1
|
Peñalver Bernabé B, Oliveira ML, Wolf PG, McLeod A, Gabel K, Cares K, Robinson N, DiPiazza B, Varady K, Tussing-Humphreys L. Intermittent Fasting: Implications for Obesity-Related Colorectal Tumorigenesis. Endocrinol Metab Clin North Am 2025; 54:61-83. [PMID: 39919878 DOI: 10.1016/j.ecl.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Obesity is associated with metabolic and immune perturbations (ie, insulin resistance, increased inflammation, and oxidative stress), circadian rhythm dysregulation, and gut microbial changes that can promote colorectal tumorigenesis. Colorectal cancer (CRC) is the third most incident cancer in the United States. This narrative review examines the effects of intermittend fasting on factors influencing colon tumorigenesis, such as body weight, metabolic and immune markers, circadian rythm, and the gut microbiota in humans. Findings suggest that intermittent fasting regimens can lead to weight loss and shifts in metabolic markers, which could be preventive for CRC but effects on the gut microbiota composition and functions still remains elusive.
Collapse
Affiliation(s)
- Beatriz Peñalver Bernabé
- Department of Biomedical Engineering, University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, USA; Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| | - Patricia G Wolf
- Department of Nutrition Science, Purdue University, 700 Mitch Daniels Boulevard, West Lafayette, IN, USA; Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Andrew McLeod
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; Department of Nutrition Science, Purdue University, 700 Mitch Daniels Boulevard, West Lafayette, IN, USA
| | - Kate Cares
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Nadia Robinson
- College of Nursing, University of Illinois Chicago, 845 South Damen Avenue, MC 802, Chicago, IL, USA
| | - Brittany DiPiazza
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhang L, Zhu D, Jiang J, Min Z, Fa Z. The ubiquitin E3 ligase MDM2 induces chemoresistance in colorectal cancer by degradation of ING3. Carcinogenesis 2023; 44:562-575. [PMID: 37279970 DOI: 10.1093/carcin/bgad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023] Open
Abstract
Chemoresistance is an obstacle for colorectal cancer (CRC) treatment. This study investigates the role of the ubiquitin E3 ligase MDM2 in affecting cell growth and chemosensitivity in CRC cells by modifying the transcription factor inhibitor of growth protein 3 (ING3). The expression of MDM2 and ING3 in CRC tissues was predicted by bioinformatics analysis, followed by expression validation and their interaction in CRC HCT116 and LS180 cells. Ectopic overexpression or knockdown of MDM2/ING3 was performed to test their effect on proliferation and apotptosis as well as chemosensitivity of CRC cells. Finally, the effect of MDM2/ING3 expression on the in vivo tumorigenesis of CRC cells was examined through subcutaneous tumor xenograft experiment in nude mice. MDM2 promoted ubiquitin-proteasome pathway degradation of ING3 through ubiquitination and diminished its protein stability. Overexpression of MDM2 downregulated ING3 expression, which promoted CRC cell proliferation and inhibited the apoptosis. The enhancing role of MDM2 in tumorigenesis and resistance to chemotherapeutic drugs was also confirmed in vivo. Our findings highlight that MDM2 modifies the transcription factor ING3 by ubiquitination-proteasome pathway degradation, thus reducing ING3 protein stability, which finally promotes CRC cell growth and chemoresistance.
Collapse
Affiliation(s)
- Liangliang Zhang
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Dagang Zhu
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Jiwen Jiang
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Zhenyu Min
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Zhenzhong Fa
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| |
Collapse
|
4
|
Barber LE, VoPham T, White LF, Roy HK, Palmer JR, Bertrand KA. Circadian Disruption and Colorectal Cancer Incidence in Black Women. Cancer Epidemiol Biomarkers Prev 2023; 32:927-935. [PMID: 36409509 PMCID: PMC10199956 DOI: 10.1158/1055-9965.epi-22-0808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Animal and experimental studies suggest circadian disruption increases colorectal cancer risk, but evidence in humans is limited. We examined night shift work, chronotype, and residential position within a time zone, proxies for circadian disruption, in relation to colorectal cancer risk. METHODS Participants in the Black Women's Health Study, a prospective cohort of 59,000 Black American women established in 1995, reported history of night shift work and chronotype on follow-up questionnaires. Residential position within a time zone was estimated using participant addresses at each questionnaire cycle. Number of colorectal cancer cases and follow-up duration varied by analysis depending on timing of exposure assessment, ranging from 204 over the 2005 to 2018 night shift work study period to 452 over the 1995 to 2018 residential position study period. Cox proportional hazards regression was used to estimate multivariable-adjusted HRs and 95% confidence intervals (CI). RESULTS Compared with never having worked a night shift, working a night shift for ≥10 years was associated with increased colorectal cancer risk (HR = 1.64; 95% CI, 1.01-2.66). However, shorter duration was not. The HR for evening versus morning chronotype was 0.96 (95% CI, 0.73-1.27). Westward position of residence within a time zone was not associated with colorectal cancer risk (HR per 5-degree longitude increase: 0.92; 95% CI, 0.82-1.03). CONCLUSIONS Our findings suggest a possible increased risk of colorectal cancer associated with long duration night shift work; however, results require confirmation in larger studies. IMPACT Circadian disruption from long-term night shift work may contribute to colorectal cancer development in Black women.
Collapse
Affiliation(s)
- Lauren E. Barber
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
- Slone Epidemiology Center at Boston University, Boston, MA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
| | - Trang VoPham
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Hemant K. Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | | |
Collapse
|
5
|
S SH, G K, Dey H, Sangoji RV, Thirumal Kumar D, Zayed H, Vasudevan K, George Priya Doss C. Identification of potential circadian genes and associated pathways in colorectal cancer progression and prognosis using microarray gene expression analysis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:181-203. [PMID: 37709376 DOI: 10.1016/bs.apcsb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Colorectal cancer (CRC) is third cancer causing death in the world. CRC is associated with disrupting the circadian rhythm (CR), closely associating the CRC progression and the dysregulation of genes involved in the biological clock. In this study, we aimed to understand the circadian rhythm changes in patients diagnosed with CRC. We used the GEO database with the ID GSE46549 for our analysis, which consists of 32 patients with CRC and one as normal control. Our study has identified five essential genes involved in CRC, HAPLN1, CDH12, IGFBP5, DCHS2, and DOK5, and had different enriched pathways, such as the Wnt-signaling pathway, at different time points of study. As a part of our study, we also identified various related circadian genes, such as CXCL12, C1QTNF2, MRC2, and GLUL, from the Circadian Gene Expression database, that played a role in circadian rhythm and CRC development. As circadian timing can influence the host tissue's ability to tolerate anticancer medications, the genes reported can serve as a potential drug target for treating CRC and become beneficial to translational settings.
