1
|
García-Alfonso P, Valladares-Ayerbes M, Muñoz Martín AJ, Morales Herrero R, Galvez Muñoz E, Prat-Llorens G. State of the art of the molecular hyperselection to guide treatment with anti-EGFR antibodies in RAS WT mCRC: implications for clinical practice and future perspectives. Expert Opin Biol Ther 2025; 25:413-423. [PMID: 40066702 DOI: 10.1080/14712598.2025.2477192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Adding monoclonal antibodies to chemotherapy drastically changed the landscape of advanced colorectal cancer. The prediction of benefit from anti-EGFR therapies is mainly based on the absence of mutations in RAS and BRAF genes, the primary tumor sidedness and microsatellite MSS/MSI status. Molecular hyperselection may optimize the outcome of patients receiving anti-EGFR while detecting additional resistance alterations, both in chemo-naïve and in chemo-refractory settings. AREAS COVERED Our review focuses on negative molecular hyperselection, both on tissue samples and ctDNA, and the impact of this further patient selection on response rate and survival outcomes. We searched electronic database, selecting relevant English-language publications from 2017 to 2024. EXPERT OPINION Negative hyperselection beyond RAS and BRAF in advanced colorectal cancer appears to be a powerful tool for predicting outcomes to anti-EGFR therapy and spare patients from unnecessary treatment. This improvement appears in both naïve and pre-treated patients. However, data come mainly from retrospective studies. Therefore, to validate and integrate these findings in the clinical practice, prospective studies should be conducted. It will be interesting to elucidate the role of ctDNA in this setting and the choice of molecular techniques, considering costs and accessibility, to guarantee its implementation in the clinic.
Collapse
Affiliation(s)
- Pilar García-Alfonso
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, Madrid, Spain
| | - Manuel Valladares-Ayerbes
- Medical Oncology Department, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Andrés J Muñoz Martín
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, Madrid, Spain
| | - Rocío Morales Herrero
- Medical Oncology Department, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | | | | |
Collapse
|
2
|
Scott RJ, Ziolkowski A, Mossman D, Hipwell M. Tumour mutational burden using a targeted panel approach for comprehensive tumour profiling focusing on colorectal cancer. Hered Cancer Clin Pract 2025; 23:10. [PMID: 40022227 PMCID: PMC11869696 DOI: 10.1186/s13053-025-00308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
There is an increasing recognition that comprehensive tumour profiling (CTP) represents an important adjunct to the diagnosis of malignancy providing not only an assessment of how many mutations there are in any given tumour which reflects the probability of immune checkpoint inhibitor success, but also which mutations are associated with targeted therapies, a signature that reflects environmental insult and potentially the identification of cancers of unknown origin.This short review describes an approach to assaying tumour mutational burden (TMB), what the difficulties are in the assessment of the TMB and what it can be applied to in regards to improving patient outcomes. A final section of the review delves into some examples of colorectal cancer studies that identify findings that suggest there remains much to learn about tumour development.
Collapse
Affiliation(s)
- Rodney J Scott
- Division of Molecular Medicine, NSW Health Pathology, New Lambton, NSW, 2305, Australia.
- Hunter Medical Research Institute, The School of Biomedical Sciences, Faculty of Health and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Andrew Ziolkowski
- Division of Molecular Medicine, NSW Health Pathology, New Lambton, NSW, 2305, Australia
| | - David Mossman
- Division of Molecular Medicine, NSW Health Pathology, New Lambton, NSW, 2305, Australia
| | - Michael Hipwell
- Division of Molecular Medicine, NSW Health Pathology, New Lambton, NSW, 2305, Australia
| |
Collapse
|
3
|
Muradi Muhar A, Velaro AJ, Prananda AT, Nugraha SE, Halim P, Syahputra RA. Precision medicine in colorectal cancer: genomics profiling and targeted treatment. Front Pharmacol 2025; 16:1532971. [PMID: 40083375 PMCID: PMC11903709 DOI: 10.3389/fphar.2025.1532971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Precision medicine has revolutionized the treatment of colorectal cancer by enabling a personalized approach tailored to each patient's unique genetic characteristics. Genomic profiling allows for the identification of specific mutations in genes such as KRAS, BRAF, and PIK3CA, which play a crucial role in cell signaling pathways that regulate cell proliferation, apoptosis, and differentiation. This information enables doctors to select targeted therapies that inhibit specific molecular pathways, maximizing treatment effectiveness and minimizing side effects. Precision medicine also facilitates adaptive monitoring of tumor progression, allowing for adjustments in therapy to maintain treatment effectiveness. While challenges such as high costs, limited access to genomic technology, and the need for more representative genomic data for diverse populations remain, collaboration between researchers, medical practitioners, policymakers, and the pharmaceutical industry is crucial to ensure that precision medicine becomes a standard of care accessible to all. With continued advances and support, precision medicine has the potential to improve treatment outcomes, reduce morbidity and mortality rates, and enhance the quality of life for colorectal cancer patients worldwide.
Collapse
Affiliation(s)
- Adi Muradi Muhar
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Adrian Joshua Velaro
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Arya Tjipta Prananda
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Universitas Sumatera Utara, Medan, Indonesia
| | | |
Collapse
|
4
|
Garcia JA, Bouchnita A. Exploring the spatial effects influencing the EGFR/ERK pathway dynamics with machine learning surrogate models. Biosystems 2025; 247:105360. [PMID: 39521268 DOI: 10.1016/j.biosystems.2024.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The fate of cells is regulated by biochemical reactions taking place inside of them, known as intracellular pathways. Cells display a variety of characteristics related to their shape, structure and contained fluid, which influences the diffusion of proteins and their interactions. To gain insights into the spatial effects shaping intracellular regulation, we apply machine learning (ML) to explore a previously developed spatial model of the epidermal growth factor receptor (EGFR) signaling. The model describes the reactions between molecular species inside of cells following the transient activation of EGF receptors. To train our ML models, we conduct 10,000 numerical simulations in parallel where we calculate the cumulative activation of molecules and transcription factors under various conditions such as different diffusion speeds, inactivation rates, and cell structures. We take advantage of the low computational cost of ML algorithms to investigate the effects of cell and nucleus sizes, the diffusion speed of proteins, and the inactivation rate of the Ras molecules on the activation strength of transcription factors. Our results suggest that the predictions by both neural networks and random forests yielded minimal mean square error (MSEs), while linear generalized models displayed a significantly larger MSE. The exploration of the surrogate models has shown that smaller cell and nucleus radii as well, larger diffusion coefficients, and reduced inactivation rates increase the activation of transcription factors. These results are confirmed by numerical simulations. Our ML algorithms can be readily incorporated within multiscale models of tumor growth to embed the spatial effects regulating intracellular pathways, enabling the use of complex cell models within multiscale models while reducing the computational cost.
Collapse
Affiliation(s)
- Juan A Garcia
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso 79968, TX, USA
| | - Anass Bouchnita
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso 79968, TX, USA.
| |
Collapse
|
5
|
AlDoughaim M, AlSuhebany N, AlZahrani M, AlQahtani T, AlGhamdi S, Badreldin H, Al Alshaykh H. Cancer Biomarkers and Precision Oncology: A Review of Recent Trends and Innovations. Clin Med Insights Oncol 2024; 18:11795549241298541. [PMID: 39559827 PMCID: PMC11571259 DOI: 10.1177/11795549241298541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The discovery of cancer-specific biomarkers has resulted in major advancements in the field of cancer diagnostics and therapeutics, therefore significantly lowering cancer-related morbidity and mortality. Cancer biomarkers can be generally classified as prognostic biomarkers that predict specific disease outcomes and predictive biomarkers that predict disease response to targeted therapeutic interventions. As research in the area of predictive biomarkers continues to grow, precision medicine becomes far more integrated in cancer treatment. This article presents a general overview on the most recent advancements in the area of cancer biomarkers, immunotherapy, artificial intelligence, and pharmacogenomics of the Middle East.
Collapse
Affiliation(s)
- Maha AlDoughaim
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Nada AlSuhebany
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohammed AlZahrani
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Tariq AlQahtani
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Sahar AlGhamdi
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Hisham Badreldin
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Hana Al Alshaykh
- Pharmaceutical Care Devision, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Kim J, Jeong Y, Shin YM, Kim SE, Shin SJ. FL118 Enhances Therapeutic Efficacy in Colorectal Cancer by Inhibiting the Homologous Recombination Repair Pathway through Survivin-RAD51 Downregulation. Cancers (Basel) 2024; 16:3385. [PMID: 39410005 PMCID: PMC11475853 DOI: 10.3390/cancers16193385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Irinotecan, a camptothecin (CPT) derivative, is commonly used as a first-line therapy for colorectal cancer (CRC), but resistance remains a significant challenge. This study aims to explore the therapeutic potential of FL118, another CPT derivative, with a focus on overcoming resistance to irinotecan. Methods: The effects of FL118 on CRC cells were evaluated, and bioinformatics analysis was performed on RNA-seq data. Transfection was conducted to observe the knockdown effect of survivin, and the in vivo efficacy of FL118 was assessed using a xenograft model. Results: FL118 induces apoptosis, G2/M arrest, and DNA damage. A notable mechanism of action of FL118 is a reduction in survivin levels, which downregulates the expression of RAD51, a key marker of homologous recombination, and attenuates DNA repair processes. Given that SN38 is the active metabolite of irinotecan, FL118 reduces cell viability and RAD51 in SN38-resistant LOVO cells. Conclusions: Our findings provide effective insights into the antitumor activity of FL118 and its potential as a therapeutic agent for overcoming irinotecan resistance in CRC.
Collapse
Affiliation(s)
- Jungyoun Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (Y.J.); (Y.M.S.); (S.E.K.)
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yeyeong Jeong
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (Y.J.); (Y.M.S.); (S.E.K.)
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - You Me Shin
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (Y.J.); (Y.M.S.); (S.E.K.)
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung Eun Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (Y.J.); (Y.M.S.); (S.E.K.)
