1
|
Zhang S, Zhao J, Zhan Y, Li J, Hang J, Tang C, Nong X. Artesunate ameliorates diabetic xerostomia in rats through regulating oral microbiota and metabolic profile in salivary gland based on NF-κB/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156746. [PMID: 40273561 DOI: 10.1016/j.phymed.2025.156746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Artemisia annua. L, as a valuable Chinese medicine, has been applied for millennia in China. Its major active ingredient, artemisinin, has demonstrated diverse pharmacological properties, including anti-inflammatory, antioxidant, and anti-diabetic effects. Recent studies suggest that artesunate (ART), an artemisinin derivative, exhibits promising therapeutic effects on diabetic complications. Nevertheless, the role and underlying mechanisms of ART in the treatment of diabetic xerostomia (DX) remain unclear. AIM This study aimed to elucidate the effects of ART on DX in a type 2 diabetes mellitus (T2DM) rat model, primarily from the perspective of oral microbiota and salivary gland (SG) metabolism, and to further explore potential mechanisms involved. METHODS Various assessments including blood levels, insulin resistance (IR), saliva flow rate, as well as histological analyses through hematoxylin and eosin and Masson staining were performed to verify the reliability of DX model and protective effects of ART on the DX. Untargeted metabolomics and 16S rDNA sequencing were employed to respectively evaluate effects of ART on metabolite changes in SG and oral microbiota in the DX rats. Network pharmacology was employed to predict key pathways and targets with critical roles in ART's therapeutic effect on DX. Additionally, molecular docking and molecular dynamics (MD) simulations were utilized to evaluate interactions between ART and the identified key pathway targets. Surface plasmon resonance (SPR) experiment was performed to verify our computational predictions. Finally, molecular biology experiments were conducted to further validate the identified key pathway targets. RESULTS ART treatment ameliorated the hyperglycemia, IR and hyposalivation, and ameliorated pathological changes and oxidative stress of SGs in the DX rats. Besides, 16S rDNA sequencing suggested that ART alleviated the perturbation of oral microbiota (such as Veillonella, Lactobacillus, Clostridium sensu stricto 1, Escherichia-Shigella, and Dubosiella). Untargeted metabolomics revealed that steroid hormone biosynthesis, taurine and hypotaurine metabolism of SGs in the DX rats were partially corrected by ART treatment. Correlation analysis demonstrated an obvious association between the oral microbiota species and SG metabolites. Network pharmacology analysis identified NF-κB pathway as a critical pathway of ART in treating DX. Meanwhile, molecular docking and MD simulation suggested stable binding of ART to NF-κB/NLRP3 pathway targets, particularly NLRP3. Furthermore, SPR confirmed a stable binding of ART to NLRP3, a key target in the NF-κB/NLRP3 pathway. Oxidative stress indicators involved in NF-κB pathway, including MDA and SOD levels, were significantly reduced after ART intervention. Western blotting and qRT-PCR experiments further revealed that ART inhibited increase of NF-κB/NLRP3 pathway related targets expression, including NF-κB, NLRP3, Caspase1, IL-1β, IL-18, TNF-α, and IL-6 in the SGs of DX rats. CONCLUSION ART exerted beneficial therapeutic effects on DX by modulating oral microbiota dysbiosis and restoring SG's metabolic profiles, and inhibiting activation of NF-κB/NLRP3 pathway, suggesting its potential novel application in DX treatment.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jun Zhao
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Yuxiang Zhan
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jiarui Li
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jiayi Hang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Chan Tang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning 530021, China
| | - Xiaolin Nong
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning 530021, China.
| |
Collapse
|
2
|
Liu X, Cai Y, Zhang Y, Zhang H, Tian S, Gong Y, Song Q, Chen X, Ma X, Wen Y, Chen Y, Zeng J. Artesunate: A potential drug for the prevention and treatment from hepatitis to hepatocellular carcinoma. Pharmacol Res 2024; 210:107526. [PMID: 39617278 DOI: 10.1016/j.phrs.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Liver cancer represents a multifactorial, multistage, and intricately progressive malignancy. Over the past decade, artesunate (ART), initially renowned for its anti-malarial efficacy, has been the focus of over 3000 studies uncovering its diverse pharmacological actions, including anti-inflammatory, immunoregulatory, metabolic regulatory, anti-fibrotic, and anti-cancer properties. This review highlights ART's role in the multistep progression from hepatitis to cancer and its underlying regulatory mechanisms, revealing signal transducer and activator of transcription 3 (STAT3) and ferroptosis (a novel form of programmed cell death) as promising therapeutic targets. ART demonstrates efficacy in inhibiting hepatitis virus infections, modulating inflammation, and facilitating recovery from inflammatory processes. During stages of hepatic fibrosis or cirrhosis, ART reverses fibrotic and cirrhotic changes by suppressing hepatic stellate cell activity, regulating inflammatory pathways, inhibiting hematopoietic stem cell proliferation, and inducing ferroptosis. Additionally, ART hinders hepatocellular carcinoma (HCC) cell proliferation, invasion, and metastasis, induces apoptosis and autophagy, combats drug resistance, and enhances chemosensitivity. Collectively, ART exhibits multi-step actions across multiple targets and signaling pathways, highlighting its potential as a clinical candidate for the prevention and treatment of liver cancer, from hepatitis and hepatic fibrosis to advanced HCC.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yilin Cai
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yuanhao Zhang
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Hetian Zhang
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Sisi Tian
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yuxia Gong
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qinmei Song
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China; Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaotong Chen
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
3
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Geng Q, Xu Y, Huang W, Hu Y, Jin H, Hua H, Kong D. The Potential Mechanism of the Anti-Liver Fibrotic Effect of Curcumin in the Gut-Liver Axis. J Med Food 2024; 27:404-418. [PMID: 38669311 DOI: 10.1089/jmf.2023.k.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
This study aimed to explore the curative effect of curcumin on liver fibrosis and its correlation with the gut-liver axis in animal models. Histological staining was utilized to conduct histological analysis of the liver and intestine. An automatic biochemical analyzer or enzyme-linked immunosorbent assay system was utilized for analyzing the biochemical indexes in mice. Western blotting was employed to examine the level of relevant proteins. Furthermore, 16S rRNA high-throughput sequencing was performed to explore the impact of curcumin on intestinal microorganisms in rats with liver fibrosis. Ultrahigh-performance liquid chromatography with quadrupole-orbitrap mass spectrometry was utilized to analyze the effect of curcumin on rat feces metabolites. Our results showed that curcumin reduced the formation of collagen fibers caused by carbon tetrachloride in a dose-dependent manner. In addition, curcumin was able to restore intestinal permeability in rats with liver fibrosis. By adopting α diversity analysis (Chao 1 index, Shannon index, and Simpson index), we observed that both the diversity and the abundance of intestinal flora in rats with liver fibrosis were increased. The principal component analysis diagram demonstrated that curcumin could enhance the abundance and diversity of intestinal flora, and also restore the composition of model rat flora, which was similar to that in normal rats, thereby correcting the imbalance of flora in rats with liver fibrosis. In addition, curcumin regulated feces metabolites and their signaling pathways, including glycerophospholipid metabolism, pantothenate and CoA biosynthesis. Our findings suggest that curcumin exhibits antiliver fibrosis effects, and its antiliver fibrosis effects might correlate with gut-liver axis.