Collapse
Affiliation(s)
- Sri Hari S
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Keerthana G
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Hrituraj Dey
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Rahul V Sangoji
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - D Thirumal Kumar
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Zhao S, Wen S, Liu H, Zhou Z, Liu Y, Zhong J, Xie J. High Expression of TIMELESS Predicts Poor Prognosis: A Potential Therapeutic Target for Skin Cutaneous Melanoma. Front Surg 2022; 9:917776. [PMID: 36034394 PMCID: PMC9406824 DOI: 10.3389/fsurg.2022.917776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the most lethal skin cancer with an increasing incidence worldwide. The poor prognosis of SKCM urgently requires us to discover prognostic biomarkers for accurate therapy. As a regulator of DNA replication, TIMELESS (TIM) has been found to be highly expressed in various malignancies but rarely reported in SKCM. The objective of this study was to evaluate the relationship between TIM and SKCM tumorigenesis and prognosis. Methods We obtained RNA sequencing data from TCGA and GTEx to analyze TIM expression and differentially expressed genes (DEGs). Subsequently, GO/KEGG, GSEA, immune cell infiltration analysis, and protein-protein interaction (PPI) network were used to perform the functional enrichment analysis of TIM-related DEGs. Moreover, the receiver operating characteristic (ROC) curves, Cox regression analysis, Kaplan–Meier (K-M) analysis, and nomograms were applied to figure out the clinical significance of TIM in SKCM. In addition, we investigated the relationship between TIM promoter methylation and SKCM prognosis through the UALCAN database. Finally, the immunohistochemical (IHC) results of normal skin and SKCM were analyzed to determine expression differences. Results TIM was significantly elevated in various malignancies, including SKCM, and high expression of TIM was associated with poor prognosis. Moreover, a total of 402 DEGs were identified between the two distinct TIM expression groups, and functional annotation showed enrichment with positive regulation of cell cycle and classic oncogenic pathways in the high TIM expression phenotype, while keratinization pathways were negatively regulated and enriched. Further analysis showed that TIM was correlated with infiltration of multiple immune cells. Finally, IHC validated the differential expression of TIM in SKCM. Conclusion TIM might play a pivotal role in tumorigenesis of SKCM and is closely related to its prognosis.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shifeng Wen
- Department of Orthopedics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hengdeng Liu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ziheng Zhou
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yiling Liu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinbao Zhong
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Bischoff NS, Proquin H, Jetten MJ, Schrooders Y, Jonkhout MCM, Briedé JJ, van Breda SG, Jennen DGJ, Medina-Reyes EI, Delgado-Buenrostro NL, Chirino YI, van Loveren H, de Kok TM. The Effects of the Food Additive Titanium Dioxide (E171) on Tumor Formation and Gene Expression in the Colon of a Transgenic Mouse Model for Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1256. [PMID: 35457963 PMCID: PMC9027218 DOI: 10.3390/nano12081256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
Titanium dioxide (TiO2) is present in many different food products as the food additive E171, which is currently scrutinized due to its potential adverse effects, including the stimulation of tumor formation in the gastrointestinal tract. We developed a transgenic mouse model to examine the effects of E171 on colorectal cancer (CRC), using the Cre-LoxP system to create an Apc-gene-knockout model which spontaneously develops colorectal tumors. A pilot study showed that E171 exposed mice developed colorectal adenocarcinomas, which were accompanied by enhanced hyperplasia in epithelial cells, lymphatic nodules at the base of the polyps, and increased tumor size. In the main study, tumor formation was studied following the exposure to 5 mg/kgbw/day of E171 for 9 weeks (Phase I). E171 exposure showed a statistically nonsignificant increase in the number of colorectal tumors in these transgenic mice, as well as a statistically nonsignificant increase in the average number of mice with tumors. Gene expression changes in the colon were analyzed after exposure to 1, 2, and 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days (Phase II). Whole-genome mRNA analysis revealed the modulation of genes in pathways involved in the regulation of gene expression, cell cycle, post-translational modification, nuclear receptor signaling, and circadian rhythm. The processes associated with these genes might be involved in the enhanced tumor formation and suggest that E171 may contribute to tumor formation and progression by modulation of events related to inflammation, activation of immune responses, cell cycle, and cancer signaling.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Héloïse Proquin
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
- National Institute for Public Health and Environment (RIVM), Bilthoven, 3721 MA De Bilt, The Netherlands
| | - Marlon J. Jetten
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
- Faculty of Health, Medicine and Life Science, Maastricht University Medical Center, 6229 ES Maastricht, The Netherlands
| | - Yannick Schrooders
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marloes C. M. Jonkhout
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jacco J. Briedé
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Simone G. van Breda
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Danyel G. J. Jennen
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Estefany I. Medina-Reyes
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (E.I.M.-R.); (N.L.D.-B.); (Y.I.C.)
| | - Norma L. Delgado-Buenrostro
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (E.I.M.-R.); (N.L.D.-B.); (Y.I.C.)
| | - Yolanda I. Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (E.I.M.-R.); (N.L.D.-B.); (Y.I.C.)
| | - Henk van Loveren
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (H.P.); (M.J.J.); (Y.S.); (M.C.M.J.); (J.J.B.); (S.G.v.B.); (D.G.J.J.); (H.v.L.); (T.M.d.K.)
| |
Collapse
|
8
|
Razi Soofiyani S, Ahangari H, Soleimanian A, Babaei G, Ghasemnejad T, Safavi SE, Eyvazi S, Tarhriz V. The role of circadian genes in the pathogenesis of colorectal cancer. Gene 2021; 804:145894. [PMID: 34418469 DOI: 10.1016/j.gene.2021.145894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer in human beings and is also the major cause of death among the other gastrointestinal cancers. The exact mechanisms of CRC development in most patients remains unclear. So far, several genetically, environmental and epigenetically risk factors have been identified for CRC development. The circadian rhythm is a 24-h rhythm that drives several biologic processes. The circadian system is guided by a central pacemaker which is located in the suprachiasmatic nucleus (SCN) in the hypothalamus. Circadian rhythm is regulated by circadian clock genes, cytokines and hormones like melatonin. Disruptions in biological rhythms are known to be strongly associated with several diseases, including cancer. The role of the different circadian genes has been verified in various cancers, however, the pathways of different circadian genes in the pathogenesis of CRC are less investigated. Identification of the details of the pathways in CRC helps researchers to explore new therapies for the malignancy.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Esmaeil Safavi
- Faculty of Veternary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shirin Eyvazi