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Joon Shin
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Tang Y, Fan Y. Combined KRAS and TP53 mutation in patients with colorectal cancer enhance chemoresistance to promote postoperative recurrence and metastasis. BMC Cancer 2024; 24:1155. [PMID: 39289671 PMCID: PMC11409552 DOI: 10.1186/s12885-024-12776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
The response of patients with colorectal cancer to chemotherapy is tightly correlated with their genomic variation. Among these, APC, TP53, KRAS, PIK3CA are the most frequently mutated genes in advanced colorectal cancer patients. However, the precise correlation between these mutations and the therapeutic effects of chemotherapy remains elusive. Here, we conducted genome sequencing to identify commonly mutated genes in colorectal cancer patients and comprehensively assessed their sensitivity to chemotherapy drugs by monitoring computer tomography (CT) scans and carcinoembryonic antigen (CEA) levels. Surprisingly, we discovered that the objective response rate to the standard first-line chemotherapy among patients harboring combined KRAS and TP53 mutations is dismal, and these patients are predisposed to recurrence and metastasis. Furthermore, advanced-stage patients with concurrent KRAS and TP53 mutations are susceptible to developing cancer-associated cachexia due to chemotherapy resistance or forced cessation of treatment. Our findings underscore the urgent need for the development of innovative and novel chemotherapeutic strategies to effectively manage colorectal cancer patients harboring combined KRAS and TP53 mutations.
Collapse
Affiliation(s)
- YiMeng Tang
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China
| | - Yao Fan
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China.
| |
Collapse
|
8
|
Fu L, Zhao L, Li F, Wen F, Zhang P, Yang X, Wang Y. Pharmacological mechanism of quercetin in the treatment of colorectal cancer by network pharmacology and molecular simulation. J Biomol Struct Dyn 2024; 42:7065-7076. [PMID: 37464874 DOI: 10.1080/07391102.2023.2235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Colorectal cancer is a serious threat to people's life due to its high incidence and high mortality. Quercetin can effectively treat colorectal carcinoma (CRC), but its exact mechanism of action is still unclear. Then quercetin-related target genes were obtained from Swiss Target Prediction database and Similarity Ensemble Approach (SEA) database, and CRC-related target genes were obtained from GeneCards database, respectively. Common target genes were obtained by FunRich software. String software was used to construct a protein-protein interaction (PPI) network. R package was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking, molecular dynamics (MD) simulation and post-dynamics simulation were used to explore the binding stability of quercetin to key targets. In total, 103 and 141 target information of quercetin were obtained from the Swiss Target Prediction database and SEA database, respectively. 1,649 CRC-related genes were obtained from GeneCards database. FunRich software was used to draw venny map and obtain 36 intersection targets of quercetin and CRC. String software was used to construct the PPI network. The core genes were AKT1, EGFR, MMP9, KDR, MET and PTK2. There were 532 items related to biological processes, 14 items related to cellular components, and 43 items related to molecular functions among the key target GO enrichment items. KEGG enrichment pathways of key targets involved cancer pathways, PI3K-Akt signal pathway, etc. The results of molecular docking, MD simulation and post-dynamics simulation showed they had a good affinity and formed a stable effect. So quercetin may play an important role in the treatment of CRC by acting on AKT1, EGFR, MMP9, KDR, MET and PTK2 to affect the development of CRC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Le Fu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Linan Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Fei Li
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Feng Wen
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Peng Zhang
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Xia Yang
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
9
|
Keshavarz F, Soltanshahi M, Khosravani F, Bakhshiyan F, Ghanbari A, Hassanzadeh S, Amirpour M, Ghalamfarsa G. Thymol-loaded liposomes effectively induced apoptosis and decreased EGFR expression in colorectal cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5157-5165. [PMID: 38240780 DOI: 10.1007/s00210-024-02945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common and deadly cancers worldwide. Different factors, such as environmental and genetic factors and lifestyle, affect it. Owing to the presence of phenolic, alkaloid, antioxidant, and terpenoid compounds, herbal compounds can be effective in the treatment of various cancers. Thymol is a natural monoterpene phenol that is abundant in some plants and exerts several biological effects. The aim of this study was to investigate the apoptotic, anti-proliferative effect and EGFR gene expression under the influence of thymol-loaded nanoliposome in SW84 and SW111 cell lines derived from colorectal cancer. MATERIALS AND METHODS The lipid thin-film hydration method was used to synthesize thymol-loaded liposomes, and their characterization was performed using TEM, DLS, and HPLC analyses. SW84 and SW1111 cells were treated with thymol- and thymol-loaded liposomes at different doses, the inhibition of cell proliferation was evaluated using an MTT assay, the rate of apoptosis induction was assessed using flow cytometry, and EGFR gene expression was measured using real-time PCR. RESULTS The nanoparticles produced were spherical, uniform, and 200 ± 10 nm in size. HPLC analysis showed that approximately 98% thymol was loaded into the nanoliposome. The results of the MTT assay showed that thymol and thymol-nanoliposomes decreased the proliferation of SW84 and SW1111 cells in a concentration-dependent manner. The IC50 of thymol and thymol-nanoliposomes were 18 and 14.2 µg/ml for the SW48 cell line (P = 0.04) and 10.5 and 6.4 µg/ml for the SW1116 cell line (P = 0.001). Thymol-nanoliposomes significantly inhibited the proliferation of cancer cells compared to free thymol. Flow cytometry showed an increase in the percentage of apoptotic cells, especially in the thymol-nanoliposome group in the treated cells. Real-time PCR results also showed that thymol and thymol-nanoliposome both caused a decrease in the expression of EGFR genes in both cell lines, but this effect of decreasing gene expression was significantly higher in the thymol-nanoliposome group. CONCLUSIONS Our results showed that thymol-nanoliposomes reduced proliferation, increased apoptosis, and decreased EGFR expression in colorectal cancer-derived cell lines.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soltanshahi
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khosravani
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Bakhshiyan
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajad Hassanzadeh
- Department of Internal Medicine, School of Medicine, Yasuj University of Medical Sciences, Shahid Dr. Ghorban Ali Jalil Street, Yasuj, Iran
| | - Mozhgan Amirpour
- Department of Hematology and Blood Banking, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
10
|
Zhou Y, Wu S, Qu FJ. Therapeutic strategies targeting the epidermal growth factor receptor signaling pathway in metastatic colorectal cancer. World J Gastrointest Oncol 2024; 16:2362-2379. [PMID: 38994135 PMCID: PMC11236217 DOI: 10.4251/wjgo.v16.i6.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
More than 1.9 million new colorectal cancer (CRC) cases and 935000 deaths were estimated to occur worldwide in 2020, representing about one in ten cancer cases and deaths. Overall, colorectal ranks third in incidence, but second in mortality. More than half of the patients are in advanced stages at diagnosis. Treatment options are complex because of the heterogeneity of the patient population, including different molecular subtypes. Treatments have included conventional fluorouracil-based chemotherapy, targeted therapy, immunotherapy, etc. In recent years, with the development of genetic testing technology, more and more targeted drugs have been applied to the treatment of CRC, which has further prolonged the survival of metastatic CRC patients.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Fan-Jie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| |
Collapse
|
11
|
Mason JD, Marks E, Fan S, McCormick K, Wilson C, Harris AL, Hamdy FC, Cunningham C, Goberdhan DCI. Stress-induced Rab11a-exosomes induce amphiregulin-mediated cetuximab resistance in colorectal cancer. J Extracell Vesicles 2024; 13:e12465. [PMID: 38887984 PMCID: PMC11184284 DOI: 10.1002/jev2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/28/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G-protein Rab11a. These vesicles, termed Rab11a-exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a-exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non-genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG-carrying Rab11a-exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a-exosomes from cetuximab-resistant KRAS-mutant HCT116 cells, can suppress the effects of cetuximab on KRAS-wild type Caco-2 CRC cells. Using neutralising anti-AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a-exosomes affects its ability to compete with cetuximab. We propose that this Rab11a-exosome-mediated mechanism contributes to the establishment of resistance in cetuximab-sensitive cells and may explain why in cetuximab-resistant tumours only some cells carry mutant KRAS.
Collapse
Affiliation(s)
- John D. Mason
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Ewan Marks
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Shih‐Jung Fan
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of Life SciencesNational Central UniversityTaoyuan CityTaiwan
| | - Kristie McCormick
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Clive Wilson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Adrian L. Harris
- Department of Oncology, Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Freddie C. Hamdy
- Nuffield Department of Surgical SciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Chris Cunningham
- Nuffield Department of Surgical SciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | | |
Collapse
|
12
|
Zhou J, Liu C, Tang Y, Li Z, Cao Y. Phenotypic switching as a non-genetic mechanism of resistance predicts antibody therapy regimens. iScience 2024; 27:109450. [PMID: 38544569 PMCID: PMC10966312 DOI: 10.1016/j.isci.2024.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 10/13/2024] Open
Abstract
Despite the specificity and effectiveness of antibody therapy, resistance to treatment remains a major barrier for their broad clinical applications. While genetic mutations are known to be critical, the impact of non-genetic mechanisms, such as epigenetic changes and phenotypic adaptations, on resistance to antibody-dependent cellular cytotoxicity (ADCC) is not fully understood. Our study investigated the non-genetic resistance mechanisms that colorectal cancer cells develop against cetuximab and the resulting ADCC pressure. Resistance clones exhibited decreased EGFR/HER2 expressions, enriched interferon-related pathways, and lower NK cell activation. Interestingly, these resistance clones regained sensitivity upon the withdrawal of therapeutic pressure, implying phenotypic plasticity and reversibility. To counter resistance, we developed a mathematical model recapitulating the phenotypic switching dynamics. The model predicted that intermittent dosing strategy outperforms continuous regimen in delaying treatment resistance. Our findings have implications for improving efficacy and circumventing resistance to targeted antibody therapies.