Collapse
Affiliation(s)
- Qiao Geng
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yanyan Xu
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Weifang Huang
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yang Hu
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Heiying Jin
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Chinese Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangyin, Jiangsu Province, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Li X, Xu X, Tao S, Su Y, Wen L, Wang D, Liu J, Feng Q. Gut microbes combined with metabolomics reveal the protective effects of Qijia Rougan decoction against CCl 4-induced hepatic fibrosis. Front Pharmacol 2024; 15:1347120. [PMID: 38606180 PMCID: PMC11007057 DOI: 10.3389/fphar.2024.1347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Li X, Wang F, Gao Z, Huang W, Zhang X, Liu F, Yi H, Guan J, Wu X, Xu H, Yin S. Melatonin attenuates chronic intermittent hypoxia-induced intestinal barrier dysfunction in mice. Microbiol Res 2023; 276:127480. [PMID: 37659335 DOI: 10.1016/j.micres.2023.127480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND AND PURPOSE Chronic intermittent hypoxia (CIH) triggers subclinical intestinal barrier disruption prior to systemic low-grade inflammation. Increasing evidence suggests therapeutic effects of melatonin on systemic inflammation and gut microbiota remodelling. However, whether and how melatonin alleviates CIH-induced intestinal barrier dysfunction remains unclear. EXPERIMENTAL APPROACH C57BL/6 J mice and Caco-2 cell line were treated. We evaluated gut barrier function spectrophotometrically using fluorescein isothiocyanate (FITC)-labelled dextran. Immunohistochemical and immunofluorescent staining were used to detect morphological changes in the mechanical barrier. Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) revealed the expression of tight junctions, signal transducer and activator of transcription 3 (STAT3) levels. 16 S rRNA analysis of the colonic contents microflora. Flow cytometry was used to detect cytokines and Th17 cells with and without melatonin supplementation. KEY RESULTS We found that CIH could induce colonic mucosal injury, including reduction in the number of goblet cells and decrease the expression of intestinal tight junction proteins. CIH could decrease the abundance of the beneficial genera Clostridium, Akkermansia, and Bacteroides, while increasing the abundance of the pathogenic genera Desulfovibrio and Bifidobacterium. Finally, CIH facilitated Th17 differentiation via the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in vitro and elevated the circulating pro-inflammatory cytokine in vivo. Melatonin supplementation ameliorated CIH-induced intestinal mucosal injury, gut microbiota dysbiosis, enteric Th17 polarization, and systemic low-grade inflammation reactions mentioned-above. CONCLUSION AND IMPLICATIONS Melatonin attenuated CIH-induced intestinal barrier dysfunction by regulating gut flora dysbiosis, mucosal epithelium integrity, and Th17 polarization via STAT3 signalling.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Fan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Zhenfei Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Weijun Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Xiaoman Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Feng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Hongliang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China.
| | - Xiaolin Wu
- Central Laboratory of Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Caobao Road 8, Shanghai 200235, China.
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China.
| | - Shankai Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| |
Collapse
|
7
|
Chi X, Cheng DY, Sun X, Liu SA, Wang RB, Chen Q, Xing HC. Efficacy of Biejiajian Pill on Intestinal Microbiota in Patients with Hepatitis B Cirrhosis/Liver Fibrosis: A Randomized Double-Blind Controlled Trial. Chin J Integr Med 2023; 29:771-781. [PMID: 37222832 DOI: 10.1007/s11655-023-3542-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To analyze the efficacy of Biejiajian Pill (BJJP) on intestinal microbiota in patients with hepatitis B cirrhosis/liver fibrosis, and explore its relationship with liver fibrosis. METHODS This was a prospective, randomized double-blind controlled trial. Using the stratified block randomization method, 35 patients with hepatitis B liver cirrhosis/liver fibrosis were randomly assigned (1:1) to receive entecavir (0.5 mg/d) combined with BJJP (3 g/time, 3 times a day) or placebo (simulator as control, SC group, simulator 3 g/time, 3 times a day) for 48 weeks. Blood and stool samples were collected from patients at baseline and week 48 of treatment, respectively. Liver and renal functions as well as hematological indices were detected. Fecal samples were analyzed by 16S rDNA V3-V4 high-throughput sequencing, and intestinal microbiota changes in both groups before and after treatment were compared, and their correlations with liver fibrosis were analyzed. RESULTS Compared with the SC group, there was no significant difference in liver function, renal function and hematology indices in the BJJP group, however, the improvement rate of liver fibrosis was higher in the BJJP group (94.4% vs. 64.7%, P=0.041). Principal coordinate analysis (PCoA) based on weighted Unifrac distance showed significant differences in intestinal microbiota community diversity before and after BJJP treatment (P<0.01 and P=0.003), respectively. After 48 weeks' treatment, the abundance levels of beneficial bacteria (Bifidobacteria, Lactobacillus, Faecalibacterium and Blautia) increased, whereas the abundance levels of potential pathogenic bacteria, including Escherichia coli, Bacteroides, Ruminococcus, Parabacteroides and Prevotella decreased, among which Ruminococcus and Parabacteroides were significantly positively correlated with degree of liver fibrosis (r=0.34, P=0.04; r=0.38, P=0.02), respectively. The microbiota in the SC group did not change significantly throughout the whole process of treatment. CONCLUSION BJJP had a certain regulatory effect on intestinal microbiota of patients with hepatitis B cirrhosis/liver fibrosis (ChiCTR1800016801).
