid-induced colitis, the mice were treated intraperitoneally (ip) with Noni-PLS (0.1, 0.3, and 3.0 mg/kg) or subcutaneously (sc) with dexamethasone (2.0 mg/kg) 30 min before euthanasia to determine the best dose of Noni-PLS with an anti-inflammatory effect in the course of UC. The colonic tissue samples were collected for macroscopic, wet weight, microscopic and biochemical (myeloperoxidase (MPO), glutathione (GSH), malondialdehyde (MDA), nitrate/nitrite (NO3/NO2), cytokines, cyclooxygenase (COX-2) and inducible nitric oxide (iNOS)) analyses. RESULTS Treatment with Noni-PLS reduced the intestinal damage induced by acetic acid as it reduced macroscopic and microscopic scores and the wet weight of the colon. In addition, MPO activity and levels of GSH, MDA, NO3/NO2, pro-inflammatory cytokines, and COX-2 expression reduced. CONCLUSIONS This study suggests that Noni-PLS exhibits anti-inflammatory action against intestinal damage by reducing inflammatory cell infiltration, oxidative stress, pro-inflammatory action of cytokines, COX-2 and iNOS expression in the inflamed colon. Noni-PLS shows therapeutic potential against inflammatory disorders like UC.
Collapse
Affiliation(s)
- Jalles Arruda Batista
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | - Diva de Aguiar Magalhães
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | - Stefany Guimarães Sousa
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | - Jayro Dos Santos Ferreira
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | - Cynthia Maria Carvalho Pereira
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | - José Victor do Nascimento Lima
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | - Ieda Figueira de Albuquerque
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | - Nayonara Lanara Sousa Dutra Bezerra
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | - Tarcisio Vieira de Brito
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil
| | | | - Alvaro Xavier Franco
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, LEFFAG, Federal University of Ceará, Fortaleza, Brazil
| | - David Di Lenardo
- Laboratory of Analysis and Histological Processing, LAPHIS, Department of Biomedicine - Federal University of Piauí, Parnaíba, Brazil
| | - Lorena Almeida Oliveira
- LabPol - Polymer Laboratory, Department of Organic and Inorganic Chemistry of the Federal University of Ceará, Fortaleza, Brazil
| | - Judith Pessoa de Andrade Feitosa
- LabPol - Polymer Laboratory, Department of Organic and Inorganic Chemistry of the Federal University of Ceará, Fortaleza, Brazil
| | - Regina Célia Monteiro de Paula
- LabPol - Polymer Laboratory, Department of Organic and Inorganic Chemistry of the Federal University of Ceará, Fortaleza, Brazil
| | - Francisco Clarck Nogueira Barros
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Lúcia Ponte Freitas
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry and Microorganisms and Plant Biology, Department of Biomedicine, Federal University of Piauí, Parnaíba, Brazil
| | | | - Pedro Marcos Gomes Soares
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, LEFFAG, Federal University of Ceará, Fortaleza, Brazil
| | - André Luiz Dos Reis Barbosa
- Laboratory of Experimental Physiopharmacology, LAFFEX, Post-graduation Program in Biotechnology - Federal University of Piauí, Parnaiba, Brazil.
| |
Collapse
|
41
|
Development of a Gut-On-A-Chip Model for High Throughput Disease Modeling and Drug Discovery. Int J Mol Sci 2019; 20:ijms20225661. [PMID: 31726729 PMCID: PMC6888156 DOI: 10.3390/ijms20225661] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
A common bottleneck in any drug development process is finding sufficiently accurate models that capture key aspects of disease development and progression. Conventional drug screening models often rely on simple 2D culture systems that fail to recapitulate the complexity of the organ situation. In this study, we show the application of a robust high throughput 3D gut-on-a-chip model for investigating hallmarks of inflammatory bowel disease (IBD). Using the OrganoPlate platform, we subjected enterocyte-like cells to an immune-relevant inflammatory trigger in order to recapitulate key events of IBD and to further investigate the suitability of this model for compound discovery and target validation activities. The induction of inflammatory conditions caused a loss of barrier function of the intestinal epithelium and its activation by increased cytokine production, two events observed in IBD physiopathology. More importantly, anti-inflammatory compound exposure prevented the loss of barrier function and the increased cytokine release. Furthermore, knockdown of key inflammatory regulators RELA and MYD88 through on-chip adenoviral shRNA transduction alleviated IBD phenotype by decreasing cytokine production. In summary, we demonstrate the routine use of a gut-on-a-chip platform for disease-specific aspects modeling. The approach can be used for larger scale disease modeling, target validation and drug discovery purposes.