Collapse
Affiliation(s)
- Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhongbo Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
García-Roman S, Garzón-Ibáñez M, Bertrán-Alamillo J, Jordana-Ariza N, Giménez-Capitán A, García-Peláez B, Vives-Usano M, Codony-Servat J, d'Hondt E, Rosell R, Molina-Vila MÁ. Vaccine antibodies against a synthetic epidermal growth factor variant enhance the antitumor effects of inhibitors targeting the MAPK/ERK and PI3K/Akt pathways. Transl Oncol 2024; 40:101878. [PMID: 38183801 PMCID: PMC10818253 DOI: 10.1016/j.tranon.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The EGFR pathway is involved in intrinsic and acquired resistance to a wide variety of targeted therapies in cancer. Vaccination represents an alternative to the administration of anti-EGFR monoclonal antibodies, such as cetuximab or panitumumab. Here, we tested if anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) could potentiate the activity of drugs targeting the ERK/MAPK and PI3K/Akt pathways. METHODS Non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and melanoma cell lines harboring KRAS, NRAS, BRAF and PIK3CA mutations were used. Anti-EGF VacAbs were obtained by immunizing rabbits with a fusion protein containing a synthetic, highly mutated variant of human EGF. Cell viability was determined by MTT, total and phosphorylated proteins by Western blotting, cell cycle distribution and cell death by flow cytometry and emergence of resistance by microscopic examination in low density cultures. RESULTS Anti-EGF VacAbs potentiated the antiproliferative effects of MEK, KRAS G12C, BRAF, PI3K and Akt inhibitors in KRAS, NRAS, BRAF and PIK3CA mutant cells and delayed the appearance of resistant clones in vitro. The effects of anti-EGF VacAbs were comparable or superior to those of panitumumab and cetuximab. The combination of anti-EGF VacAbs with the targeted inhibitors effectively suppressed EGFR downstream pathways and sera from patients immunized with an anti-EGF vaccine also blocked activation of EGFR effectors. CONCLUSIONS Anti-EGF VacAbs enhance the antiproliferative effects of drugs targeting the ERK/MAPK and PIK3CA/Akt pathways. Our data provide a rationale for clinical trials testing anti-EGF vaccination combined with inhibitors selected according to the patient's genetic profile.
Collapse
Affiliation(s)
- Silvia García-Roman
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Mónica Garzón-Ibáñez
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Jordi Bertrán-Alamillo
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Núria Jordana-Ariza
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Beatriz García-Peláez
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Marta Vives-Usano
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | | | - Rafael Rosell
- Instituto Oncológico Dr. Rosell (IOR), Dexeus University Hospital, Barcelona, Spain; Catalan Institute of Oncology and Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Miguel Ángel Molina-Vila
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain.
| |
Collapse
|
14
|
Singh H, Kang A, Bloudek L, Hsu LI, Corinna Palanca-Wessels M, Stecher M, Siadak M, Ng K. Systematic literature review and meta-analysis of HER2 amplification, overexpression, and positivity in colorectal cancer. JNCI Cancer Spectr 2024; 8:pkad082. [PMID: 37815820 PMCID: PMC10868379 DOI: 10.1093/jncics/pkad082] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cause of cancer death globally. Recent clinical trials suggest an emerging role for HER2 as a potential clinically relevant biomarker in CRC. Testing for HER2 in CRC is not standard practice; consequently, the prevalence of HER2 positivity (HER2+) in patients with CRC remains uncertain. METHODS A systematic literature review and meta-analysis were conducted to generate estimates of proportions of patients with CRC with HER2 overexpression or HER2 amplification and HER2+ (either overexpression or amplification), overall and in patients with rat sarcoma virus (RAS) wild-type cancer. HER2+ was defined as 1) immunohistochemistry with a score of 3+, 2) immunohistochemistry with a score of 2+ and in situ hybridization+, or 3) next-generation sequencing positive. RESULTS Of 224 studies identified with information on HER2 in CRC, 52 studies used a US Food and Drug Administration-approved assay and were selected for further analysis. Estimated HER2+ rate was 4.1% (95% confidence interval [CI] = 3.4% to 5.0%) overall (n = 17 589). HER2+ rates were statistically higher in RAS wild-type (6.1%, 95% CI = 5.4% to 6.9%) vs RAS mutant CRC (1.1%, 95% CI = 0.3% to 4.4%; P < .0001). Despite limited clinical information, we confirmed enrichment of HER2+ CRC in patients with microsatellite stable and left-sided CRC. CONCLUSION This meta-analysis provides an estimate of HER2+ CRC and confirms enrichment of HER2 in microsatellite stable, left-sided, RAS wild-type CRC tumors. Our work is important given the recently described clinical efficacy of HER2-targeted therapies in HER2+ CRC and informs strategies for incorporation of HER2 testing into standard of care.
Collapse
Affiliation(s)
- Harshabad Singh
- Division of Gastrointestinal Cancers, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | - Kimmie Ng
- Division of Gastrointestinal Cancers, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
15
|
Zahavi DJ, Erbe R, Zhang YW, Guo T, Malchiodi ZX, Maynard R, Lekan A, Gallagher R, Wulfkuhle J, Petricoin E, Jablonski SA, Fertig EJ, Weiner LM. Antibody dependent cell-mediated cytotoxicity selection pressure induces diverse mechanisms of resistance. Cancer Biol Ther 2023; 24:2269637. [PMID: 37878417 PMCID: PMC10601508 DOI: 10.1080/15384047.2023.2269637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Targeted monoclonal antibody therapy has emerged as a powerful therapeutic strategy for cancer. However, only a minority of patients have durable responses and the development of resistance remains a major clinical obstacle. Antibody-dependent cell-mediated cytotoxicity (ADCC) represents a crucial therapeutic mechanism of action; however, few studies have explored ADCC resistance. Using multiple in vitro models of ADCC selection pressure, we have uncovered both shared and distinct resistance mechanisms. Persistent ADCC selection pressure yielded ADCC-resistant cells that are characterized by a loss of NK cell conjugation and this shared resistance phenotype is associated with cell-line dependent modulation of cell surface proteins that contribute to immune synapse formation and NK cell function. We employed single-cell RNA sequencing and proteomic screens to interrogate molecular mechanisms of resistance. We demonstrate that ADCC resistance involves upregulation of interferon/STAT1 and DNA damage response signaling as well as activation of the immunoproteasome. Here, we identify pathways that modulate ADCC sensitivity and report strategies to enhance ADCC-mediated elimination of cancer cells. ADCC resistance could not be reversed with combinatorial treatment approaches. Hence, our findings indicate that tumor cells utilize multiple strategies to inhibit NK cell mediated-ADCC. Future research and development of NK cell-based immunotherapies must incorporate plans to address or potentially prevent the induction of resistance.
Collapse
Affiliation(s)
- David J. Zahavi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rossin Erbe
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yong-Wei Zhang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Theresa Guo
- Department of Oncology, UC San Diego School of Medicine, San Diego, USA
| | - Zoe X. Malchiodi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rachael Maynard
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Alexander Lekan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Rosa Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Sandra A. Jablonski
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - Elana J. Fertig
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Louis M. Weiner
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| |
Collapse
|
16
|
Bai M, Lu Y, Shi C, Yang J, Li W, Yin X, Huang C, Shen L, Xie L, Ba Y. Phase Ib study of anti-EGFR antibody (SCT200) in combination with anti-PD-1 antibody (SCT-I10A) for patients with RAS/BRAF wild-type metastatic colorectal cancer. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0301. [PMID: 38148327 PMCID: PMC11271220 DOI: 10.20892/j.issn.2095-3941.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE This study evaluated the safety and efficacy of an anti-epidermal growth factor receptor (EGFR) antibody (SCT200) and an anti-programmed cell death 1 (PD-1) antibody (SCT-I10A) as third-line or subsequent therapies in patients with rat sarcoma viral oncogene (RAS)/v-raf murine sarcoma viral oncogene homolog B (BRAF) wild-type (wt) metastatic colorectal cancer (mCRC). METHODS We conducted a multicenter, open-label, phase Ib clinical trial. Patients with histologically confirmed RAS/BRAF wt mCRC with more than two lines of treatment were enrolled and treated with SCT-I10A and SCT200. The primary endpoints were the objective response rate (ORR) and safety. The secondary endpoints included disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS Twenty-one patients were enrolled in the study through January 28, 2023. The ORR was 28.57% and the DCR was 85.71% (18/21). The median PFS and OS were 4.14 and 12.84 months, respectively. The treatment-related adverse events (TRAEs) were tolerable. Moreover, compared with the monotherapy cohort from our previous phase I study evaluating SCT200 for RAS/BRAF wt mCRC in a third-line setting, no significant improvements in PFS and OS were observed in the combination group. CONCLUSIONS SCT200 combined with SCT-I10A demonstrated promising efficacy in previously treated RAS/BRAF wt mCRC patients with an acceptable safety profile. Further head-to-head studies with larger sample sizes are needed to validate whether the efficacy and safety of combined anti-EGFR and anti-PD-1 therapy are superior to anti-EGFR monotherapy in the third-line setting. (Registration No. NCT04229537).