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Gao Y, Wu Y, Zhang N, Yuan H, Wang F, Xu H, Yu J, Ma J, Hou S, Cao X. IDH1 gene mutation activates Smad signaling molecules to regulate the expression levels of cell cycle and biological rhythm genes in human glioma U87‑MG cells. Mol Med Rep 2021; 23:354. [PMID: 33760141 PMCID: PMC7974315 DOI: 10.3892/mmr.2021.11993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Isocitrate dehydrogenase1 (IDH1) mutation is the most important genetic change in glioma. The most common IDH1 mutation results in the amino acid substitution of arginine 132 (Arg/R132), which is located at the active site of the enzyme. IDH1 Arg132His (R132H) mutation can reduce the proliferative rate of glioma cells. Numerous diseases follow circadian rhythms, and there is growing evidence that circadian disruption may be a risk factor for cancer in humans. Dysregulation of the circadian clock serves an important role in the development of malignant tumors, including glioma. Brain-Muscle Arnt-Like protein 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) are the main biological rhythm genes. The present study aimed to further study whether there is an association between IDH1 R132H mutation and biological rhythm in glioma, and whether this affects the occurrence of glioma. The Cancer Genome Atlas (TCGA) database was used to detect the expression levels of the biological rhythm genes BMAL1 and CLOCK in various types of tumor. Additionally, U87-MG cells were infected with wild-type and mutant IDH1 lentiviruses. Colony formation experiments were used to detect cell proliferation in each group, cell cycle distribution was detected by flow cytometry and western blotting was used to detect the expression levels of wild-type and mutant IDH1, cyclins, biological rhythm genes and Smad signaling pathway-associated genes in U87-MG cells. TCGA database results suggested that BMAL1 and CLOCK were abnormally expressed in glioma. Cells were successfully infected with wild-type and mutant IDH1 lentiviruses. Colony formation assay revealed decreased cell proliferation in the IDH1 R132H mutant group. The cell cycle distribution detected by flow cytometry indicated that IDH1 gene mutation increased the G1 phase ratio and decreased the S phase ratio in U87-MG cells. The western blotting results demonstrated that IDH1 R132H mutation decreased the expression levels of the S phase-associated proteins Cyclin A and CDK2, and increased the expression levels of the G1 phase-associated proteins Cyclin D3 and CDK4, but did not significantly change the expression levels of the G2/M phase-associated protein Cyclin B1. The expression levels of the positive and negative rhythm regulation genes BMAL1, CLOCK, period (PER s (PER1, 2 and 3) and cryptochrom (CRY)s (CRY1 and 2) were significantly decreased, those of the Smad signaling pathway-associated genes Smad2, Smad3 and Smad2-3 were decreased, and those of phosphorylated (p)-Smad2, p-Smad3 and Smad4 were increased. Therefore, the present results suggested that the IDH1 R132H mutation may alter the cell cycle and biological rhythm genes in U87-MG cells through the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Yongying Gao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yanwei Wu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ningmei Zhang
- Department of Pathology, Tumor Hospital, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hongmei Yuan
- Functional Department, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia 750021, P.R. China
| | - Fei Wang
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia 750001, P.R. China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiaxiang Yu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jie Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shaozhang Hou
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
10
|
Ilan Y, Spigelman Z. Establishing patient-tailored variability-based paradigms for anti-cancer therapy: Using the inherent trajectories which underlie cancer for overcoming drug resistance. Cancer Treat Res Commun 2020; 25:100240. [PMID: 33246316 DOI: 10.1016/j.ctarc.2020.100240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Drug resistance is a major obstacle for successful therapy of many malignancies and is affecting the loss of response to chemotherapy and immunotherapy. Tumor-related compensatory adaptation mechanisms contribute to the development of drug resistance. Variability is inherent to biological systems and altered patterns of variability are associated with disease conditions. The marked intra and inter patient tumor heterogeneity, and the diverse mechanism contributing to drug resistance in different subjects, which may change over time even in the same patient, necessitate the development of personalized dynamic approaches for overcoming drug resistance. Altered dosing regimens, the potential role of chronotherapy, and drug holidays are effective in cancer therapy and immunotherapy. In the present review we describe the difficulty of overcoming drug resistance in a dynamic system and present the use of the inherent trajectories which underlie cancer development for building therapeutic regimens which can overcome resistance. The establishment of a platform wherein patient-tailored variability signatures are used for overcoming resistance for ensuing long term sustainable improved responses is presented.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Zachary Spigelman
- Department of Hematology and Oncology, Lahey Hospital and Beth Israel Medical Center, MA, USA
| |
Collapse
|
11
|
Ilan Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable Beneficial Effects. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:335-344. [PMID: 32671136 PMCID: PMC7341037 DOI: 10.1016/j.omtm.2020.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic administration of drugs leads to the activation of compensatory mechanisms that may inhibit some of their activity and induce unwanted toxicity. These mechanisms are an obstacle for maintaining a sustainable effect for many chronic medications. Pathways that adapt to the burden induced by chronic drugs, whether or not related to the underlying disease, can lead to a partial or complete loss of effect. Variability characterizes many biological systems and manifests itself as large intra- and inter-individual differences in the response to drugs. Circadian rhythm-based chronotherapy is further associated with variability in responses noted among patients. This paper reviews current knowledge regarding the loss of effect of chronic medications and the range of variabilities that have been described in responses and loss of responses. Establishment of a personalized platform for overcoming these prohibitive mechanisms is presented as a model for ensuring long-term sustained medication effects. This novel platform implements personalized variability signatures and individualized circadian rhythms for preventing and opposing the prohibitive effect of the compensatory mechanisms induced by chronic drug administration.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, IL91120 Jerusalem, Israel
- Corresponding author: Yaron Ilan, MD, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120 Jerusalem, Israel
| |
Collapse
|
12
|
Zhou J, Zhang Y, Zou X, Kuai L, Wang L, Wang J, Shen F, Hu J, Zhang X, Huang Y, Chen Y. Aberrantly Expressed Timeless Regulates Cell Proliferation and Cisplatin Efficacy in Cervical Cancer. Hum Gene Ther 2020; 31:385-395. [PMID: 31870179 DOI: 10.1089/hum.2019.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Timeless is a regulator of molecular clockwork in Drosophila and related to cancer development in mammals. This study aimed to investigate the effect of Timeless on cell proliferation and cisplatin sensitivity in cervical cancer. Timeless expression was determined by bioinformatics analysis, immunohistochemistry, and quantitative polymerase chain reaction (qPCR). Chromatin immunoprecipitation assays and reporter gene assays were applied to determine the transcriptional factor contributing to Timeless upregulation. The effects of Timeless depletion on cell proliferation and cisplatin sensitivity were determined through in vitro and in vivo experiments. Cell apoptosis and senescence were assessed by flow cytometry and β-galactosidase staining. DNA damage and DNA repair pathways were determined by comet assay, immunofluorescent staining, and Western blot analysis. Timeless is aberrantly expressed in ∼52.5% of cervical cancer tissues. E2F1 and E2F4 contribute to the transcriptional activation of Timeless. Timeless depletion inhibits cell proliferation and increases cisplatin sensitivity in vitro and in vivo. Knockdown of Timeless induces cell apoptosis and cell senescence. Mechanically, Timeless silencing leads to DNA damage and impairs the activation of the ATR/CHK1 pathway in response to cisplatin in cervical cancer. Timeless is overexpressed in cervical cancer and regulates cell proliferation and cisplatin sensitivity, presenting an attractive target for cisplatin sensitizer in cervical cancer.