Collapse
|
42
|
Wessels I, Rink L. Micronutrients in autoimmune diseases: possible therapeutic benefits of zinc and vitamin D. J Nutr Biochem 2019; 77:108240. [PMID: 31841960 DOI: 10.1016/j.jnutbio.2019.108240] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
A functional immune system is essential for healthy life. This is achieved by the coordinate activation and interaction of different immune cells. One should be aware that activation of the immune response is as important as its deactivation when the pathogens are cleared, as otherwise host tissue can be damaged up to life-threatening levels. Autoimmune diseases (AID) represent a phenomenon of immune cells attacking host cells and tissue. Five to eight percent of the world's population are currently affected by 80-100 AID. In recent years, the incidence has been constantly increasing, reaching alarmingly high numbers particularly for type 1 diabetes mellitus, Crohn's disease, rheumatoid arthritis, Sjogren's syndrome and multiple sclerosis. This indicates a higher societal burden of AID for the future. This article provides an overview of general concepts of triggers and underlying mechanisms leading to self-destruction. Lately, several original concepts of disease etiology were revised, and there is a variety of hypotheses on triggers, underlying mechanisms and preventive actions. This article concentrates on the importance of nutrition, especially zinc and vitamin D, for balancing the immune function. Homespun nutritional remedies seem to reenter today's therapeutic strategies. Current treatment approaches are largely symptomatic or suppress the immune system. However, recent studies reveal significant benefits of nutrition-related therapeutic approaches including prevention and treatment of established disease, which offer a cost-efficient and trigger-unspecific alternative addressing balancing rather than suppression of the immune system. Zinc and vitamin D are currently the best studied and most promising candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
43
|
Frommer L, Kahaly GJ. Autoimmune Polyendocrinopathy. J Clin Endocrinol Metab 2019; 104:4769-4782. [PMID: 31127843 DOI: 10.1210/jc.2019-00602] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT This mini-review offers an update on the rare autoimmune polyendocrinopathy (AP) syndrome with a synopsis of recent developments. DESIGN AND RESULTS Systematic search for studies related to pathogenesis, immunogenetics, screening, diagnosis, clinical spectrum, and epidemiology of AP. AP (orphan code ORPHA 282196) is defined as the autoimmune-induced failure of at least two glands. AP is divided into the rare juvenile type I and the adult types II to IV. The prevalence is 1:100,000 and 1:20,000 for types I and types II to IV, respectively. Whereas type I (ORPHA 3453) is a monogenetic syndrome with an autosomal recessive transmission related to mutations in the autoimmune regulator (AIRE) gene, types II to IV are genetically complex multifactorial syndromes that are strongly associated with certain alleles of HLA genes within the major histocompatibility complex located on chromosome 6, as well as the cytotoxic T lymphocyte antigen 4 and the protein tyrosine phosphatase nonreceptor type 22 genes. Addison disease is the major endocrine component of type II (ORPHA 3143), whereas the coexistence of type 1 diabetes and autoimmune thyroid disease is characteristic for type III (ORPHA 227982). Genetic screening for the AIRE gene is useful in patients with suspected type I, whereas serological screening (i.e., diabetes/adrenal antibodies) is required in patients with monoglandular autoimmunity and suspected AP. If positive, functional endocrine testing of the antibody-positive patients as well as serological screening of their first-degree relatives is recommended. CONCLUSION Timely diagnosis, genetic counseling, and optimal long-term management of AP is best offered in specialized centers.