Collapse
Affiliation(s)
- Ming Bai
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Yao Lu
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Chunmei Shi
- Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jianwei Yang
- Fujian Provincial Cancer Hospital, Fuzhou 350014, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xianli Yin
- Department of Medical Oncology Gastroenterology and Urology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chenghui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Yi Ba
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
- Department of Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100010, China
| |
Collapse
|
17
|
Joseph J, Sandel G, Kulkarni R, Alatrash R, Herrera BB, Jain P. Antibody and Cell-Based Therapies against Virus-Induced Cancers in the Context of HIV/AIDS. Pathogens 2023; 13:14. [PMID: 38251321 PMCID: PMC10821063 DOI: 10.3390/pathogens13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious agents, notably viruses, can cause or increase the risk of cancer occurrences. These agents often disrupt normal cellular functions, promote uncontrolled proliferation and growth, and trigger chronic inflammation, leading to cancer. Approximately 20% of all cancer cases in humans are associated with an infectious pathogen. The International Agency for Research on Cancer (IARC) recognizes seven viruses as direct oncogenic agents, including Epstein-Barr Virus (EBV), Kaposi's Sarcoma-associated herpesvirus (KSHV), human T-cell leukemia virus type-1 (HTLV-1), human papilloma virus (HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus type 1 (HIV-1). Most viruses linked to increased cancer risk are typically transmitted through contact with contaminated body fluids and high-risk behaviors. The risk of infection can be reduced through vaccinations and routine testing, as well as recognizing and addressing risky behaviors and staying informed about public health concerns. Numerous strategies are currently in pre-clinical phases or undergoing clinical trials for targeting cancers driven by viral infections. Herein, we provide an overview of risk factors associated with increased cancer incidence in people living with HIV (PLWH) as well as other chronic viral infections, and contributing factors such as aging, toxicity from ART, coinfections, and comorbidities. Furthermore, we highlight both antibody- and cell-based strategies directed against virus-induced cancers while also emphasizing approaches aimed at discovering cures or achieving complete remission for affected individuals.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Grace Sandel
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Ratuja Kulkarni
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Reem Alatrash
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| |
Collapse
|
18
|
Yang L, Atakhanova N, Arellano MTC, Mohamed MY, Hani T, Fahdil AA, Castillo-Acobo RY, Juyal A, Hussein AK, Amin AH, Pecho RDC, Akhavan-Sigari R. Translational research of new developments in targeted therapy of colorectal cancer. Pathol Res Pract 2023; 252:154888. [PMID: 37948996 DOI: 10.1016/j.prp.2023.154888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
A severe global health concern is the rising incidence and mortality rate of colorectal cancer (CRC). Chemotherapy, which is typically used to treat CRC, is known to have limited specificity and can have noticeable side effects. A paradigm shift in cancer treatment has been brought about by the development of targeted therapies, which has led to the appearance of pharmacological agents with improved efficacy and decreased toxicity. Epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and BRAF are among the molecular targets covered in this review that are used in targeted therapy for CRC. The current discussion also covers advancements in targeted therapeutic approaches, such as antibody-drug conjugates, immune checkpoint inhibitors, and chimeric antigen receptor (CAR) T-cell therapy. A review of the clinical trials and application of these particular therapies in treating CRC is also done. Despite the improvements in targeted therapy for CRC, problems such as drug resistance and patient selection remain to be solved. Despite this, targeted therapies have offered fresh possibilities for identifying and treating CRC, paving the way for the development of personalized medicine and extending the life expectancy and general well-being of CRC patients.
Collapse
Affiliation(s)
- Lei Yang
- Department of Clinical Laboratory, People's Hospital of Chongqing Liangjiang New Area, Chongqing 401121, China
| | - Nigora Atakhanova
- Head of the Department of Oncology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan
| | | | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Iraq
| | | | - Ashima Juyal
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
19
|
Zeng J, Fan W, Li J, Wu G, Wu H. KRAS/NRAS Mutations Associated with Distant Metastasis and BRAF/PIK3CA Mutations Associated with Poor Tumor Differentiation in Colorectal Cancer. Int J Gen Med 2023; 16:4109-4120. [PMID: 37720173 PMCID: PMC10503567 DOI: 10.2147/ijgm.s428580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Background The occurrence, progression, and prognosis of colorectal cancer (CRC) are regulated by EGFR-mediated signaling pathways. However, the relationship between the core genes (KRAS/NRAS/BRAF/PIK3CA) status in the signaling pathways and clinicopathological characteristics of CRC patients in Hakka population remains controversial. Methods Patients were genotyped for KRAS (codons 12, 13, 61, 117, and 146), NRAS (codons 12, 61, 117, and 146), BRAF (codons 600), and PIK3CA (codons 542, 545 and 1047) mutations. Clinical records were collected, and clinicopathological characteristic associations were analyzed together with mutations of studied genes. Results Four hundred and eight patients (256 men and 152 women) were included in the analysis. At least one mutation in the four genes was detected in 216 (52.9%) patients, while none was detected in 192 (47.1%) patients. KRAS, NRAS, BRAF, and PIK3CA mutation status were detected in 190 (46.6%), 11 (2.7%), 10 (2.5%), 34 (8.3%) samples, respectively. KRAS exon 2 had the highest proportion (62.5%). Age, tumor site, tumor size, lymphovascular invasion, and perineural invasion were not associated with gene mutations. KRAS mutations (adjusted OR 1.675, 95% CI 1.017-2.760, P=0.043) and NRAS mutations (adjusted OR 5.183, 95% CI 1.239-21.687, P=0.024) appeared more frequently in patients with distant metastasis. BRAF mutations (adjusted OR 7.224, 95% CI 1.356-38.488, P=0.021) and PIK3CA mutations (adjusted OR 3.811, 95% CI 1.268-11.455, P=0.017) associated with poorly differentiated tumor. Conclusion KRAS/NRAS mutations are associated with distant metastasis and BRAF/PIK3CA mutations are associated with poor tumor differentiation in CRC. And the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.
Collapse
Affiliation(s)
- Juanzi Zeng
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Wenwei Fan
- Department of Gastroenterology, Dongguan Eighth People’s Hospital, Dongguan, People’s Republic of China
| | - Jiaquan Li
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Guowu Wu
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
20
|
Kannampuzha S, Gopalakrishnan AV. Cancer chemoresistance and its mechanisms: Associated molecular factors and its regulatory role. Med Oncol 2023; 40:264. [PMID: 37550533 DOI: 10.1007/s12032-023-02138-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Cancer therapy has advanced from tradition chemotherapy methods to targeted therapy, novel drug delivery mechanisms, combination therapies etc. Although several novel chemotherapy strategies have been introduced, chemoresistance still remains as one of the major barriers in cancer treatments. Chemoresistance can lead to relapse and hinder the development of improved clinical results for cancer patients, and this continues to be the major hurdle in cancer therapy. Anticancer drugs acquire chemoresistance through different mechanisms. Understanding these mechanisms is crucial to overcome and increase the efficiency of the cancer therapies that are employed. The potential molecular pathways behind chemoresistance include tumor heterogeneity, elevated drug efflux, multidrug resistance, interconnected signaling pathways, and other factors. To surpass this limitation, new clinical tactics are to be introduced. This review aims to compile the most recent information on the molecular pathways that regulate chemoresistance in cancers, which will aid in development of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
21
|
Finetti F, Paradisi L, Bernardi C, Pannini M, Trabalzini L. Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy. Cancers (Basel) 2023; 15:cancers15082374. [PMID: 37190301 DOI: 10.3390/cancers15082374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
It is recognized that prostaglandin E2 (PGE2) is one key lipid mediator involved in chronic inflammation, and it is directly implicated in tumor development by regulating cancer cell growth and migration, apoptosis, epithelial-mesenchymal transition, angiogenesis, and immune escape. In addition, the expression of the enzymes involved in PGE2 synthesis, cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES1), positively correlates with tumor progression and aggressiveness, clearly indicating the crucial role of the entire pathway in cancer. Moreover, several lines of evidence suggest that the COX2/mPGES1/PGE2 inflammatory axis is involved in the modulation of epidermal growth factor receptor (EGFR) signaling to reinforce the oncogenic drive of EGFR activation. Similarly, EGFR activation promotes the induction of COX2/mPGES1 expression and PGE2 production. In this review, we describe the interplay between COX2/mPGES1/PGE2 and EGFR in cancer, and new therapeutic strategies that target this signaling pathway, to outline the importance of the modulation of the inflammatory process in cancer fighting.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lucrezia Paradisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Clizia Bernardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Margherita Pannini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
22
|
Kiyota N, Namekata K, Nishijima E, Guo X, Kimura A, Harada C, Nakazawa T, Harada T. Effects of constitutively active K-Ras on axon regeneration after optic nerve injury. Neurosci Lett 2023; 799:137124. [PMID: 36780941 DOI: 10.1016/j.neulet.2023.137124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Visual disturbance after optic nerve injury is a serious problem. Attempts have been made to enhance the intrinsic ability of retinal ganglion cells (RGCs) to regenerate their axons, and the importance of PI3K/Akt and RAF/MEK/ERK signal activation has been suggested. Since these signals are shared with oncogenic signaling cascades, in this study, we focused on a constitutively active form of K-Ras, K-RasV12, to determine if overexpression of this molecule could stimulate axon regeneration. We confirmed that K-RasV12 phosphorylated Akt and ERK in vitro. Intravitreal delivery of AAV2-K-RasV12 increased the number of surviving RGCs and promoted 1.0 mm of axon regeneration one week after optic nerve injury without inducing abnormal proliferative effects in the RGCs. In addition, AAV2-K-RasV12 induced robust RGC axon regeneration, reaching as far as approximately 2.5 mm from the injury site, in eight weeks. Our findings suggest that AAV2-K-RasV12 could provide a good model for speedy and efficient analysis of the mechanism underlying axon regeneration in vivo.
Collapse
Affiliation(s)
- Naoki Kiyota
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
23
|
van 't Erve I, Medina JE, Leal A, Papp E, Phallen J, Adleff V, Chiao EJ, Arun AS, Bolhuis K, Simmons JK, Karandikar A, Valkenburg KC, Sausen M, Angiuoli SV, Scharpf RB, Punt CJA, Meijer GA, Velculescu VE, Fijneman RJA. Metastatic Colorectal Cancer Treatment Response Evaluation by Ultra-Deep Sequencing of Cell-Free DNA and Matched White Blood Cells. Clin Cancer Res 2023; 29:899-909. [PMID: 36534496 PMCID: PMC9975664 DOI: 10.1158/1078-0432.ccr-22-2538] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Circulating tumor DNA (ctDNA) has the potential to guide therapy selection and monitor treatment response in patients with metastatic cancer. However, germline and clonal hematopoiesis-associated alterations can confound identification of tumor-specific mutations in cell-free DNA (cfDNA), often requiring additional sequencing of tumor tissue. The current study assessed whether ctDNA-based treatment response monitoring could be performed in a tumor tissue-independent manner by combining ultra-deep targeted sequencing analyses of cfDNA with patient-matched white blood cell (WBC)-derived DNA. EXPERIMENTAL DESIGN In total, 183 cfDNA and 49 WBC samples, along with 28 tissue samples, from 52 patients with metastatic colorectal cancer participating in the prospective phase III CAIRO5 clinical trial were analyzed using an ultra-deep targeted sequencing liquid biopsy assay. RESULTS The combined cfDNA and WBC analysis prevented false-positives due to germline or hematopoietic variants in 40% of patients. Patient-matched tumor tissue sequencing did not provide additional information. Longitudinal analyses of ctDNA were more predictive of overall survival than standard-of-care radiological response evaluation. ctDNA mutations related to primary or acquired resistance to panitumumab were identified in 42% of patients. CONCLUSIONS Accurate calling of ctDNA mutations for treatment response monitoring is feasible in a tumor tissue-independent manner by combined cfDNA and patient-matched WBC genomic DNA analysis. This tissue biopsy-independent approach simplifies sample logistics and facilitates the application of liquid biopsy ctDNA testing for evaluation of emerging therapy resistance, opening new avenues for early adaptation of treatment regimens.