Collapse
Affiliation(s)
- Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinghui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingling Kuai
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Hospital, Nanjing, China
| | - Li Wang
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital Affiliated Nanjing Medical University, Changzhou, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghui Hu
- Department of Gynecology, The First Affiliated Hospital of Zhejiang University Medical College, Hangzhou, China
| | - Xia Zhang
- Department of Obstetrics and Gynecology, TuHa Petroleum Hospital, Xinjiang, China
| | - Yazhen Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Simak M, Lu HHS, Yang JM. Boolean function network analysis of time course liver transcriptome data to reveal novel circadian transcriptional regulators in mammals. J Chin Med Assoc 2019; 82:872-880. [PMID: 31469689 DOI: 10.1097/jcma.0000000000000180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Many biological processes in mammals are subject to circadian control at the molecular level. Disruption of circadian rhythms has been demonstrated to be associated with a wide range of diseases, such as diabetes mellitus, mental disorders, and cancer. Although the core circadian genes are well established, there are multiple reports of novel peripheral circadian regulators. The goal of this study was to provide a comprehensive computational analysis to identify novel potential circadian transcriptional regulators. METHODS To fulfill the aforementioned goal, we applied a Boolean function network method to analyze the microarray time course mouse and rat liver datasets available in the literature. The inferred direct pairwise relations were further investigated using the functional annotation tool. This approach generated a list of transcription factors (TFs) and cofactors, which were associated with significantly enriched circadian gene ontology (GO) categories. RESULTS As a result, we identified 93 transcriptional circadian regulators in mouse and 95 transcriptional circadian regulators in rat. Of these, 19 regulators in mouse and 21 regulators in rat were known, whereas the rest were novel. Furthermore, we validated novel circadian TFs with bioinformatics databases, previous large-scale circadian studies, and related small-scale studies. Moreover, according to predictions inferred from ChIP-Seq experiments reported in the database, 40 of our candidate circadian regulators were confirmed to have circadian genes as direct regulatory targets. In addition, we annotated candidate circadian regulators with disorders that were often associated with disruptions of circadian rhythm in the literature. CONCLUSION In summary, our computational analysis, which was followed by an extensive verification by means of a literature review, can contribute to translational study from endocrinology to cancer research and provide insights for future investigation.
Collapse
Affiliation(s)
- Maria Simak
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan, ROC
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
14
|
Hilbert DA, Memmert S, Marciniak J, Jäger A. Molecular biology of periodontal ligament fibroblasts and orthodontic tooth movement : Evidence and possible role of the circadian rhythm. J Orofac Orthop 2019; 80:336-347. [PMID: 31650205 DOI: 10.1007/s00056-019-00195-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/03/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE The circadian clock plays an important role in many physiological states and pathologies. The significance of its core genes in bone formation and tooth development has already been demonstrated. However, regulation of these genes and their influence on periodontal and bone remodeling in periodontal ligament (PDL) fibroblasts remains to be elucidated. Our hypothesis was that the circadian clock influences markers for periodontal and bone remodeling and therefore orthodontic tooth movement itself. MATERIALS AND METHODS Human PDL fibroblasts were cultured and synchronized in circadian rhythms with the help of a dexamethasone shock. Cells were harvested at 4 h intervals. Reverse transcription and quantitative RT PCR (real time polymerase chain reaction) were performed to assess the mRNA levels of the clock genes ARNTL, CLOCK1, PER1, and PER2. Subsequently, mRNA expression of important marker genes for periodontal and bone remodeling, OPG, RANKL, OCN, OPN, RUNX2, COL1A1, IL1β, KI67, and POSTN, were examined at time points of ARNTL amplitude expression. RESULTS Gene expression of core clock genes varied over 48 h in accordance with the circadian rhythm. Functional markers, except KI67, showed significant differences at time points of maximum fluctuation especially of ARNTL. CONCLUSIONS PDL fibroblasts express circadian clock genes. Our results suggest that genes associated with bone and periodontal remodeling are influenced by the circadian rhythm. Further research will have to refine the understanding of this influence for orthodontic treatment.
Collapse
Affiliation(s)
- David Andreas Hilbert
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - Svenja Memmert
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.,Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Jana Marciniak
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Fuhr L, Abreu M, Carbone A, El-Athman R, Bianchi F, Laukkanen MO, Mazzoccoli G, Relógio A. The Interplay between Colon Cancer Cells and Tumour-Associated Stromal Cells Impacts the Biological Clock and Enhances Malignant Phenotypes. Cancers (Basel) 2019; 11:cancers11070988. [PMID: 31311174 PMCID: PMC6678177 DOI: 10.3390/cancers11070988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/20/2023] Open
Abstract
Cancer cells interrelate with the bordering host microenvironment that encompasses the extracellular matrix and a nontumour cellular component comprising fibroblasts and immune-competent cells. The tumour microenvironment modulates cancer onset and progression, but the molecular factors managing this interaction are not fully understood. Malignant transformation of a benign tumour is among the first crucial events in colorectal carcinogenesis. The role of tumour stroma fibroblasts is well-described in cancer, but less well-characterized in benign tumours. In the current work we utilized fibroblasts isolated from tubulovillous adenoma, which has high risk for malignant transformation, to study the interaction between benign tumour stroma and the circadian clock machinery. We explored the role of the biological clock in this interplay taking advantage of an experimental model, represented by the co-culture of colon cancer cells with normal fibroblasts or tumour-associated fibroblasts, isolated from human colorectal tumour specimens. When co-cultured with tumour-associated fibroblasts, colon cancer cells showed alterations in their circadian and metabolic parameters, with decreased apoptosis, increased colon cancer cell viability, and increased resistance to chemotherapeutic agents. In conclusion, the interactions among colon cancer cells and tumour-associated fibroblasts affect the molecular clockwork and seem to aggravate malignant cell phenotypes, suggesting a detrimental effect of this interplay on cancer dynamics.
Collapse
Affiliation(s)
- Luise Fuhr
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Mónica Abreu
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Unit, Fondazione IRCCS (Istituto di Ricerca a Carattere Clinico e Scientifico) Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Rukeia El-Athman
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Fabrizio Bianchi
- Unit of Oncology Biomarkers, Fondazione IRCCS (Istituto di Ricerca a Carattere Clinico e Scientifico) Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | | | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Fondazione IRCCS (Istituto di Ricerca a Carattere Clinico e Scientifico) Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
- Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
16
|
Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol 2019; 13:411-424. [PMID: 30874451 PMCID: PMC6533073 DOI: 10.1080/17474124.2019.1595588] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian rhythms regulate much of gastrointestinal physiology including cell proliferation, motility, digestion, absorption, and electrolyte balance. Disruption of circadian rhythms can have adverse consequences including the promotion of and/or exacerbation of a wide variety of gastrointestinal disorders and diseases. Areas covered: In this review, we evaluate some of the many gastrointestinal functions that are regulated by circadian rhythms and how dysregulation of these functions may contribute to disease. This review also discusses some common gastrointestinal disorders that are known to be influenced by circadian rhythms as well as speculation about the mechanisms by which circadian rhythm disruption promotes dysfunction and disease pathogenesis. We discuss how knowledge of circadian rhythms and the advent of chrono-nutrition, chrono-pharmacology, and chrono-therapeutics might influence clinical practice. Expert opinion: As our knowledge of circadian biology increases, it may be possible to incorporate strategies that take advantage of circadian rhythms and chronotherapy to prevent and/or treat disease.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
17
|
Qiu MJ, Liu LP, Jin S, Fang XF, He XX, Xiong ZF, Yang SL. Research on circadian clock genes in common abdominal malignant tumors. Chronobiol Int 2019; 36:906-918. [PMID: 31014126 DOI: 10.1080/07420528.2018.1477792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythm describes the 24-h oscillation in physiology and behavior of living organisms and presents a timing controller for life activity. Studies in recent years have reported that the abnormal expression of clock genes is closely related to the development of common abdominal malignant tumors. The expression of the 14 kinds of clock genes in 6 abdominal malignant tumors from Cancer Genome Atlas (TCGA) data was integrated and analyzed using R and Perl programming languages to show the association between clock gene expression and prognosis of cancer patients. Analysis of TCGA data indicated that the overexpression of Per1-3, Cry2, CLOCK, NR1D2 and RORA with underexpression of Timeless and NPAS2 was associated with a favorable prognosis in kidney cancer. In liver cancer, high expressions of Cry2 and RORA were correlated with prolonged overall survival (OS) in patients, while high expressions of NPAS2 and Timeless were correlated with a poor survival. High expression of CLOCK was positively correlated with OS in colon cancer patients. High expression of Cry2 and low expression of DEC1 were associated with a favorable prognosis in pancreatic cancer patients, respectively. Most of these clock-genes expressions were closely related to the clinical stage and degree of tumor differentiation of patients. Aberrant clock gene expression is related to the biological characteristics of abdominal malignant tumors, which likely has a causal role in cancer development and survival.