Collapse
Affiliation(s)
- Lara Frommer
- Orphan Disease Center for Autoimmune Polyendocrinopathy, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - George J Kahaly
- Orphan Disease Center for Autoimmune Polyendocrinopathy, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
44
|
Lima MSR, de Lima VCO, Piuvezam G, de Azevedo KPM, Maciel BLL, Morais AHDA. Mechanisms of action of molecules with anti-TNF-alpha activity on intestinal barrier inflammation: A systematic review protocol. Medicine (Baltimore) 2019; 98:e17285. [PMID: 31574846 PMCID: PMC6775351 DOI: 10.1097/md.0000000000017285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-alpha), among cytokines that mediate the inflammatory process, plays an important role in diseases involving the loss of intestinal barrier integrity. Several molecules with anti-TNF-alpha activity have been studied aiming to develop new therapies. The purpose of this paper is to describe the systematic review protocol of experimental studies that determine mechanisms of action of molecules with anti-TNF-alpha activity on intestinal barrier inflammation. METHODS This protocol is guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes Protocols (PRISMA-P). The databases to be searched are PubMed, EMBASE, Scopus, ScienceDirect, and Web of Science. Experimental studies in rats or mice that assessed the activity of anti-TNF-alpha molecules in models of intestinal barrier inflammation will be included in the systematic review. Studies characteristics, experimental model, and main results will be described and the bias risk assessment will be performed. Two independent reviewers will perform study selection, data extraction, and methodological quality assessment. A narrative synthesis will be made for the included studies. Also, if sufficient data is available, a meta-analysis will be conducted. I statistics will be used to assess heterogeneity. RESULTS The present protocol will assist in producing a systematic review that identifies the mechanisms underlying the reduction of TNF-alpha in intestinal barrier inflammation models. CONCLUSION The systematic review may contribute to the theoretical basis of research on new molecules with anti-TNF-alpha potential and, consequently, in the development of new therapies employed in humans. PROSPERO REGISTRATION NUMBER CRD42019131862.
Collapse
Affiliation(s)
| | | | | | | | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry Postgraduate Program, Biosciences Center
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
45
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
46
|
Exposure to Vedolizumab in IBD Pregnant Women Appears of Low Risk for Mother and Neonate: A First Prospective Comparison Study. Am J Gastroenterol 2019; 114:1172-1175. [PMID: 30920987 DOI: 10.14309/ajg.0000000000000186] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Despite encouraging data gathered in inflammatory bowel diseases (IBD) patients, Vedolizumabs' (VDZ) safety profile in pregnancy is not established. DESIGN Data of 330 consecutive pregnancies with IBD was prospectively collected. RESULTS Women with IBD were treated with: VDZ (n = 24), anti-tumor necrosis factors (n = 82) or conventional therapy (n = 224). Gravidity and parity were similar among the 3 groups. The VDZ group was comprised mostly of Crohn's disease patients who were all not naïve to biological treatment. They had significantly higher conception rates during active disease (P < 0.05), with fewer flares during pregnancy. DISCUSSION Although further study is needed, VDZ appears of low risk during pregnancy.
Collapse
|
47
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
48
|
Moore L. The IBD Management Puzzle: Do We Have All the Pieces? EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10314245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The management of inflammatory bowel disease (IBD) has entered an exciting era, with the optimisation of existing therapies, new strategies being explored that have the potential to further improve patient outcomes, and a growing recognition of the value of a personalised approach to treatment. This symposium explored optimal approaches to using biologic therapy, and the use of therapeutic drug monitoring (TDM) and biomarkers in treatment management.
IBD shows a progressive immunopathogenesis, and a ‘window of opportunity’ exists whereby early intervention may alter the disease course. There is a convincing body of evidence supporting early intervention with anti-TNF-α therapies to improve patient outcomes. Cost is the major barrier to initiating and continuing treatment with biologic therapy. Biosimilars have the potential to reduce costs and increase patient access to biologic therapies, enabling more patients to receive biologic treatment earlier. The use of TDM in the treatment of IBD is increasing and offers benefits over standardised approaches to dosing, and it is likely that emerging dose optimisation tools will enable a personalised approach to treatment in the future.