Collapse
Affiliation(s)
- Xin Chi
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Dan-Ying Cheng
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing, 100015, China.
- Peking University Ditan Teaching Hospital, Beijing, 100015, China.
| | - Xiu Sun
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Shun-Ai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Rong-Bing Wang
- National Center for Infectious Diseases, Beijing, 100015, China
- Central of Integrated Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qin Chen
- China Traditional Chinese Medicine Holdings Co. Limited, Guangzhou, 528303, China
| | - Hui-Chun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
- Peking University Ditan Teaching Hospital, Beijing, 100015, China
| |
Collapse
|
8
|
Qu R, Zhang W, Ma Z, Ma Q, Chen M, Lan T, Zhou L, Hu X. Glaucocalyxin A attenuates carbon tetrachloride-induced liver fibrosis and improves the associated gut microbiota imbalance. Chem Biol Drug Des 2023; 102:51-64. [PMID: 37060267 DOI: 10.1111/cbdd.14241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Liver fibrosis refers to the pathophysiological process of dysplasia on the connective tissue of the liver, caused by a variety of pathogenic factors. Glaucocalyxin A (GLA) has anticoagulation, antibacterial, anti-inflammation, antioxidant and antitumour properties. However, whether GLA ameliorates liver fibrosis or not is still unclear. In this study, a liver fibrosis model was established using male C57BL/6 mice. The mice were treated with 5 and 10 mg/kg GLA via intraperitoneal injection, respectively. The ones that were treated with 5 mg/kg OCA were used as the positive control group. The levels of liver function, liver fibrosis biomarkers and liver pathological changes were then evaluated. We also explored the effects of GLA on inflammatory response and liver cell apoptosis. In addition, we investigated the gut microbiota mechanisms of GLA on liver fibrosis. The results from this study that GLA could significantly decrease the level of liver function (AST, ALT, TBA) and liver fibrosis (HA, LN, PC-III, IV-C). On the other hand, a significant decrease in inflammation levels (IL-1β, TNF-α) were also noted. GLA also improves CCl4-induced pathological liver injuries and collagen deposition, in addition to decreasing apoptosis levels. In addition, an increase in the ratio of Bacteroidetes and Firmicutes in liver disease was also observed. GLA also improves the gut microbiota. In conclusion, GLA attenuates CCl4-induced liver fibrosis and improves the associated gut microbiota imbalance.
Collapse
Affiliation(s)
- Ru Qu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wang Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhuang Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianwen Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingju Chen
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian Lan
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Zhou
- School of Life Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuguang Hu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
9
|
Network Pharmacology-Based Exploration on the Intervention of Qinghao Biejia Decoction on the Inflammation-Carcinoma Transformation Process of Chronic Liver Disease via MAPK and PI3k/AKT Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9202128. [PMID: 36277879 PMCID: PMC9586778 DOI: 10.1155/2022/9202128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
Chronic liver disease(CLD) is a slow-developing and long-term disease that can cause serious damage to the liver. Thus far, it has been associated with viral hepatitis, non-alcoholic fatty liver disease(NAFLD), alcoholic liver disease(ALD), hepatic fibrosis(HF), liver cirrhosis (LC), and liver cancer. Qinghao Biejia Decoction (QBD) is a classic ancient Chinese herbal prescription with strong immune-enhancing, anti-inflammatory, and anti-tumor effects. In this study, we used a network pharmacology approach to investigate the molecular mechanisms of QBD in the inflammation-carcinoma transformation process of chronic liver disease. Two key drug targets, MAPK1 and PIK3CA, were screened using network pharmacology and molecular docking techniques, revealing dihydroartemisinin, artesunate, 12-O-Nicotinoylisolineolone, caffeic acid, and diincarvilone A as active ingredients involved in QBD mechanisms. The main signaling pathways involved were the PI3K-AKT signaling pathway and MAPK signaling pathway. In summary, our results indicated that QBD affects the inflammatory transformation of chronic liver disease through MAPK1 and PIK3CA and signaling pathways MAPK and PI3K/AKT. These data provide research direction for investigating the mechanisms underlying the inflammation-carcinoma transformation process in QBD for chronic liver disease.
Collapse
|
10
|
Progress in the treatment of drug-induced liver injury with natural products. Pharmacol Res 2022; 183:106361. [PMID: 35882295 DOI: 10.1016/j.phrs.2022.106361] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.