Collapse
Affiliation(s)
- Iris van 't Erve
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jamie E Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alessandro Leal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eniko Papp
- Personal Genome Diagnostics, Baltimore, Maryland
| | - Jillian Phallen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vilmos Adleff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elaine Jiayuee Chiao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adith S Arun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen Bolhuis
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, Maryland
| | | | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cornelis J A Punt
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Victor E Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Phosphohistidine signaling promotes FAK-RB1 interaction and growth factor-independent proliferation of esophageal squamous cell carcinoma. Oncogene 2023; 42:449-460. [PMID: 36513743 DOI: 10.1038/s41388-022-02568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Current clinical therapies targeting receptor tyrosine kinases including focal adhesion kinase (FAK) have had limited or no effect on esophageal squamous cell carcinoma (ESCC). Unlike esophageal adenocarcinomas, ESCC acquire glucose in excess of their anabolic need. We recently reported that glucose-induced growth factor-independent proliferation requires the phosphorylation of FAKHis58. Here, we confirm His58 phosphorylation in FAK immunoprecipitates of glucose-stimulated, serum-starved ESCC cells using antibodies specific for 3-phosphohistidine and mass spectrometry. We also confirm a role for the histidine kinase, NME1, in glucose-induced FAKpoHis58 and ESCC cell proliferation, correlating with increased levels of NME1 in ESCC tumors versus normal esophageal tissues. Unbiased screening identified glucose-induced retinoblastoma transcriptional corepressor 1 (RB1) binding to FAK, mediated through a "LxCxE" RB1-binding motif in FAK's FERM domain. Importantly, in the absence of growth factors, glucose increased FAK scaffolding of RB1 in the cytoplasm, correlating with increased ESCC G1→S phase transition. Our data strongly suggest that this glucose-mediated mitogenic pathway is novel and represents a unique targetable opportunity in ESCC.
Collapse
|
25
|
Valenzuela G, Burotto M, Marcelain K, González-Montero J. Liquid biopsy to detect resistance mutations against anti-epidermal growth factor receptor therapy in metastatic colorectal cancer. World J Gastrointest Oncol 2022; 14:1654-1664. [PMID: 36187383 PMCID: PMC9516650 DOI: 10.4251/wjgo.v14.i9.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/19/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of mortality worldwide, associated with a steadily growing prevalence. Notably, the identification of KRAS, NRAS, and BRAF mutations has markedly improved targeted CRC therapy by affording treatments directed against the epidermal growth factor receptor (EGFR) and other anti-angiogenic therapies. However, the survival benefit conferred by these therapies remains variable and difficult to predict, owing to the high level of molecular heterogeneity among patients with CRC. Although classification into consensus molecular subtypes could optimize response prediction to targeted therapies, the acquisition of resistance mutations to targeted therapy is, in part, responsible for the lack of response in some patients. However, the acquisition of such mutations can induce challenges in clinical practice. The utility of liquid biopsy to detect resistance mutations against anti-EGFR therapy has recently been described. This approach may constitute a new standard in the decision algorithm for targeted CRC therapy.
Collapse
Affiliation(s)
- Guillermo Valenzuela
- Department of Basic and Clinical Oncology, University of Chile, Santiago 8380453, Chile
- Department of Internal Medicine, Hospital del Salvador, Santiago 7500922, Chile
| | - Mauricio Burotto
- Department of Oncology, Bradford-Hill Clinical Research Center, Santiago 8420383, Chile
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, University of Chile, Santiago 8380453, Chile
| | - Jaime González-Montero
- Department of Basic and Clinical Oncology, University of Chile, Santiago 8380453, Chile
- Department of Oncology, Bradford-Hill Clinical Research Center, Santiago 8420383, Chile
| |
Collapse
|
26
|
Youn GM, Case AG, Jarin T, Li B, Swarup A, Naranjo A, Bou-Khalil C, Yao J, Zhou Q, Hom ME, Rosenthal EL, Wu AY. The Use of Panitumumab-IRDye800CW in a Novel Murine Model for Conjunctival Squamous Cell Carcinoma. Transl Vis Sci Technol 2022; 11:23. [PMID: 35895055 PMCID: PMC9344218 DOI: 10.1167/tvst.11.7.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Conjunctival squamous cell carcinoma (SCC) is a sight-threatening ocular surface malignancy with the primary treatment modality being surgical resection. To evaluate surgical imaging modalities to improve surgical resection, we established a novel murine model for conjunctival SCC to demonstrate the utility of panitumumab-IRDye800, a fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibody. Methods NOD-scid IL2Rgammanull (NSG) mice received subconjunctival injection of UM-SCC-1 or SCC-9, head and neck SCC cell lines. On tumor growth, mice were injected with Panitumumab-IRDye800CW, and imaged with a small animal imaging system and optical coherence tomography (OCT). Immunohistochemistry for SCC markers were used to confirm tumor origin. Results Seventy-five percent (N = 4) of the UM-SCC-1 group developed aggressive, rapidly growing tumors that were P40 and EGFR positive within two weeks of inoculation. The SCC-9 tumors failed to demonstrate any growth (N = 4). Ocular tumors demonstrated high fluorescence levels with a tumor to background ratio of 3.8. Conclusions Subconjunctival injections are an appropriate technique to create in vivo models for assessing treatment modalities and novel therapies in conjunctival SCC. Translational Relevance This model demonstrates Panitumumab-IRDye800CW's utility in the ophthalmic setting and suggests that clinical trials may be warranted.
Collapse
Affiliation(s)
- Gun Min Youn
- Stanford University School of Medicine, Stanford, CA, USA.,Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ayden G Case
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA.,Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Trent Jarin
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - BaoXiang Li
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aditi Swarup
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrea Naranjo
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Charbel Bou-Khalil
- Stanford University School of Medicine, Stanford, CA, USA.,Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacqueline Yao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Quan Zhou
- Department of Otolaryngology-Head and Neck Surgery, Stanford Hospital and Clinics, Stanford, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Marisa E Hom
- Department of Otolaryngology-Head and Neck Surgery, Stanford Hospital and Clinics, Stanford, CA, USA.,Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Stanford Hospital and Clinics, Stanford, CA, USA.,Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
de Souza Oliveira PF, Faria AVS, Clerici SP, Akagi EM, Carvalho HF, Justo GZ, Durán N, Ferreira-Halder CV. Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition. J Cell Biochem 2022; 123:1247-1258. [PMID: 35661241 DOI: 10.1002/jcb.30295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Violacein is a secondary metabolite produced by several microorganisms including Chromobacterium violaceum, and it is already used in food and cosmetics. However, due to its potent anticancer and low side effects, its molecular action needs to be deeply scrutinized. Therefore, the main objective of this study was to evaluate the violacein's ability to interfere with three cancer hallmarks: growth factors receptor-dependent signaling, proliferation, and epithelial-mesenchymal transition (EMT). Violacein has been associated with the induction of apoptosis in colorectal cancer (CRC) cells. Here, we demonstrate that this molecule is also active in CRC spheroids and inhibits cell migration. Violacein treatment reduced the amount of EGFR and AXL receptors in the HT29 cell line. Accordingly, the inhibition of the AKT, ERK, and PKCδ kinases, which are downstream mediators of the signaling pathways triggered by EGFR and AXL, is detected. Another interesting finding was that even when the cells were stimulated with transforming growth factor-β, the EMT marker (N-cadherin) decreased. Therefore, this study provides further evidence that reinforces the potential of violacein as an antitumor agent, once this biomolecule can "switch off" properties associated with cancer plasticity.
Collapse
Affiliation(s)
| | - Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Stefano P Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Erica M Akagi
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Department of Pharmaceutical Sciences and Biochemistry, Federal University of São Paulo (UNIFESP-Diadema), São Paulo, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
28
|
Ahcene Djaballah S, Daniel F, Milani A, Ricagno G, Lonardi S. HER2 in Colorectal Cancer: The Long and Winding Road From Negative Predictive Factor to Positive Actionable Target. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35580290 DOI: 10.1200/edbk_351354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a well-known oncogenic driver in different tumors and an approved therapeutic target in breast and gastroesophageal cancer. In metastatic colorectal cancer, only 3% to 5% of patients present with HER2 alterations: somatic mutations and amplifications. HER2 was first assessed as a biomarker of resistance to anti-EGFR therapy; however, in more recent years, its role as a potential actionable target has emerged. In this article, we discuss the predictive and prognostic value of HER2 in metastatic colorectal cancer, its emerging role as an actionable therapeutic target, and its possible future developments.