Many patients experience loss of response to anti-TNF-α therapy. Biomarkers currently used to monitor treatment response include C reactive protein (CRP), faecal calprotectin, and anti-drug antibodies (ADA). Although biomarker identification is still at an early stage for IBD, several genetic, serological, and microbiome markers have also shown promise in predicting response to anti-TNF-α therapy, while other biomarkers are also under investigation for use in diagnosis, predicting response to therapy, and treatment monitoring.
Collapse
|
49
|
Zhang L, Xue H, Zhao G, Qiao C, Sun X, Pang C, Zhang D. Curcumin and resveratrol suppress dextran sulfate sodium‑induced colitis in mice. Mol Med Rep 2019; 19:3053-3060. [PMID: 30816479 PMCID: PMC6423642 DOI: 10.3892/mmr.2019.9974] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Curcumin and resveratrol are two natural products, which have been described as potential anti‑inflammatory, anti‑tumor, and anti‑oxidant molecules. The aims of the present study were to investigate the protective effect of curcumin and resveratrol on dextran sulfate sodium (DSS)‑induced ulcerative colitis (UC) in mice, in addition to understanding the underlying molecular mechanisms. In order to accomplish this, BALB/c mice received drinking water containing 3.5% DSS. Curcumin (50 mg/kg/day) or resveratrol (80 mg/kg/day) were administered orally for 7 days. Survival rate, body weight, disease activity index score, colon length, pro‑inflammatory cytokines, and the expression autophagy‑associated proteins, and mechanistic target of rapamycin (mTOR) and sirtuin 1 (SIRT1) were measured. Curcumin or resveratrol treatment prolonged the survival of mice with UC, reduced body weight loss and attenuated the severity of the disease compared with the DSS‑treated mice. This effect was associated with a substantial clinical amelioration of the disruption of the colonic architecture and a significant reduction in pro‑inflammatory cytokine production. Furthermore, curcumin or resveratrol significantly downregulated the expression of autophagy‑related 12, Beclin‑1 and microtubule‑associated protein light chain 3 II, and upregulated the expression of phosphorylated mTOR and SIRT1 in the colon tissue, compared with those in the DSS‑treated group. These results suggest that curcumin and resveratrol exert protective effects on DSS‑induced UC, partially through suppressing the intestinal inflammatory cascade reaction, reducing autophagy and regulating SIRT1/mTOR signaling.
Collapse
Affiliation(s)
- Lize Zhang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hui Xue
- Department of Gynecology, Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong 266000, P.R. China
| | - Gang Zhao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Cuixia Qiao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaomei Sun
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Chengjian Pang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dianliang Zhang
- Center of Colon and Rectum, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
50
|
Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol Res Pract 2019; 2019:1426954. [PMID: 30774653 PMCID: PMC6350533 DOI: 10.1155/2019/1426954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing/remitting inflammatory illness of the gastrointestinal tract of unknown aetiology. Despite recent advances in decoding the pathophysiology of IBD, many questions regarding disease pathogenesis remain. Genome-wide association studies (GWAS) and knockout mouse models have significantly advanced our understanding of genetic susceptibility loci and inflammatory pathways involved in IBD pathogenesis. Despite their important contribution to a better delineation of the disease process in IBD, these genetic findings have had little clinical impact to date. This is because the presence of a given gene mutation does not automatically correspond to changes in its expression or final metabolic or structural effect(s). Furthermore, the existence of these gene susceptibility loci in the normal population suggests other driving prerequisites for the disease manifestation. Proteins can be considered the main functional units as almost all intracellular physiological functions as well as intercellular interactions are dependent on them. Proteomics provides methods for the large-scale study of the proteins encoded by the genome of an organism or a cell, to directly investigate the proteins and pathways involved. Understanding the proteome composition and alterations yields insights into IBD pathogenesis as well as identifying potential biomarkers of disease activity, mucosal healing, and cancer progression. This review describes the state of the art in the field with respect to the study of IBD and the potential for translation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Arash Assadsangabi
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Caroline A. Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Bernard M. Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Alan Lobo
- Gastroenterology Unit, Salford Royal Hospital, Salford, UK
| |
Collapse
|