Collapse
|
11
|
Li Z, Dong J, Wang M, Yan J, Hu Y, Liu Y, Pan Y, Li H. Resveratrol ameliorates liver fibrosis induced by nonpathogenic Staphylococcus in BALB/c mice through inhibiting its growth. Mol Med 2022; 28:52. [PMID: 35508992 PMCID: PMC9066969 DOI: 10.1186/s10020-022-00463-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The altered gut microbiota is implicated in the pathogenesis of liver fibrosis. Resveratrol is a candidate for the treatment of liver fibrosis, which could ameliorate the dysregulation of gut microbiota in mice. This study aimed to clarify the role and mechanism of resveratrol in gut microbiota during liver fibrosis. METHODS A mouse model of liver fibrosis induced by CCl4 was conducted to assess the effect of resveratrol on liver fibrosis. The changes of gut microbiota in liver fibrotic mice after resveratrol intervention were assessed using 16S ribosomal RNA sequencing. The mechanism of the gut microbiota dysregulation in liver fibrosis was investigated by Sirius red staining, immunohistochemical assay, bacterial translocation (BT), EUB338 fluorescence in situ hybridization, immunofluorescence, trans-epithelial electrical resistance analysis and paracellular permeability analysis. RESULTS Resveratrol relieved CCl4-induced liver fibrosis. Besides, resveratrol restrained the gut microbiota Staphylococcus_lentus and Staphylococcus_xylosus in the liver fibrotic mice, and the Staphylococcus_xylosus and Staphylococcus_lentus facilitated the occurrence of BT and the cultures of them enhanced the permeability of intestine. The in vivo assay corroborated that the excessive Staphylococcus_xylosus and Staphylococcus_lentus canceled the protecting effect of resveratrol on liver fibrosis, and Staphylococcus_xylosus or Staphylococcus_lentus alone had a limited impact on the liver injury of normal mice. CONCLUSION Resveratrol ameliorated liver fibrosis by restraining the growth of Staphylococcus_xylosus and Staphylococcus_lentus.
Collapse
Affiliation(s)
- Zhiqin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Jianxia Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Meng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Jingya Yan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Yushu Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Yang Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Yajie Pan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Hua Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
12
|
Koui Y, Himeno M, Mori Y, Nakano Y, Saijou E, Tanimizu N, Kamiya Y, Anzai H, Maeda N, Wang L, Yamada T, Sakai Y, Nakato R, Miyajima A, Kido T. Development of human iPSC-derived quiescent hepatic stellate cell-like cells for drug discovery and in vitro disease modeling. Stem Cell Reports 2021; 16:3050-3063. [PMID: 34861166 PMCID: PMC8693663 DOI: 10.1016/j.stemcr.2021.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic stellate cells (HSCs) play a central role in the progression of liver fibrosis by producing extracellular matrices. The development of drugs to suppress liver fibrosis has been hampered by the lack of human quiescent HSCs (qHSCs) and an appropriate in vitro model that faithfully recapitulates HSC activation. In the present study, we developed a culture system to generate qHSC-like cells from human-induced pluripotent stem cells (hiPSCs) that can be converted into activated HSCs in culture. To monitor the activation process, a red fluorescent protein (RFP) gene was inserted in hiPSCs downstream of the activation marker gene actin alpha 2 smooth muscle (ACTA2). Using qHSC-like cells derived from RFP reporter iPSCs, we screened a repurposing chemical library and identified therapeutic candidates that prevent liver fibrosis. Hence, hiPSC-derived qHSC-like cells will be a useful tool to study the mechanism of HSC activation and to identify therapeutic agents.
Collapse
Affiliation(s)
- Yuta Koui
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Misao Himeno
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yusuke Mori
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yasuhiro Nakano
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Eiko Saijou
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yoshiko Kamiya
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroko Anzai
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Natsuki Maeda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Luyao Wang
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadanori Yamada
- Bio Science & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Taketomo Kido
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
13
|
Differential Effect of Light and Dark Period Sleep Fragmentation on Composition of Gut Microbiome and Inflammation in Mice. Life (Basel) 2021; 11:life11121283. [PMID: 34947814 PMCID: PMC8709399 DOI: 10.3390/life11121283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bi-directional interactions amongst the gut microbiota, immune system, and brain function are thought to be critical mediators of health and disease. The role sleep plays in mediating these interactions is not known. We assessed the effects of sleep fragmentation (SF) on the microbiota–gut–brain axis. Male C57BL/6NCrl mice (4 to 5 per cage, fed standard lab chow) experienced SF via mechanical stimulation at 2 min intervals during the light (SF) and dark (DD, dark disturbances) periods. Home cage (HC) controls were undisturbed. After 10 days, fecal samples were collected at light onset, midday, light offset, and midnight. Samples were also collected after 10 days without SF. Subsequently, the mice were randomized across groups and allowed 20 additional days of recovery followed by 10 days of SF or DD. To assess effects on the microbiota, 16S rRNA sequencing was used, and mesenteric lymph nodes (MLNs) and cortex and medial prefrontal cortex were analyzed using cytokine arrays. SF and DD produced significant alterations in the microbiota compared to HC, and DD had greater impact than SF on some organisms. SF produced marked suppression in MLNs of chemokines that regulate inflammation (CCL3, CCL4 and their receptor CCR5) and maintain the immune mucosal barrier (Cxcl13) at the same time that cortical cytokines (IL-33) indicated neuroinflammation. DD effects on immune responses were similar to HC. These data suggest that SF alters the microbiome and suppresses mucosal immunity at the same time that mediators of brain inflammation are upregulated. The translational implications for potential application to clinical care are compelling.
Collapse
|
14
|
Kronborg TM, Ytting H, Hobolth L, Møller S, Kimer N. Novel Anti-inflammatory Treatments in Cirrhosis. A Literature-Based Study. Front Med (Lausanne) 2021; 8:718896. [PMID: 34631742 PMCID: PMC8495012 DOI: 10.3389/fmed.2021.718896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cirrhosis is a disease characterised by multiple complications and a poor prognosis. The prevalence is increasing worldwide. Chronic inflammation is ongoing in liver cirrhosis. No cure for the inflammation is available, and the current treatment of liver cirrhosis is only symptomatic. However, several different medical agents have been suggested as potential healing drugs. The majority are tested in rodents, but few human trials are effectuated. This review focuses on medical agents described in the literature with supposed alleviating and curing effects on liver cirrhosis. Twelve anti-inflammatory, five antioxidative, and three drugs with effects on gut microflora and the LPS pathway were found. Two drugs not categorised by the three former categories were found in addition. In total, 42 rodent studies and seven human trials were found. Promising effects of celecoxib, aspirin, curcumin, kahweol, pentoxifylline, diosmin, statins, emricasan, and silymarin were found in cirrhotic rodent models. Few indices of effects of etanercept, glycyrrhizin arginine salt, and mitoquinone were found. Faecal microbiota transplantation is in increasing searchlight with a supposed potential to alleviate cirrhosis. However, human trials are in demand to verify the findings in this review.