Collapse
Affiliation(s)
- Meng-Jun Qiu
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Li-Ping Liu
- b Department of Hepatobiliary and Pancreas Surgery , Second Clinical Medical College of Jinan University (Shenzhen People's Hospital) , Shenzhen , Guangdong Province , China
| | - Si Jin
- c Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan China
| | - Xie-Fan Fang
- d Department of Pediatrics , College of Medicine, University of Florida , Gainesville, FL , USA
| | - Xiao-Xiao He
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Zhi-Fan Xiong
- a Division of Gastroenterology, Liyuan Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| | - Sheng-Li Yang
- e Cancer Center, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan China
| |
Collapse
|
18
|
Gil-Martín E, Egea J, Reiter RJ, Romero A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev 2019; 39:2239-2285. [PMID: 30950095 DOI: 10.1002/med.21582] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Within the last few decades, melatonin has increasingly emerged in clinical oncology as a naturally occurring bioactive molecule with substantial anticancer properties and a pharmacological profile optimal for joining the currently available pharmacopeia. In addition, extensive experimental data shows that this chronobiotic agent exerts oncostatic effects throughout all stages of tumor growth, from initial cell transformation to mitigation of malignant progression and metastasis; additionally, melatonin alleviates the side effects and improves the welfare of radio/chemotherapy-treated patients. Thus, the support of clinicians and oncologists for the use of melatonin in both the treatment and proactive prevention of cancer is gaining strength. Because of its epidemiological importance and symptomatic debut in advanced stages of difficult clinical management, colorectal cancer (CRC) is a preferential target for testing new therapies. In this regard, the development of effective forms of clinical intervention for the improvement of CRC outcome, specifically metastatic CRC, is urgent. At the same time, the need to reduce the costs of conventional anti-CRC therapy results is also imperative. In light of this status quo, the therapeutic potential of melatonin, and the direct and indirect critical processes of CRC malignancy it modulates, have aroused much interest. To illuminate the imminent future on CRC research, we focused our attention on the molecular mechanisms underlying the multiple oncostatic actions displayed by melatonin in the onset and evolution of CRC and summarized epidemiological evidence, as well as in vitro, in vivo and clinical findings that support the broadly protective potential demonstrated by melatonin.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, Vigo, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Laboratory, Research Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
19
|
Zhang Q, Berger FG, Love B, Banister CE, Murphy EA, Hofseth LJ. Maternal stress and early-onset colorectal cancer. Med Hypotheses 2018; 121:152-159. [PMID: 30396471 DOI: 10.1016/j.mehy.2018.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Early-onset colorectal cancer (EOCRC) is defined as colorectal cancer (CRC) diagnosed before the age of 50. Alarmingly, there has been a significant increase in EOCRC diagnoses' worldwide over the past several decades. Emerging data suggest EOCRCs have distinguishing clinical, pathological, biological and molecular features; and thus, are a fundamentally different subtype of CRCs. Unfortunately, there is no simple explanation for the causes of EOCRC. Scientifically rigorous studies are needed to determine what may be driving the challenging epidemiology of EOCRC. We contend here that a reasonable hypothesis is that prenatal risk factors such as maternal stress and associated sleeping disorders influence offspring epigenetic make-up, and shape immune system and gut health contributing to an increased risk for EOCRC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan Love
- Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Carolyn E Banister
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Elizabeth A Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Science, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
20
|
El-Athman R, Fuhr L, Relógio A. A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer. EBioMedicine 2018; 33:68-81. [PMID: 29936137 PMCID: PMC6085510 DOI: 10.1016/j.ebiom.2018.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis.
Collapse
Affiliation(s)
- Rukeia El-Athman
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - Luise Fuhr
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany.
| |
Collapse
|
21
|
Yu Y, Li Y, Zhou L, Yang G, Wang M, Hong Y. Cryptochrome 2 (CRY2) Suppresses Proliferation and Migration and Regulates Clock Gene Network in Osteosarcoma Cells. Med Sci Monit 2018; 24:3856-3862. [PMID: 29879092 PMCID: PMC6020744 DOI: 10.12659/msm.908596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Circadian disruption is a potential cancer risk factor in humans. However, the role of the clock gene, cryptochrome 2 (CRY2), in osteosarcoma (OS) is still not clear. MATERIAL AND METHODS To evaluate the potential role of CRY2 in HOS osteosarcoma cells, CRY2-silenced cell lines were established. Furthermore, we investigated the effect of CRY2 knockdown on HOS cells by CCK-8, colony formation, migration assay, and flow cytometry, in vitro. RESULTS CRY2 knockdown promoted HOS OS cell proliferation and migration. We used a cell cycle assay to show that CRY2 knockdown increased the S phase cell population and reduced the G1 phase cell population. Western blot analyses showed that CRY2 knockdown decreased P53 expression and increased expression of c-myc and cyclin D1. Simultaneously, CRY2 knockdown increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, but did not change the phosphorylation of c-Jun N terminal kinase (JNK) and P38. CRY2 knockdown also increased the expression of matrix metalloproteinase (MMP)-2 and β-catenin, and increased OS cell proliferation and migration by inducing cell cycle progression and promoting mitogen-activated protein kinase (MAPK) and Wnt/β-catenin signaling pathways. Although it has previously been unclear whether the expression of CRY2 affects the expression of other clock genes in the clock gene network, our results show that knockdown of CRY2 significantly increased the mRNA expression of CRY1, Period (PER) 1, PER2, BMAL1, and CLOCK. CONCLUSIONS Our results suggest that CRY2 may be an anti-oncogene in OS, whose functions involve both downstream genes and other circadian genes.