Collapse
Affiliation(s)
| | - Francesca Daniel
- Medical Oncology Unit 1, Veneto Institute of Oncology IRCCS, Padua, Italy
| | - Anna Milani
- Medical Oncology Unit 3, Veneto Institute of Oncology IRCCS, Padua, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Gianmarco Ricagno
- Medical Oncology Unit 3, Veneto Institute of Oncology IRCCS, Padua, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Sara Lonardi
- Medical Oncology Unit 3, Veneto Institute of Oncology IRCCS, Padua, Italy
| |
Collapse
|
29
|
Krieg D, Winter G, Svilenov HL. It is never too late for a cocktail - Development and analytical characterization of fixed-dose antibody combinations. J Pharm Sci 2022; 111:2149-2157. [DOI: 10.1016/j.xphs.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
|
30
|
Han J, Wang X, Zhang C, Wu Q, Ma X, Li Y, Chen Z, Zhang R, Zhang G, Lin J, Lu L, Zhu W, Jia H, Zhang J, Fan J, Chen J. Clinicopathological and prognostic significance of HER2 status in surgically resected colorectal liver metastases. J Surg Oncol 2022; 125:991-1001. [PMID: 35150441 DOI: 10.1002/jso.26815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND The clinicopathological and prognostic significance of human epidermal growth factor receptor 2 (HER2) status in surgically resected colorectal liver metastases (CRLM) remains uncertain. METHODS HER2 expression was evaluated by immunohistochemical (IHC) in two CRLM tissue microarrays (TMAs). For samples with an IHC score of 2+ or 3+, fluorescence in situ hybridization (FISH) was performed to assess HER2 amplification. The association of HER2 amplification with clinicopathological parameters and prognosis was assessed using Fisher's exact test and Kaplan-Meier method, respectively. RESULTS HER2 expression was consistent between primary tumor and liver metastases in 66.9% (85/127) cases (r = 0.643, p = 0.001). After FISH validation, HER2 amplification was identified in 6.25% (13/208) patients. HER2 amplification was significantly associated with age (p = 0.017), bilobar involvement (p = 0.005) and left-sided RAS/RAF wild-type status (p = 0.002). In the overall cohort, HER2 amplification was correlated with significantly worse relapse-free survival (RFS). Further stratification revealed that among left-sided RAS/RAF wild-type cases, HER2 amplification was significantly associated with worse overall survival (OS) (30.2 vs. 50.9 months, p = 0.040) and RFS (5.77 vs. 19.97 months, p = 0.017). CONCLUSION HER2 amplification is more enriched in CRLMs with younger age, left-sided RAS/RAF wild-type, and bilobar involvement. Moreover, HER2 amplification predicts a poorer prognosis especially in left-sided RAS/RAF wild-type CRLMs.
Collapse
Affiliation(s)
- Jiahao Han
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangyu Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chong Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaochen Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yitong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenmei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Guo Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Aboul-Fettouh N, Morse D, Patel J, Migden MR. Immunotherapy and Systemic Treatment of Cutaneous Squamous Cell Carcinoma. Dermatol Pract Concept 2021; 11:e2021169S. [PMID: 34877077 DOI: 10.5826/dpc.11s2a169s] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Cutaneous squamous cell carcinomas (cSCC) represent one of the most diagnosed non-melanoma skin cancers and its incidence is increasing globally. Whereas early stage and low risk cSCC is typically treated with surgery, and in some cases other localized therapeutic modalities, locally advanced or metastatic cSCC is a cause of significant morbidity and mortality that requires a different approach to therapy. Therapeutic attempts at treating advanced cSCC include a multi-disciplinary approach with considerations for surgery, radiation, and systemic therapies. In this review, we will discuss the various systemic therapies that have been trialed for advanced cSCC, beginning with the early cytotoxic and platinum-based agents as well as their corresponding limitations. We will then review the targeted approaches using EGFR inhibitors prior to discussing the more recent immunotherapeutics that have shown good tumor responses in this often-lethal disease.
Collapse
Affiliation(s)
- Nader Aboul-Fettouh
- Department of Dermatology, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Daniel Morse
- Department of Dermatology, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Jigar Patel
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R Migden
- Departments of Dermatology and Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Association between Altered Oncogenic Signaling Pathways and Overall Survival of Patients with Metastatic Colorectal Cancer. Diagnostics (Basel) 2021; 11:diagnostics11122308. [PMID: 34943546 PMCID: PMC8700603 DOI: 10.3390/diagnostics11122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Systemic characterization of genomic alterations into signaling pathways helps to understand the molecular pathogenies of colorectal cancer; however, their clinical implications remain unclear. Here, 128 patients with metastatic colorectal cancer (mCRC) receiving targeted next generation sequencing were retrospectively enrolled to analyze the impact of altered oncogenic pathways on clinical outcome. The datasets from Memorial Sloan Kettering Cancer Center were used for validation. In 123 patients with non-MSI-high tumor, the most common mutated gene was TP53 (84.6%), followed by APC (78.0%), KRAS (49.6%), and SMAD4 (22.8%). When mutated genes were allocated into signaling pathways defined as The Cancer Genome Atlas Pan-Cancer Analysis Project, alterations of cell cycle, Wnt, p53, RTK-RAS, PI3K, TGF-β, Notch, and Myc pathways were identified in 88%, 87%, 85%, 75%, 28%, 26%, 17%, and 10% of mCRC tissues, respectively. The survival analyses revealed that Myc and TGF-β pathway alterations were associated with a shorter overall survival (OS) (hazard ratio [HR]: 2.412; 95% confidence interval [CI]: 1.139–5.109; p = 0.018 and HR: 2.754; 95% CI: 1.044–7.265; p = 0.033, respectively). The negative prognostic impact of altered TGF-β pathway was maintained in patients receiving an anti-EGFR antibody. The OS of patients with mCRC carrying MYC and BRAF mutation was shorter than those with either MYC or BRAF mutation (HR: 4.981, 95% CI: 0.296–83.92; p = 0.02). These findings have clinical implications, such as prognosis prediction, treatment guidance, and molecular-targeted therapy development.
Collapse
|
33
|
Siddiqui Z, Ahmed S, Vickers M. Epidermal Growth Factor Receptor Inhibitor-Induced Hypomagnesaemia: Is There a Best Replacement Strategy? EUROPEAN MEDICAL JOURNAL 2021. [DOI: 10.33590/emj/21-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Monoclonal antibodies targeting the epidermal growth factor receptor (EGFRI), such as cetuximab and panitumumab, are commonly used systemic therapies for advanced colorectal and head and neck cancers. Hypomagnesaemia is a common side effect of these therapies and occurs in up to 30% of patients. Interruption of EGFR signalling in the distal convoluted tubule leads to inactivation of the transcellular transporter transient receptor potential channel melastatin member 6 and increased renal magnesium excretion. This paper describes the incidence, risk factors, and the emerging management options for EGFRI-induced hypomagnesaemia.
Collapse
Affiliation(s)
- Zeba Siddiqui
- Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Sumaiya Ahmed
- Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Michael Vickers
- Department of Medicine, Division of Medical Oncology, The Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
34
|
Altered binding avidities and improved growth inhibitory effects of novel anti-HER3 mAb against human cancers in the presence of HER1-or HER2-targeted drugs. Biochem Biophys Res Commun 2021; 576:59-65. [PMID: 34482024 DOI: 10.1016/j.bbrc.2021.08.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/20/2022]
Abstract
HER1-and HER2-targeted drugs are effective in cancer therapy, especially against lung, breast and colon malignancies; however, resistance of cancer cells to HER1-and HER2-targeted therapies is becoming a serious problem. The avidity/affinity constant (KA) and growth inhibitory effect of anti-HER3 rat monoclonal antibodies (mAb, Ab1∼Ab6) in the presence of therapeutic mAb or low-molecular-weight inhibitors against HER family proteins were analyzed by flow cytometry-based Scatchard plots (Splot) and cell proliferation assay. The KA of Ab3 and Ab6, but not Ab1 or Ab4, split into dual (high and low) modes of KA, and Ab6 exhibited greater anti-proliferative effects against LS-174T colon cancer cells in the presence of Pertuzumab (anti-HER2 mAb). A high KA by Ab6 and Ab6-mediated increased growth inhibition were observed against NCI-H1838 lung or BT474 breast cancer cells, respectively, in the presence of Panitumumab (anti-HER1 mAb) or Perutuzumab. A high KA by Ab6 and Ab6-mediated increased anti-proliferative effects against NCI-H1838 or BT474 were also respectively observed in the presence of Erlotinib (HER1 inhibitor) or Lapatinib (HER1/HER2 inhibitor). In HER1-knockout (KO) NCI-H1838, the reactivity and KA of Ab4 increased compared with in parent NCI-H1838. In HER1-KO or HER3-KO SW1116 colon cancer cells, dual modes of KA with Pertuzumab were noted, and the combination Ab6 and Pertuzumab promoted growth inhibition of HER1-KO, but not of parent SW1116.
Collapse
|
35
|
Colorectal Cancer: From Genetic Landscape to Targeted Therapy. JOURNAL OF ONCOLOGY 2021; 2021:9918116. [PMID: 34326875 PMCID: PMC8277501 DOI: 10.1155/2021/9918116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer type and the second cause of death worldwide. The advancement in understanding molecular pathways involved in CRC has led to new classifications based on the molecular characteristics of each tumor and also improved CRC management through the integration of targeted therapy into clinical practice. In this review, we will present the main molecular pathways involved in CRC carcinogenesis, the molecular classifications. The anti-VEGF and anti-EGFR therapies currently used in CRC treatment and those under clinical investigation will also be outlined, as well as the mechanisms of primary and acquired resistance to anti-EGFR monoclonal antibodies (cetuximab and panitumumab). Targeted therapy has led to great improvement in the treatment of metastatic CRC. However, there has been variability in CRC treatment outcomes due to molecular heterogeneity in colorectal tumors, which underscores the need for identifying prognostic and predictive biomarkers for CRC-targeted drugs.
Collapse
|
36
|
Azadi A, Golchini A, Delazar S, Abarghooi Kahaki F, Dehnavi SM, Payandeh Z, Eyvazi S. Recent Advances on Immune Targeted Therapy of Colorectal Cancer Using bi-Specific Antibodies and Therapeutic Vaccines. Biol Proced Online 2021; 23:13. [PMID: 34193050 PMCID: PMC8245152 DOI: 10.1186/s12575-021-00147-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a universal heterogeneous disease that is characterized by genetic and epigenetic alterations. Immunotherapy using monoclonal antibodies (mAb) and cancer vaccines are substitute strategies for CRC treatment. When cancer immunotherapy is combined with chemotherapy, surgery, and radiotherapy, the CRC treatment would become excessively efficient. One of the compelling immunotherapy approaches to increase the efficiency of CRC therapy is the deployment of therapeutic mAbs, nanobodies, bi-specific antibodies and cancer vaccines, which improve clinical outcomes in patients. Also, among the possible therapeutic approaches for CRC patients, gene vaccines in combination with antibodies are recently introduced as a new perspective. Here, we aimed to present the current progress in CRC immunotherapy, especially using Bi-specific antibodies and dendritic cells mRNA vaccines. For this aim, all data were extracted from Google Scholar, PubMed, Scopus, and Elsevier, using keywords cancer vaccines; CRC immunotherapy and CRC mRNA vaccines. About 97 articles were selected and investigated completely based on the latest developments and novelties on bi-specific antibodies, mRNA vaccines, nanobodies, and MGD007.