Collapse
Affiliation(s)
- Thit Mynster Kronborg
- Gastro Unit, Medical Division, Amager-Hvidovre University Hospital, Hvidovre, Denmark
| | - Henriette Ytting
- Gastro Unit, Medical Division, Amager-Hvidovre University Hospital, Hvidovre, Denmark
| | - Lise Hobolth
- Gastro Unit, Medical Division, Amager-Hvidovre University Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine 260, Center for Functional and Diagnostic Imaging and Research, Amager-Hvidovre Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, Amager-Hvidovre University Hospital, Hvidovre, Denmark.,Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Wang T, Huang S, Wu C, Wang N, Zhang R, Wang M, Mao D. Intestinal Microbiota and Liver Diseases: Insights into Therapeutic Use of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6682581. [PMID: 33976705 PMCID: PMC8087485 DOI: 10.1155/2021/6682581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Liver disease is a leading cause of global morbidity and mortality, for which inflammation, alcohol use, lipid metabolic disorders, disturbance to bile acid metabolism, and endotoxins are common risk factors. Traditional Chinese Medicine (TCM) with its "holistic approach" is widely used throughout the world as a complementary, alternative therapy, due to its clinical efficacy and reduced side effects compared with conventional medicines. However, due to a lack of reliable scientific evidence, the role of TCM in the prevention and treatment of liver disease remains unclear. Over recent years, with the rapid development of high-throughput sequencing, 16S rRNA detection, and bioinformatics methodology, it has been gradually recognized that the regulation of intestinal microbiota by TCM can play a substantial role in the treatment of liver disease. To better understand how TCM regulates the intestinal microbiota and suppresses liver disease, we have reviewed and analyzed the results of existing studies and summarized the relationship and risk factors between intestinal microbiota and liver disease. The present review summarizes the related mechanisms by which TCM affects the composition and metabolites of the intestinal microbiome.
Collapse
Affiliation(s)
- Tingshuai Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
- School of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan, China
| | - Shaodong Huang
- Department of Gastroenterology, Guangxi Orthopedics and Traumatology Hospital, Nanning 530023, Guangxi, China
| | - Cong Wu
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Rongzhen Zhang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Minggang Wang
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| |
Collapse
|
16
|
Wang R, Lin J, Wang J, Li C. [Effects of artesunate on eosinophil apoptosis and expressions of Fas and Bcl-2 proteins in asthmatic mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:93-98. [PMID: 32376556 DOI: 10.12122/j.issn.1673-4254.2020.01.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To observe the effects of artesunate on eosinophil (EOS) apoptosis and Fas and Bcl-2 protein expressions in asthmatic mice. METHODS Thirty female BALB/c mice aged 6-8 weeks were randomly divided into control group, asthma group and artesunate group. Except for those in the control group, all the mice were sensitized with aerosolized ovalbumin to establish mouse models of asthma. In artesunate group, the rats were intraperitoneally injected with artesunate 1 h before ovalbumin inhalation from the 21st day of modeling. The lung tissues were harvested for staining 24 h after the last challenge. Flow cytometry was used to analyze the percentage and apoptosis rate of EOS in the alveolar lavage fluid (BALF). The apoptosis of EOS in the lung tissue was detected with TUNEL method, and Fas and Bcl-2 protein expressions were detected using immunohistochemistry. RESULTS Compared with those in asthma group, the artesunate-treated mice had significantly decreased percentage of EOS in the BALF (P < 0.05) with increased apoptosis rate of EOS in the BALF and the lung tissue (P < 0.05). The Fas-positive area and IOD of Fas protein in the lung tissue increased (P < 0.05) while the Bcl-2-positive area and IOD of Bcl-2 protein decreased significantly in artesunate-treated mice as compared with the asthmatic mice (P < 0.05). CONCLUSIONS Artesunate regulates the protein expressions of Fas and Bcl-2 to reduce EOS infiltration in the lung tissue and promote EOS apoptosis in asthmatic mice.
Collapse
Affiliation(s)
- Ruiyin Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China.,Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiangtao Lin
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jingru Wang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chunxiao Li
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
17
|
Li C, Chen Y, Yuan X, He L, Li X, Huang S, Hou S, Liang J. Vitexin ameliorates chronic stress plub high fat diet-induced nonalcoholic fatty liver disease by inhibiting inflammation. Eur J Pharmacol 2020; 882:173264. [PMID: 32544504 DOI: 10.1016/j.ejphar.2020.173264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Evidences showed that chronic stress (CS) can aggravate the situation of nonalcoholic fatty liver disease (NAFLD). Vitexin is one of the major components in hawthorn, which is widely used to reduce blood lipid. This study was aimed to explore the therapeutic effects and potential mechanisms of vitexin on chronic stress mice with high-fat diet (CSHFD). The results showed that 5-week vitexin administration (40 mg/kg, i.g.) could obviously reduce hepatic fat deposition, alleviate lipid metabolism, and inhibit liver inflammation in CSHFD mice. In addition, vitexin significantly reduced hepatic macrophage infiltration, obviously down-regulated the mRNA and protein expressions of hepatic SREBP-1c, FAS, ACC. Moreover, we also found that vitexin treatment could significantly inhibit the expressions of TLR4/NF-κB signaling in CSHFD mice. This results suggested that vitexin could ameliorate chronic stress combined with high-fat diet induced NAFLD, and its mechanisms is closely related to inhibit TLR4/NF-κB signaling and reduce fatty acid synthesis proteins.