Collapse
Affiliation(s)
- Yueming Yu
- Department of Orthopedics, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China (mainland)
| | - Yinghua Li
- Central Laboratory, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China (mainland)
| | - Lei Zhou
- Department of Orthopedics, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China (mainland)
| | - Gong Yang
- Central Laboratory, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China (mainland).,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Minghai Wang
- Department of Orthopedics, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China (mainland)
| | - Yang Hong
- Department of Orthopedics, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China (mainland).,Central Laboratory, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
22
|
Salavaty A, Mohammadi N, Shahmoradi M, Naderi Soorki M. Bioinformatic Analysis of Circadian Expression of Oncogenes and Tumor Suppressor Genes. Bioinform Biol Insights 2017; 11:1177932217746991. [PMID: 29276378 PMCID: PMC5734456 DOI: 10.1177/1177932217746991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/11/2017] [Indexed: 01/09/2023] Open
Abstract
Background Circadian rhythms are physiological and behavioral cycles with a period of approximately 24 hours that control various functions including gene expression. Circadian disruption is associated with a variety of diseases, especially cancer. Although some of the oncogenes and tumor suppressor genes (TSGs) are known as clock-controlled genes (CCGs), the analysis and annotation of circadian expression of most human oncogenes and TSGs are still lacking. This study aims to investigate the circadian expression of a list of human oncogenes and TSGs. Methods A bioinformatic analysis was conducted on a gene library comprising 120 genes to investigate the circadian expression of human oncogenes and TSGs. To achieve this purpose, the genotranscriptomic data were retrieved from COSMIC and analyzed by R statistical software. Furthermore, the acquired data were analyzed at the transcriptomic and proteomic levels using several publicly available databases. Also, the significance of all analyses was confirmed statistically. Results Altogether, our results indicated that 7 human oncogenes/TSGs may be expressed and function in a circadian manner. These oncogenes/TSGs showed a circadian expression pattern at CircaDB database and associated with at least one of the circadian genes/CCGs based on both genotranscriptomic and correlation analyses. Conclusions Although 4 of 7 finally outputted genes have been previously reported to be clock controlled, heretofore there is no report about the circadian expression of 3 other genes. Considering the importance of oncogenes/TSGs in the initiation and progression of cancer, further studies are suggested for the identification of exact circadian expression patterns of these 3 human oncogenes/TSGs.
Collapse
Affiliation(s)
- Adrian Salavaty
- Division of Biotechnology, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Niloufar Mohammadi
- Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mozhdeh Shahmoradi
- Division of Biotechnology, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Maryam Naderi Soorki
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
23
|
Palesh O, Haitz K, Lévi F, Bjarnason GA, Deguzman C, Alizeh I, Ulusakarya A, Packer MM, Innominato PF. Relationship between subjective and actigraphy-measured sleep in 237 patients with metastatic colorectal cancer. Qual Life Res 2017; 26:2783-2791. [PMID: 28656534 DOI: 10.1007/s11136-017-1617-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Patients with cancers frequently experience sleep and circadian dysfunction. To date, only a few studies have used both a questionnaire and actigraphy for concomitant evaluation of sleep and circadian function in patients with cancer. We sought to evaluate objective sleep and circadian parameters in metastatic colon cancer (MCC) patients and their associations with symptoms and quality of life (QOL). METHODS Patients reported subjective sleep problems on the EORTC QLQ-C30. Sleep and circadian parameters were calculated using a wrist-actigraph that patients wore for 72 h. RESULTS 237 Patients with MCC (mean age: 60.4 years; range: 20.7-77.6; Male/Female ratio: 1.66) participated in this cross-sectional study. Subjective sleep problems were reported by 63.4% of patients (S+). No differences in any sleep parameters (sleep efficiency, sleep latency, total sleep time, total time in bed, wake after sleep onset, activity bathyphase) were observed between S+ and S- patients. However, S+ patients displayed a significantly worse circadian function than S- patients (96.4 vs 98.1%; p = 0.005). The presence of poor subjective sleep and objective circadian dysfunction negatively affected symptoms and QOL domains (p = 0.038). CONCLUSIONS Subjective report of sleep problems was not associated with worse objectively measured sleep parameters in patients with MCC although it was associated with disrupted circadian rest-activity rhythm and poorer QOL. These findings coincide with prior research in cancer patients in that an inconsistent relationship exists between subjective and objective sleep measurements on some sleep domains. This study supports the value of coupled evaluation of self-reported and objective measures of sleep and circadian function in cancer patients.
Collapse
Affiliation(s)
- Oxana Palesh
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA. .,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA.
| | - Karyn Haitz
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
| | - Francis Lévi
- INSERM U935 and AP-HP, Chronotherapy Unit, Department of Medical Oncology, Paul Brousse Hospital, Villejuif, France.,Cancer Chronotherapy Unit, Cancer Research Centre, Warwick Medical School, Coventry, Warwickshire, UK.,Department of Oncology, Queen Elizabeth Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Georg A Bjarnason
- Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Carl Deguzman
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
| | - Igbal Alizeh
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
| | - Ayhan Ulusakarya
- INSERM U935 and AP-HP, Chronotherapy Unit, Department of Medical Oncology, Paul Brousse Hospital, Villejuif, France
| | - Mary Melissa Packer
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Pasquale F Innominato
- Cancer Chronotherapy Unit, Cancer Research Centre, Warwick Medical School, Coventry, Warwickshire, UK.,Department of Oncology, Queen Elizabeth Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
24
|
Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Shivappa N, Guess J, Zhang H, Youngstedt SD, Creek KE, Lloyd S, Jones K, Hébert JR. Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 2017; 32:183-192. [PMID: 27771773 PMCID: PMC5288296 DOI: 10.1007/s00384-016-2688-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common and preventable forms of cancer but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70-90 % of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. METHODS Patients recruited from a local endoscopy clinic provided informed consent and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios (ORs) and 95 % confidence intervals (95% CIs) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. RESULTS Complete data were available for 107 participants; 36 % had adenomas (men 40 %, women 31 %). Hypomethylation of the MINT1 locus (OR 5.3, 95% CI 1.0-28.2) and the PER1 (OR 2.9, 95% CI 1.1-7.7) and PER3 (OR 11.6, 95% CI 1.6-78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71-97 %), sensitivity was relatively low (18-45 %). CONCLUSION Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance.
Collapse
Affiliation(s)
- M Alexander
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J B Burch
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA.
- William Jennings Bryant Dorn Department of Veterans Affairs Medical Center, Columbia, SC, USA.