Collapse
Affiliation(s)
- Ali Azadi
- Department of Medicine, De La Salle Health Sciences Institute, Dasmariñas, Philippines
| | - Alireza Golchini
- Cancer surgery Department; Shiraz Medical School, Shiraz University of medical Sciences, Shiraz, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
37
|
Uribe ML, Marrocco I, Yarden Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers (Basel) 2021; 13:cancers13112748. [PMID: 34206026 PMCID: PMC8197917 DOI: 10.3390/cancers13112748] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has served as the founding member of the large family of growth factor receptors harboring intrinsic tyrosine kinase function. High abundance of EGFR and large internal deletions are frequently observed in brain tumors, whereas point mutations and small insertions within the kinase domain are common in lung cancer. For these reasons EGFR and its preferred heterodimer partner, HER2/ERBB2, became popular targets of anti-cancer therapies. Nevertheless, EGFR research keeps revealing unexpected observations, which are reviewed herein. Once activated by a ligand, EGFR initiates a time-dependent series of molecular switches comprising downregulation of a large cohort of microRNAs, up-regulation of newly synthesized mRNAs, and covalent protein modifications, collectively controlling phenotype-determining genes. In addition to microRNAs, long non-coding RNAs and circular RNAs play critical roles in EGFR signaling. Along with driver mutations, EGFR drives metastasis in many ways. Paracrine loops comprising tumor and stromal cells enable EGFR to fuel invasion across tissue barriers, survival of clusters of circulating tumor cells, as well as colonization of distant organs. We conclude by listing all clinically approved anti-cancer drugs targeting either EGFR or HER2. Because emergence of drug resistance is nearly inevitable, we discuss the major evasion mechanisms.
Collapse
|
38
|
Yang YCSH, Ko PJ, Pan YS, Lin HY, Whang-Peng J, Davis PJ, Wang K. Role of thyroid hormone-integrin αvβ3-signal and therapeutic strategies in colorectal cancers. J Biomed Sci 2021; 28:24. [PMID: 33827580 PMCID: PMC8028191 DOI: 10.1186/s12929-021-00719-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormone analogues-particularly, L-thyroxine (T4) has been shown to be relevant to the functions of a variety of cancers. Integrin αvβ3 is a plasma membrane structural protein linked to signal transduction pathways that are critical to cancer cell proliferation and metastasis. Thyroid hormones, T4 and to a less extend T3 bind cell surface integrin αvβ3, to stimulate the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway to stimulate cancer cell growth. Thyroid hormone analogues also engage in crosstalk with the epidermal growth factor receptor (EGFR)-Ras pathway. EGFR signal generation and, downstream, transduction of Ras/Raf pathway signals contribute importantly to tumor cell progression. Mutated Ras oncogenes contribute to chemoresistance in colorectal carcinoma (CRC); chemoresistance may depend in part on the activity of ERK1/2 pathway. In this review, we evaluate the contribution of thyroxine interacting with integrin αvβ3 and crosstalking with EGFR/Ras signaling pathway non-genomically in CRC proliferation. Tetraiodothyroacetic acid (tetrac), the deaminated analogue of T4, and its nano-derivative, NDAT, have anticancer functions, with effectiveness against CRC and other tumors. In Ras-mutant CRC cells, tetrac derivatives may overcome chemoresistance to other drugs via actions initiated at integrin αvβ3 and involving, downstream, the EGFR-Ras signaling pathways.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Jui Ko
- School of Medicine, I-Shou University, Kaohsiung, 84001, Taiwan.,Department of Pediatrics, E-DA Hospital, Kaohsiung, 82445, Taiwan
| | - Yi-Shin Pan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.
| | - Jacqueline Whang-Peng
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.,Albany Medical College, Albany, NY, 12144, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
39
|
Zhu G, Wu Z, Lui S, Hu N, Wu M. Advances in Imaging Modalities and Contrast Agents for the Early Diagnosis of Colorectal Cancer. J Biomed Nanotechnol 2021; 17:558-581. [PMID: 35057884 DOI: 10.1166/jbn.2021.3064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer is one of the most common gastrointestinal cancers worldwide. The mortality rate of colorectal cancer has declined by more than 20% due to the rapid development of early diagnostic techniques and effective treatment. At present, there are many diagnostic modalities
available for the evaluation of colorectal cancer, such as the carcinoembryonic antigen test, the fecal occult blood test, endoscopy, X-ray barium meal, computed tomography, magnetic resonance imaging, and radionuclide examination. Sensitive and specific imaging modalities have played an increasingly
important role in the diagnosis of colorectal cancer following the rapid development of novel contrast agents. This review discusses the applications and challenges of different imaging techniques and contrast agents applied to detect colorectal cancer, for the purpose of the early diagnosis
and treatment of patients with colorectal cancer.
Collapse
Affiliation(s)
- Guannan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
40
|
The Landscape of PIK3CA Mutations in Colorectal Cancer. Clin Colorectal Cancer 2021; 20:201-215. [PMID: 33744168 DOI: 10.1016/j.clcc.2021.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer is one of the most common malignancies in both men and women. Despite progress in the treatment of the disease, metastatic colorectal cancer remains lethal with a median survival slightly surpassing 2 years and commonly for some cases a more aggressive course. New therapies are urgently needed based on a better understanding of the molecular pathogenesis of the disease. METHODS The focus of this investigation is the PIK3CA gene, encoding the alpha catalytic subunit of the enzyme phosphatidylinositol-3 kinase (PI3K). Publicly available data from 3 extensive published series of colorectal carcinomas were analyzed to define the molecular landscape of colorectal adenocarcinomas with and without mutations of PIK3CA. An analysis for discovery of associations with alterations in other critical genes and pathways involved in colorectal cancer was performed. The total mutation burden (TMB) and copy number alteration burden of colorectal cancers with and without mutations of PIK3CA, as well as prognostic implications of alterations of the gene for survival, were examined. RESULTS Mutations in PIK3CA are observed in 20% to 25% of colorectal cancers. PIK3CA represents one of the most frequently mutated oncogenes in these cancers. Mutations in PIK3CA are associated with higher rates of mutations in other genes of important cancer-associated pathways such as the tyrosine kinase receptors/K-Ras/BRAF/MAPK and the Wnt/β-catenin pathway. In addition, PIK3CA mutated colorectal cancers display a higher TMB than nonmutated cancers. CONCLUSION Frequent mutations of PIK3CA gene in colorectal carcinomas may represent an opportunity for targeted therapy combination development inhibiting both the PI3K kinase itself and associated pathway defects. Increased TMB may additionally confer immunotherapy sensitivity, which could be augmented by other targeted therapies.
Collapse
|
41
|
Danesi R, Fogli S, Indraccolo S, Del Re M, Dei Tos AP, Leoncini L, Antonuzzo L, Bonanno L, Guarneri V, Pierini A, Amunni G, Conte P. Druggable targets meet oncogenic drivers: opportunities and limitations of target-based classification of tumors and the role of Molecular Tumor Boards. ESMO Open 2021; 6:100040. [PMID: 33540286 PMCID: PMC7859305 DOI: 10.1016/j.esmoop.2020.100040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic landscape of cancer is changing rapidly due to the growing number of approved drugs capable of targeting specific genetic alterations. This aspect, together with the development of noninvasive methods for the assessment of somatic mutations in the peripheral blood of patients, generated a growing interest toward a new tumor-agnostic classification system based on ‘predictive’ biomarkers. The current review article discusses this emerging alternative approach to the classification of cancer and its implications for the selection of treatments. It is suggested that different types of cancers sharing the same molecular profiles could benefit from the same targeted drugs. Although recent clinical trials have demonstrated that this approach cannot be generalized, there are also specific examples that demonstrate the clinical utility of this alternative vision. In this rapidly evolving scenario, a multidisciplinary approach managed by institutional Molecular Tumor Boards is fundamental to interpret the biological and clinical relevance of genetic alterations and the complexity of their relationship with treatment response. The identification of oncogenic drivers offers the opportunity to develop target-specific drugs. The inhibition of crucial pathways realizes the principle of druggable target to exploit cancer vulnerability. The approval of new anticancer agents based on target-based concept represents a paradigm shift in cancer therapy. However, only few drugs have been approved so far on an agnostic basis and the concept of biomarker cannot be generalized. Tumor Molecular Boards will have an increasing role in the identification of new therapeutic options in selected patients.