Collapse
Affiliation(s)
- Chujie Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangzhou, 510006, PR China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xin Yuan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangzhou, 510006, PR China
| | - Lian He
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, Guangdong, PR China
| | - Xiaojun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Song Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangzhou, 510006, PR China
| | - Shaozhen Hou
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangzhou, 510006, PR China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangzhou, 510006, PR China.
| |
Collapse
|
18
|
Liu Y, Yang Y, Lei Y, Yang L, Zhang X, Yuan J, Lei Z. Effects of dihydroartemisinin on the gut microbiome of mice. Mol Med Rep 2020; 22:707-714. [PMID: 32468008 PMCID: PMC7339414 DOI: 10.3892/mmr.2020.11165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which has been found to exhibit a broad range of biological activities, excluding antimalarial effects; however its effects on the gut microbiota remain poorly understood. The present study aimed to investigate the effects of DHA on the gut microbiome in mice and to determine its potential biological and pharmaceutical activities through its alteration of the gut microbiota. Serum glucose, triglyceride (TG), total cholesterol, lipopolysaccharide, high density lipoprotein‑cholesterol, low density lipoprotein‑cholesterol, alanine aminotransferase and aspartate aminotransferase levels in mice treated with DHA were analyzed using the corresponding detection kits. In addition, hematoxylin and eosin staining was performed to determine the pathological effects of DHA on the liver, kidney and intestinal tissues of mice, and the effects of DHA on the gut microbiome were analyzed using 16S ribosomal (r)DNA gene analysis. The results demonstrated that the TG serum levels of mice treated with DHA were significantly decreased compared with the control group. Furthermore, 16S rDNA gene analysis demonstrated that the bacterial diversity of mice treated with DHA was enriched compared with the control group. The DHA group exhibited increased numbers of Firmicutes and Saccharibacteria, and decreased Deferribacteres and Actinobacteria compared with the control group at the phylum level. Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis also revealed that the signaling pathways associated with 'Energy metabolism' and 'Nucleotide metabolism' were upregulated, whereas the signaling pathways associated with 'Infectious diseases and 'Neurodegenerative diseases' were downregulated in the DHA group compared with the control group. In conclusion, the findings of the present study indicated that DHA may significantly decrease the serum TG levels and alter the gut microbiota, which suggested its potential to be used for the treatment of hyperlipidemia, inflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanyan Liu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuting Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Lanxiang Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Xueying Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Jian Yuan
- Department of Pathology and Guangdong Key Laboratory for Bioactive Drugs Research, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
19
|
Chang CW, Lee HC, Li LH, Chiang Chiau JS, Wang TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, Tsai TH, Chen YJ. Fecal Microbiota Transplantation Prevents Intestinal Injury, Upregulation of Toll-Like Receptors, and 5-Fluorouracil/Oxaliplatin-Induced Toxicity in Colorectal Cancer. Int J Mol Sci 2020; 21:386. [PMID: 31936237 PMCID: PMC7013718 DOI: 10.3390/ijms21020386] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin), a 5-fluorouracil (5-FU)-based chemotherapy regimen, is one of most common therapeutic regimens for colorectal cancer. However, intestinal mucositis is a common adverse effect for which no effective preventive strategies exist. Moreover, the efficacy and the safety of fecal microbiota transplants (FMT) in cancer patients treated with anti-neoplastic agents are still scant. We investigated the effect of FMT on FOLFOX-induced mucosal injury. BALB/c mice implanted with syngeneic CT26 colorectal adenocarcinoma cells were orally administered FMT daily during and two days after five-day injection of FOLFOX regimen for seven days. Administration of FOLFOX significantly induced marked levels of diarrhea and intestinal injury. FMT reduced the severity of diarrhea and intestinal mucositis. Additionally, the number of goblet cells and zonula occludens-1 decreased, while apoptotic and NF-κB-positive cells increased following FOLFOX treatment. The expression of toll-like receptors (TLRs), MyD88, and serum IL-6 were upregulated following FOLFOX treatment. These responses were attenuated following FMT. The disrupted fecal gut microbiota composition was also restored by FMT after FOLFOX treatment. Importantly, FMT did not cause bacteremia and safely alleviated FOLFOX-induced intestinal mucositis in colorectal cancer-bearing mice. The putative mechanism may involve the gut microbiota TLR-MyD88-NF-κB signaling pathway in mice with implanted colorectal carcinoma cells.
Collapse
Affiliation(s)
- Ching-Wei Chang
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan; (T.-E.W.); (M.-J.C.); (H.-Y.W.); (S.-C.S.)
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25173, Taiwan; (H.-C.L.); (L.-H.L.); (J.-S.C.C.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan
| | - Hung-Chang Lee
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25173, Taiwan; (H.-C.L.); (L.-H.L.); (J.-S.C.C.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan
- MacKay Children’s Hospital, Taipei 10449, Taiwan
| | - Li-Hui Li
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25173, Taiwan; (H.-C.L.); (L.-H.L.); (J.-S.C.C.)
| | - Jen-Shiu Chiang Chiau
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25173, Taiwan; (H.-C.L.); (L.-H.L.); (J.-S.C.C.)
| | - Tsang-En Wang
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan; (T.-E.W.); (M.-J.C.); (H.-Y.W.); (S.-C.S.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan
| | - Wei-Hung Chuang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Ming-Jen Chen
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan; (T.-E.W.); (M.-J.C.); (H.-Y.W.); (S.-C.S.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan
| | - Horng-Yuan Wang
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan; (T.-E.W.); (M.-J.C.); (H.-Y.W.); (S.-C.S.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan
| | - Shou-Chuan Shih
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan; (T.-E.W.); (M.-J.C.); (H.-Y.W.); (S.-C.S.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan
| | - Chia-Yuan Liu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan; (T.-E.W.); (M.-J.C.); (H.-Y.W.); (S.-C.S.)