| | - S E Steck
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - C-F Chen
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - T G Hurley
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
| | - P Cavicchia
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, FL, USA
| | - N Shivappa
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J Guess
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - H Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - S D Youngstedt
- College of Nursing and Health Innovation, College of Health Solutions, Arizona State University and Phoenix VA Health Care System, Phoenix, AZ, USA
| | - K E Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - S Lloyd
- South Carolina Medical Endoscopy Center, and Department of Family Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - K Jones
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - J R Hébert
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Department of Family and Preventive Medicine, School of Medicine, University of South Carolin, Columbia, SC, USA
| |
Collapse
|
25
|
Li C, Chen M, Zhao P, Ayana DA, Wang L, Jiang Y. Expression of MCRS1 and MCRS2 and their correlation with serum carcinoembryonic antigen in colorectal cancer. Exp Ther Med 2016; 12:589-596. [PMID: 27446248 PMCID: PMC4950148 DOI: 10.3892/etm.2016.3424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/03/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated genes serve a crucial role in carcinogenesis. The present study aimed to investigate the mRNA expression levels of microspherule protein 1 (MCRS1) and MCRS2 in colorectal cancer (CRC) and their association with clinical variables. The mRNA expression levels of MCRS1 and MCRS2 were assessed by semi-quantitative reverse transcription polymerase chain reaction in the tumor and corresponding non-tumor tissues of 54 newly-diagnosed CRC patients, as well as in the normal colonic mucosa tissue of 19 age/gender-matched healthy controls. Immunofluorescence was also employed to identify the expression of MCRS1 in CRC tissues, while the concentration of serum carcinoembryonic antigen (CEA) was determined by an enzyme-linked immunoassay. The results identified a negative correlation between MCRS1 and MCRS2 expression levels (r=-0.3018, P=0.0266). MCRS1 mRNA expression was significantly increased and MCRS2 mRNA expression was decreased in CRC tissues compared with the levels in the corresponding normal tissues (both P<0.001). An increase in MCRS1 expression and a decrease in MCRS2 expression was detected in advanced stage when compared with early stage CRC patients. Immunofluorescence analysis revealed increased expression of MCRS1 in CRC patients. Furthermore, the expression levels of MCRS1 displayed positive correlation, whilst those of MCRS2 displayed negative correlation, with the serum CEA level in patients with CRC. The results suggest that increased MCRS1 and decreased MCRS2 expression appeared to be involved in the pathogenesis of CRC. The present study provides evidence suggesting that MCRS1 and MCRS2 may identify CRC patients at a risk of disease relapse, and thus, may be potential tools for monitoring disease activity and act as novel diagnostic markers in the treatment of CRC.
Collapse
Affiliation(s)
- Chenguang Li
- Department of Colorectal and Anal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China; Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| | - Mingxiao Chen
- Department of Colorectal and Anal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| | - Pingwei Zhao
- Department of Colorectal and Anal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| | - Desalegn Admassu Ayana
- Department of Medical Laboratory Sciences, Haramaya University, Dire Dawa 3000, Ethiopia
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| | - Yanfang Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin 130032, P.R. China
| |
Collapse
|
26
|
Modulation of E-cadherin expression promotes migration ability of esophageal cancer cells. Sci Rep 2016; 6:21713. [PMID: 26898709 PMCID: PMC4761978 DOI: 10.1038/srep21713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 12/22/2022] Open
Abstract
Losing the E-cadherin plays an important role in the metastasis of cancer. The regulation of the expression of E-cadherin is unclear. Circadian rhythm alteration is associated with the pathogenesis of a number of cancers. This study aims to investigate the role of one of the circadian proteins, period-2 (Per2) in repressing the expression of E-cadherin in esophageal cancer (esophageal cancer). We observed that the levels of circadian protein Per2 were significantly increased and E-cadherin was significantly decreased in the tissue of human esophageal cancer with metastasis as compared with non-metastatic esophageal cancer. Overexpression of Per2 in the esophageal cancer cells markedly repressed the expression of E-cadherin. The pHDAC1 was detected in human esophageal cancer with metastasis, which was much less in the esophageal cancer tissue without metastasis. Overexpression of Per2 increased the levels of pHDAC1 as well as the E-cadherin repressors at the E-cadherin promoter locus. Overexpression of Per2 markedly increased the migratory capacity of esophageal cancer cells, which was abolished by the inhibition of HDAC1. We conclude that Per-2 plays an important role in the esophageal cancer cell metastasis, which may be a novel therapeutic target for the treatment of esophageal cancer.
Collapse
|
27
|
Guerenne L, Beurlet S, Said M, Gorombei P, Le Pogam C, Guidez F, de la Grange P, Omidvar N, Vanneaux V, Mills K, Mufti GJ, Sarda-Mantel L, Noguera ME, Pla M, Fenaux P, Padua RA, Chomienne C, Krief P. GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways. J Hematol Oncol 2016; 9:5. [PMID: 26817437 PMCID: PMC4728810 DOI: 10.1186/s13045-016-0235-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Background In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. Methods We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. Results Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. Conclusions These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Guerenne
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Stéphanie Beurlet
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Mohamed Said
- Department of Haematological Medicine, King's College London and Kings College Hospital, London, UK.
| | - Petra Gorombei
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Carole Le Pogam
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Fabien Guidez
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Pierre de la Grange
- GenoSplice technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, Paris, France.
| | - Nader Omidvar
- Haematology Department, Cardiff University School of Medicine, Cardiff, UK.
| | - Valérie Vanneaux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Unité de Thérapie Cellulaire, Hôpital Saint Louis, Paris, France.
| | - Ken Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Ghulam J Mufti
- Department of Haematological Medicine, King's College London and Kings College Hospital, London, UK.
| | - Laure Sarda-Mantel
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie Hôpital Saint Louis, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France.
| | - Maria Elena Noguera
- Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Marika Pla
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Université Paris-Diderot, Sorbonne Paris Cité, Département d'Expérimentation Animale, Institut Universitaire d'Hématologie, Paris, France.
| | - Pierre Fenaux
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Rose Ann Padua
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Christine Chomienne
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Patricia Krief
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| |
Collapse
|
28
|
A Timeless Link Between Circadian Patterns and Disease. Trends Mol Med 2016; 22:68-81. [DOI: 10.1016/j.molmed.2015.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023]
|
29
|
Salavaty A. Carcinogenic effects of circadian disruption: an epigenetic viewpoint. CHINESE JOURNAL OF CANCER 2015; 34:375-83. [PMID: 26253128 PMCID: PMC4593354 DOI: 10.1186/s40880-015-0043-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/27/2015] [Indexed: 12/22/2022]
Abstract
Circadian rhythms refer to the endogenous rhythms that are generated to synchronize physiology and behavior with 24-h environmental cues. These rhythms are regulated by both external cues and molecular clock mechanisms in almost all cells. Disruption of circadian rhythms, which is called circadian disruption, affects many biological processes within the body and results in different long-term diseases, including cancer. Circadian regulatory pathways result in rhythmic epigenetic modifications and the formation of circadian epigenomes. Aberrant epigenetic modifications, such as hypermethylation, due to circadian disruption may be involved in the transformation of normal cells into cancer cells. Several studies have indicated an epigenetic basis for the carcinogenic effects of circadian disruption. In this review, I first discuss some of the circadian genes and regulatory proteins. Then, I summarize the current evidence related to the epigenetic modifications that result in circadian disruption. In addition, I explain the carcinogenic effects of circadian disruption and highlight its potential role in different human cancers using an epigenetic viewpoint. Finally, the importance of chronotherapy in cancer treatment is highlighted.