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25173, Taiwan; (H.-C.L.); (L.-H.L.); (J.-S.C.C.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Chemical Engineering, National United University, Miaoli 36063, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 25173, Taiwan; (H.-C.L.); (L.-H.L.); (J.-S.C.C.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
20
|
Wang PF, Yao DH, Hu YY, Li Y. Vitamin D Improves Intestinal Barrier Function in Cirrhosis Rats by Upregulating Heme Oxygenase-1 Expression. Biomol Ther (Seoul) 2019; 27:222-230. [PMID: 30173501 PMCID: PMC6430230 DOI: 10.4062/biomolther.2018.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Intestinal barrier dysfunction always accompanies cirrhosis in patients with advanced liver disease and is an important contributor facilitating bacterial translocation (BT), which has been involved in the pathogenesis of cirrhosis and its complications. Several studies have demonstrated the protective effect of Vitamin D on intestinal barrier function. However, severe cholestasis leads to vitamin D depletion. This study was designed to test whether vitamin D therapy improves intestinal dysfunction in cirrhosis. Rats were subcutaneously injected with 50% sterile CCl4 (a mixture of pure CCl4 and olive oil, 0.3 mL/100 g) twice a week for 6 weeks. Next, 1,25(OH)2D3 (0.5 µg/100 g) and the vehicle were administered simultaneously with CCl4 to compare the extent of intestinal histologic damage, tight junction protein expression, intestinal barrier function, BT, intestinal proliferation, apoptosis, and enterocyte turnover. Intestinal heme oxygenase-1 (HO-1) expression and oxidative stress were also assessed. We found that vitamin D could maintain intestinal epithelial proliferation and turnover, inhibit intestinal epithelial apoptosis, alleviate structural damage, and prevent BT and intestinal barrier dysfunction. These were achieved partly through restoration of HO-1 and inhibition of oxidative stress. Taken together, our results suggest that vitamin D ameliorated intestinal epithelial turnover and improved the integrity and function of intestinal barrier in CCl4-induced liver cirrhotic rats. HO-1 signaling activation was involved in these above beneficial effects.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Dan-Hua Yao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yue-Yu Hu
- Department of Neurology, The Fourth Affiliated Hospital of Tongji University, Shanghai 200081, China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
21
|
Maternal dyslipidaemic diet induces sex-specific alterations in intestinal function and lipid metabolism in rat offspring. Br J Nutr 2019; 121:721-734. [DOI: 10.1017/s0007114519000011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThis study investigated the effects of a maternal dyslipidaemic (DLP) diet on lipid metabolism, microbial counts in faeces and hepatic and intestinal morphology in rat offspring with respect to sex during different phases of life. Wistar rats (dams) were fed a control (CTL) or DLP during gestation and lactation. After weaning, CTL and DLP offspring were fed a standard diet. The effects of a maternal DLP on body composition, biochemical parameters, faecal microbiota and intestinal and hepatic histomorphometric characteristics in rat offspring were evaluated at 30 and 90 d of age. The DLP diet during gestation and lactation caused lower birth weight and a greater weight gain percentage at the end of the 90-d period in both male and female offspring. Female pups from DLP dams had higher liver fat levels compared with CTL (P≤0·001) at 90 d of age. Males from DLP dams had greater visceral fat weight and lower Lactobacillus spp. faecal counts at 90 d of age (P≤0·001) as well as lower faecal fat excretion (P≤0·05) and Bacteroides spp. faecal counts (P≤0·001) at 30 d of age when compared with pups from CTL dams. However, both dams and DLP pups showed damage to intestinal villi. A maternal DLP alters intestinal function and lipid metabolism in a sex-specific manner and is a potential predisposing factor for health complications in offspring from the juvenile period to the adult period.
Collapse
|
22
|
Wang XQ, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Gut microbiota as important modulator of metabolism in health and disease. RSC Adv 2018; 8:42380-42389. [PMID: 35558413 PMCID: PMC9092240 DOI: 10.1039/c8ra08094a] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract colonizes a large number of microbial microflora, forms a host-microbiota co-metabolism structure with the host to participate in various metabolic processes in the human body, and plays a major role in the host immune response. In addition, the dysbiosis of intestinal microbial homeostasis is closely related to many diseases. Thus, an in-depth understanding of the relationship between them is of importance for disease pathogenesis, prevention and treatment. The combined use of metagenomics, transcriptomics, proteomics and metabolomics techniques for the analysis of gut microbiota can reveal the relationship between microbiota and the host in many ways, which has become a hot topic of analysis in recent years. This review describes the mechanism of co-metabolites in host health, including short-chain fatty acids (SCFA) and bile acid metabolism. The metabolic role of gut microbiota in obesity, liver diseases, gastrointestinal diseases and other diseases is also summarized, and the research methods for multi-omics combined application on gut microbiota are summarized. According to the studies of the interaction mechanism between gut microbiota and the host, we have a better understanding of the use of intestinal microflora in the treatment of related diseases. It is hoped that the gut microbiota can be utilized to maintain human health, providing a reference for future research.