Collapse
Affiliation(s)
- Adrian Salavaty
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, 61336-3337, Ahvaz, Iran.
| |
Collapse
|
30
|
Xie G, Raufman JP. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia. Cancers (Basel) 2015; 7:1436-46. [PMID: 26264025 PMCID: PMC4586780 DOI: 10.3390/cancers7030847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022] Open
Abstract
For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Guofeng Xie
- Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
31
|
Hardman JA, Haslam IS, Farjo N, Farjo B, Paus R. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle. PLoS One 2015; 10:e0121878. [PMID: 25822259 PMCID: PMC4379003 DOI: 10.1371/journal.pone.0121878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/18/2015] [Indexed: 02/01/2023] Open
Abstract
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Collapse
Affiliation(s)
- Jonathan A. Hardman
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Bio centre, University of Manchester, Manchester, United Kingdom
| | - Iain S. Haslam
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Nilofer Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Bessam Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Ralf Paus
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Muenster, Muenster, Germany
| |
Collapse
|
32
|
Tavano F, Pazienza V, Fontana A, Burbaci FP, Panebianco C, Saracino C, Lombardi L, De Bonis A, di Mola FF, di Sebastiano P, Piepoli A, Vinciguerra M, Fracavilla M, Giuliani F, Rubino R, Andriulli A, Mazzoccoli G. SIRT1 and circadian gene expression in pancreatic ductal adenocarcinoma: Effect of starvation. Chronobiol Int 2015; 32:497-512. [PMID: 25798752 DOI: 10.3109/07420528.2014.1003351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC), the fourth leading cause of cancer-related deaths, is characterized by high aggressiveness and resistance to chemotherapy. Pancreatic carcinogenesis is kept going by derangement of essential cell processes, such as proliferation, apoptosis, metabolism and autophagy, characterized by rhythmic variations with 24-h periodicity driven by the biological clock. We assessed the expression of the circadian genes ARNLT, ARNLT2, CLOCK, PER1, PER2, PER3, CRY1, CRY2 and the starvation-activated histone/protein deacetylase SIRT1 in 34 matched tumor and non-tumor tissue specimens of PC patients, and evaluated in PC derived cell lines if the modulation of SIRT1 expression through starvation could influence the temporal pattern of expression of the circadian genes. We found a significant down-regulation of ARNLT (p = 0.015), CRY1 (p = 0.013), CRY2 (p = 0.001), PER1 (p < 0.0001), PER2 (p < 0.001), PER3 (p = 0.001) and SIRT1 (p = 0.017) in PC specimens. PER3 and CRY2 expression levels were lower in patients with jaundice at diagnosis ( < 0.05). Having adjusted for age, adjuvant therapy and tumor stage, we evidenced that patients with higher PER2 and lower SIRT1 expression levels showed lower mortality (p = 0.028). Levels and temporal patterns of expression of many circadian genes and SIRT1 significantly changed upon serum starvation in vitro, with differences among four different PC cell lines examined (BXPC3, CFPAC, MIA-PaCa-2 and PANC-1). Serum deprivation induced changes of the overall mean level of the wave and amplitude, lengthened or shortened the cycle time and phase-advanced or phase-delayed the rhythmic oscillation depending on the gene and the PC cell line examined. In conclusion, a severe deregulation of expression of SIRT1 and circadian genes was evidenced in the cancer specimens of PC patients, and starvation influenced gene expression in PC cell lines, suggesting that the altered interplay between SIRT1 and the core circadian proteins could represent a crucial player in the process of pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza" , San Giovanni Rotondo (FG) , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin LL, Huang HC, Juan HF. Circadian systems biology in Metazoa. Brief Bioinform 2015; 16:1008-24. [PMID: 25758249 DOI: 10.1093/bib/bbv006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 12/30/2022] Open
Abstract
Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.
Collapse
|
34
|
Heparanase procoagulant activity, factor Xa, and plasminogen activator inhibitor 1 are increased in shift work female nurses. Ann Hematol 2015; 94:1213-9. [DOI: 10.1007/s00277-015-2345-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/17/2015] [Indexed: 10/23/2022]
|
35
|
Palmieri O, Mazzoccoli G, Bossa F, Maglietta R, Palumbo O, Ancona N, Corritore G, Latiano T, Martino G, Rubino R, Biscaglia G, Scimeca D, Carella M, Annese V, Andriulli A, Latiano A. Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol Int 2015; 32:903-916. [PMID: 26172092 DOI: 10.3109/07420528.2015.1050726] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Simultaneous analysis of the transcripts of thousands of genes by cDNA microarrays allows the identification of genetic regulatory mechanisms involved in disease pathophysiology. The circadian clock circuitry controls essential cell processes and the functioning of organ systems, which are characterized by rhythmic variations with 24-hour periodicity. The derangement of these processes is involved in the basic mechanisms of inflammatory, metabolic, degenerative and neoplastic diseases. We evaluated by genome-wide cDNA microarray analysis the transcriptome of endoscopic mucosal biopsies of patients with inflammatory bowel diseases (IBD) focusing on the expression of circadian genes in Crohn's disease (CD) and ulcerative colitis (UC). Twenty-nine IBD patients (15 with CD and 14 with UC) were enrolled and mucosal biopsies were sampled at either inflamed or adjacent non-inflamed areas of the colon. A total of 150 circadian genes involved in pathways controlling crucial cell processes and tissue functions were investigated. In CD specimens 50 genes were differentially expressed, and 21 genes resulted up-regulated when compared to healthy colonic mucosa. In UC specimens 50 genes were differentially expressed, and 27 genes resulted up-regulated when compared to healthy colonic mucosa. Among the core clock genes ARNTL2 and RORA were up-regulated, while CSNK2B, NPAS2, PER1 and PER3 were down-regulated in CD specimens. Conversely, ARNTL2, CRY1, CSNK1E, RORA and TIPIN were up-regulated, while NR1D2 and PER3 were down-regulated in UC. In conclusion, in CD and UC patients there are differences in the expression of circadian genes between normal and diseased intestinal mucosa. The deregulated genes evidenced by transcriptome analysis in the major IBDs may play a crucial role in the pathophysiological mechanisms and may suggest novel therapeutic approaches.
Collapse
Affiliation(s)
- Orazio Palmieri
- a Department of Medical Sciences , Division of Gastroenterology and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xue X, Liu F, Han Y, Li P, Yuan B, Wang X, Chen Y, Kuang Y, Zhi Q, Zhao H. Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer. Biochem Biophys Res Commun 2014; 450:1058-62. [PMID: 24978311 DOI: 10.1016/j.bbrc.2014.06.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 06/22/2014] [Indexed: 02/07/2023]
Abstract
Emerging evidences show that circadian rhythm disorder is an important factor of tumor initiation and development. Neuronal PAS domain protein2 (NPAS2), which is the largest circadian gene, has been proved to be a novel prognostic biomarker in breast cancer and non-Hodgkin's lymphoma. However, the potential functions of NPAS2 in colorectal cancer are still unknown. In our present study, we detected the mRNA expressions of NPAS2 in 108 CRC patients by RT-PCR, and found that NPAS2 expression was significantly down-regulated in tumor tissues than that in NATs. Clinicopathologic analysis revealed that low expression of NPAS2 was associated with the tumor size, TNM stage and tumor distance metastasis in colorectal cancer (p<0.05). Furthermore, we effectively down-regulated NPAS2 mRNA expression by transfecting RNA interfere fragments into DLD-1 cells, and our results in vitro demonstrated that silencing NPAS2 expression could promote cell proliferation, cell invasion and increase the wound healing ability (p<0.05). However, down-regulating NPAS2 expression did not influence the apoptotic rate in DLD-1 cells (p>0.05). In conclusion, our study suggested that NPAS2, functioned as a potential tumor suppressor gene, could serve as a promising target and potential prognostic indicator for colorectal cancer.
Collapse
Affiliation(s)
- Xiaofeng Xue
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Pu Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Bin Yuan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yan Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Hong Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|