Collapse
Affiliation(s)
- Xiang-Qian Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Jian-Hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| |
Collapse
|
23
|
Meng X, Li S, Li Y, Gan RY, Li HB. Gut Microbiota's Relationship with Liver Disease and Role in Hepatoprotection by Dietary Natural Products and Probiotics. Nutrients 2018; 10:E1457. [PMID: 30297615 PMCID: PMC6213031 DOI: 10.3390/nu10101457] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
A variety of dietary natural products have shown hepatoprotective effects. Increasing evidence has also demonstrated that gut microorganisms play an important role in the hepatoprotection contributed by natural products. Gut dysbiosis could increase permeability of the gut barrier, resulting in translocated bacteria and leaked gut-derived products, which can reach the liver through the portal vein and might lead to increased oxidative stress and inflammation, thereby threatening liver health. Targeting gut microbiota modulation represents a promising strategy for hepatoprotection. Many natural products could protect the liver from various injuries or mitigate hepatic disorders by reverting gut dysbiosis, improving intestinal permeability, altering the primary bile acid, and inhibiting hepatic fatty acid accumulation. The mechanisms underlying their beneficial effects also include reducing oxidative stress, suppressing inflammation, attenuating fibrosis, and decreasing apoptosis. This review discusses the hepatoprotective effects of dietary natural products via modulating the gut microbiota, mainly focusing on the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Tang X, Wei R, Deng A, Lei T. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice. Nutrients 2017; 9:nu9091000. [PMID: 28891983 PMCID: PMC5622760 DOI: 10.3390/nu9091000] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke (Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight) by gavage once daily. Up to 40% alcohol (12 mL/kg body weight) was administered orally 1 h after artichoke treatment. All mice were fed for 10 consecutive days. Results showed that artichoke extract significantly prevented elevated levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol, and malondialdehyde. Meanwhile, the decreased levels of superoxide dismutase and glutathione were elevated by artichoke administration. Histopathological examination showed that artichoke attenuated degeneration, inflammatory infiltration and necrosis of hepatocytes. Immunohistochemical analysis revealed that expression levels of toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB) in liver tissues were significantly suppressed by artichoke treatment. Results obtained demonstrated that artichoke extract exhibited significant preventive protective effect against acute alcohol-induced liver injury. This finding is mainly attributed to its ability to attenuate oxidative stress and suppress the TLR4/NF-κB inflammatory pathway. To the best of our knowledge, the underlying mechanisms of artichoke on acute ALD have been rarely reported.
Collapse
Affiliation(s)
- Xuchong Tang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ruofan Wei
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Aihua Deng
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China.
| | - Tingping Lei
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
25
|
Zhang H, Ta N, Chen P, Wang H. Erchen Decoction and Linguizhugan Decoction Ameliorate Hepatic Insulin Resistance by Inhibiting IRS-1Ser307 Phosphorylation In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1589871. [PMID: 28630632 PMCID: PMC5467344 DOI: 10.1155/2017/1589871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/06/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Erchen decoction (ECD) and Linguizhugan decoction (LGZGD), both are Chinese herbal formula, have been used clinically for the treatment of nonalcoholic fatty liver disease (NAFLD). However, their therapeutic mechanisms are still unclear. Because insulin resistance (IR) is a key etiological factor in the pathology of high-fat diet- (HFD-) induced NAFLD, in this study, the protective effects of ECD and LGZGD on HFD-induced insulin resistance in rats were evaluated and their mechanisms were investigated by OGTT and Western blot. The results showed that treatment with ECD and LGZGD significantly improved insulin resistance and liver damage in rats, evidenced by supported serum aminotransferase levels and the histopathological examination. ECD and LGZGD also showed significant protective effects against HFD-induced hyperlipidemia and the inhibition of the hepatocyte proliferation by palmitate. Furthermore, supplementation of ECD and LGZGD decreased TNF-α, NF-κB, and IRS-1Ser307 phosphorylation expressions in vivo and in vitro. These results indicated that ECD and LGZGD have protective effects against HFD-induced liver IR and their underlying mechanisms involve the TNF-α and insulin pathway. These findings would be beneficial for understanding of the therapeutic effects of ECD and LGZGD in treatment of NAFLD.
Collapse
Affiliation(s)
- Huicun Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Na Ta
- China National Health Development Research Center, Beijing 100019, China
| | - Pengmin Chen
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
26
|
Wu YB, Zhang L, Li WT, Yang Y, Zhao JM. Artesunate restores spatial learning of rats with hepatic encephalopathy by inhibiting ammonia-induced oxidative damage in neurons and dysfunction of glutamate signaling in astroglial cells. Biomed Pharmacother 2016; 84:972-978. [PMID: 27764760 DOI: 10.1016/j.biopha.2016.09.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Artesunate (ART) is an antimalarial drug with potential anti-inflammatory effect. This study aimed to explore the potential protective role of ART in hepatic encephalopathy (HE), involving its function against ammonia toxicity. METHODS HE rats were induced by the administration of thioacetamide (TAA, 300mg/kg/day). Spatial learning ability was tested in both Morris water and eight-arm radial maze. Rat cerebellar granule neurons (CGNs) were prepared for ammonia treatment in vitro, in line with SH-SY5Y and C6 cells. ART was administrated at 50 or 100mg/kg/day in vivo or added at 50 or 100μM in vitro. Oxidative damages were evaluated by the changes of cell viability, reactive oxygen species (ROS) levels and glutathione (GSH) content, while glutamate uptake and release, and the activities of glutamine synthetase (GS) and Na+K+-ATPase were measured to indicate the dysfunction of glutamate signaling. RESULTS Decreased escape latency and increased numbers of working errors were observed in TAA-induced HE rats, which could be significantly restored by ART at a dosage-dependent manner. Decreased cell viability and GSH content and increased ROS accumulation were detected in ammonia-treated SH-SY5Y and CGNs, while ammonia-treated C6 cells showed reduced glutamate uptake, increased glutamate release, and decrease of GSH content, GS and Na+K+-ATPase activity. In contrast, ART, especially at 100μM, strongly reversed all changes induced by ammonia, showing a similar dosage-dependent manner in vitro. CONCLUSION This study revealed a new neuroprotective role of ART in the pathogenesis of HE, by protecting neurons and astroglial cells from ammonia-induced damages and dysfunctions.
Collapse
Affiliation(s)
- Yuan-Bo Wu
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China
| | - Li Zhang
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China
| | - Wen-Ting Li
- Department of Infectious Disease, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China
| | - Yi Yang
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China
| | - Jiang-Ming Zhao
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, HeFei 230001, Anhui Province, China.
| |
Collapse
|