Collapse
Affiliation(s)
- R Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Indraccolo
- Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A P Dei Tos
- Department of Medicine, School of Medicine, University of Padua, Padua, Italy
| | - L Leoncini
- Department of Medical Biotechnology, Anatomic Pathology Division, University of Siena, Siena, Italy
| | - L Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - L Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - V Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - A Pierini
- Integrated Access, Roche, Monza, Italy
| | - G Amunni
- Institute for the Study, Prevention and Oncology Network (ISPRO), Florence, Italy.
| | - P Conte
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
42
|
Jin KT, Chen B, Liu YY, Lan HUR, Yan JP. Monoclonal antibodies and chimeric antigen receptor (CAR) T cells in the treatment of colorectal cancer. Cancer Cell Int 2021; 21:83. [PMID: 33522929 PMCID: PMC7851946 DOI: 10.1186/s12935-021-01763-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Besides common therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, novel therapeutic approaches, including immunotherapy, have been an advent in CRC treatment. The immunotherapy approaches try to elicit patients` immune responses against tumor cells to eradicate the tumor. Monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells are two branches of cancer immunotherapy. MAbs demonstrate the great ability to completely recognize cancer cell-surface receptors and blockade proliferative or inhibitory pathways. On the other hand, T cell activation by genetically engineered CAR receptor via the TCR/CD3 and costimulatory domains can induce potent immune responses against specific tumor-associated antigens (TAAs). Both of these approaches have beneficial anti-tumor effects on CRC. Herein, we review the different mAbs against various pathways and their applications in clinical trials, the different types of CAR-T cells, various specific CAR-T cells against TAAs, and their clinical use in CRC treatment.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - Bo Chen
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - H Uan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - Jie-Ping Yan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, China.
| |
Collapse
|
43
|
The EMA assessment of encorafenib in combination with cetuximab for the treatment of adult patients with metastatic colorectal carcinoma harbouring the BRAFV600E mutation who have received prior therapy. ESMO Open 2021; 6:100031. [PMID: 33422765 PMCID: PMC7809377 DOI: 10.1016/j.esmoop.2020.100031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 12/24/2022] Open
Abstract
On 2 June 2020, a marketing authorisation valid through the European Union (EU) was issued for encorafenib in combination with cetuximab in adult patients with metastatic colorectal carcinoma (mCRC) with the BRAFV600E mutation who had received prior systemic therapy. Encorafenib plus cetuximab was evaluated in a randomised phase III trial of encorafenib plus binimetinib plus cetuximab versus encorafenib plus cetuximab versus cetuximab plus irinotecan or FOLFIRI (control arm) to adult patients with BRAFV600E mCRC who had received prior therapy for metastatic disease. The median overall survival was 9.3 months [95% confidence interval (CI): 8.05-11.30] versus 5.88 months (95% CI: 5.09-7.10) for encorafenib plus cetuximab (doublet) versus the control arm, respectively [hazard ratio (HR) 0.61, 95% CI: 0.48-0.77]. Progression-free survival (PFS) was 4.27 months (95% CI: 4.07-5.45) versus 1.54 months (95% CI: 1.48-1.91) (HR 0.44; 95% CI: 0.35-0.55). The most frequent adverse events in patients receiving encorafenib plus cetuximab were fatigue, nausea, diarrhoea, acneiform dermatitis, abdominal pain, arthralgia, decreased appetite, vomiting and rash. The aim of this manuscript is to summarise the scientific review of the application leading to regulatory approval in the EU. Encorafenib was approved in combination with cetuximab for patients with previously treated BRAF plus colorectal carcinoma. The original submission also included binimetinib, which was withdrawn during the procedure. The benefit–risk balance was considered positive due to a large benefit on PFS and strong biologic rationale.
Collapse
|
44
|
Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives. Ann Oncol 2021; 31:30-40. [PMID: 31912793 DOI: 10.1016/j.annonc.2019.10.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) inhibitors are valuable therapeutics in metastatic colorectal cancer (mCRC). Anti-EGFR monoclonal antibodies (MoAbs), such as cetuximab or panitumumab, in combination with chemotherapy are effective treatment options for patients with RAS and BRAF wild-type mCRC. Nevertheless, several issues are still open concerning the optimal use of anti-EGFR drugs in the continuum of care of mCRC. Novel approaches for increasing the efficacy of anti-EGFR therapies include better molecular selection of EGFR-dependent mCRC, intensification of chemotherapy, combination of anti-EGFR MoAbs and immune checkpoint inhibitors, and reintroduction of EGFR blockade or 'rechallenge' in selected patients who have previously responded to anti-EGFR MoAb therapy. An extensive translational research program was conducted in the Cetuximab After Progression in KRAS wIld-type colorectal cancer patients-Gruppo Oncologico dell' Italia Meridionale (CAPRI-GOIM) study with the aims of determining which subgroups of patients could benefit from the continuous inhibition of EGFR, from evaluating the role of liquid biopsy-based and its concordance with tissue-based molecular testing, and from investigating novel potential mechanisms of resistance to anti-EGFR therapies. In this review, we summarize the translational and clinical findings of the CAPRI-GOIM program in the context of the current knowledge of therapeutic strategies and of ongoing research on more appropriate uses of anti-EGFR therapies in RAS and BRAF wild-type mCRC patients.
Collapse
|
45
|
He X, Zhong X, Hu Z, Zhao S, Wei P, Li D. An insight into small extracellular vesicles: Their roles in colorectal cancer progression and potential clinical applications. Clin Transl Med 2020; 10:e249. [PMID: 33377655 PMCID: PMC7733319 DOI: 10.1002/ctm2.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a leading cause of mortality worldwide. Small extracellular vesicles (sEVs) are nano-sized extracellular vesicles containing a variety of bioactive molecules, such as nucleic acids, proteins, lipids, and metabolites. Recent evidence from CRC has revealed that sEVs contribute to tumorigenesis, progression, and drug resistance, and serve as a tool for "liquid biopsy" and a drug delivery system for therapy. In this review, we summarize information about the roles of sEVs in the proliferation, invasion, migration, epithelial-mesenchymal transition, formation of the premetastatic niche, and drug resistance to elucidate the mechanisms governing sEVs in CRC and to identify novel targets for therapy and prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zijuan Hu
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ping Wei
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
46
|
Diagnostic Strategies toward Clinical Implementation of Liquid Biopsy RAS/BRAF Circulating Tumor DNA Analyses in Patients with Metastatic Colorectal Cancer. J Mol Diagn 2020; 22:1430-1437. [PMID: 32961317 DOI: 10.1016/j.jmoldx.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Detection of KRAS, NRAS, and BRAF mutations in tumor tissue is currently used to predict resistance to treatment with anti-epidermal growth factor receptor (EGFR) antibodies in patients with metastatic colorectal cancer (mCRC). Liquid biopsies are minimally invasive, and cell-free circulating tumor DNA (ctDNA) mutation analyses may better represent tumor heterogeneity. This study examined the incorporation of liquid biopsy RAS/BRAF ctDNA analyses into diagnostic strategies to determine mCRC patient eligibility for anti-EGFR therapy. Tumor tissue and liquid biopsies were collected from 100 mCRC patients with liver-only metastases in a multicenter prospective clinical trial. Three diagnostic strategies incorporating droplet digital PCR ctDNA analyses were compared with routine tumor tissue RAS/BRAF mutation profiling using decision tree analyses. Tissue DNA mutations in KRAS, NRAS, and BRAF were present in 54%, 0%, and 3% of mCRC patients, respectively. A 93% concordance was observed between tissue DNA and liquid biopsy ctDNA mutations. The proportion of patients with RAS/BRAF alterations increased from 57% to 60% for diagnostic strategies that combined tissue and liquid biopsy mutation analyses. Consecutive RAS/BRAF ctDNA analysis followed by tissue DNA analysis in case of a liquid biopsy-negative result appeared to be the most optimal diagnostic strategy to comprehensively determine eligibility for anti-EGFR therapy in a cost-saving manner. These results highlight the potential clinical utility of liquid biopsies for detecting primary resistance to anti-EGFR-targeted therapies.
Collapse
|
47
|
Cardone C, Blauensteiner B, Moreno-Viedma V, Martini G, Simeon V, Vitiello PP, Ciardiello D, Belli V, Matrone N, Troiani T, Morgillo F, Zito Marino F, Dentice M, Nappi A, Boccaccino A, Antoniotti C, Cremolini C, Pietrantonio F, Prager GW, Normanno N, Maiello E, Argiles G, Elez E, Signoriello G, Franco R, Falcone A, Tabernero J, Sibilia M, Ciardiello F, Martinelli E. AXL is a predictor of poor survival and of resistance to anti-EGFR therapy in RAS wild-type metastatic colorectal cancer. Eur J Cancer 2020; 138:1-10. [PMID: 32818762 DOI: 10.1016/j.ejca.2020.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND RAS mutations are the only validated biomarkers in metastatic colorectal cancer (mCRC) for anti-epidermal growth factor receptor (EGFR) therapy. Limited clinical information is available on AXL expression, marker of epithelial to mesenchymal transition, in mCRC. METHODS AXL was retrospectively assessed by immunohistochemistry in 307 patients. RAS wild-type (WT) patients (N = 136) received first-line anti-EGFR-based therapy; RAS mutant patients (N = 171) received anti-angiogenic-based regimens. Preclinical experiments were performed using human RAS WT CRC cell lines and xenograft models. AXL RNA levels were assessed in a cohort of patients with available samples at baseline and at progression to anti-EGFR treatment and in the GSE5851 dataset. RESULTS AXL was expressed in 55/307 tumour tissues, correlating with worse survival in the overall population (AXL-positive, 23.7 months; AXL-negative, 30.8 months; HR, 1.455, P = 0.032) and in RAS WT patients (AXL-positive, 23.0 months; AXL-negative, 35.8 months; HR,1.780, P = 0.032). Progression-free survival (PFS) in the RAS WT cohort was shorter in the AXL-positive cohort (6.2 months versus 12.1 months; HR, 1.796, P = 0.013). Three-dimensional cultures obtained from a patient following anti-EGFR therapy resulted AXL-positive, showing resistance to anti-EGFR drugs and sensitivity to AXL inhibition. AXL transfection in CRC cell lines induced AXL overexpression and resistance to the EGFR blockade. At progression to cetuximab, 2/10 SW48-tumour xenograft mice showed AXL expression. Consistently, AXL RNA levels increased in 5/7 patients following anti-EGFR therapy. Moreover, in the GSE5851 dataset higher AXL RNA levels correlated with worse PFS with cetuximab in KRAS-exon2 WT chemorefractory patients. CONCLUSIONS AXL is a marker of poor prognosis in mCRC with consistent clinical and preclinical evidences of involvement in primary and acquired resistance to anti-EGFR drugs in RAS WT patients.
Collapse
Affiliation(s)
- Claudia Cardone
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Bernadette Blauensteiner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Wien, Austria
| | - Veronica Moreno-Viedma
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Wien, Austria
| | - Giulia Martini
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vittorio Simeon
- Department of Public, Clinical and Preventive Medicine, Medical Statistics Unit, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Pietro P Vitiello
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Davide Ciardiello
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Valentina Belli
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Nunzia Matrone
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Troiani
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Annarita Nappi
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Carlotta Antoniotti
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Fondazione IRCCS Istituto Nazionale Dei Tumori, Università di Milano, Milan, Italy
| | - Gerald W Prager
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Wien, Austria
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Evaristo Maiello
- Department of Oncology and Hematology, Foundation IRCCS 'Casa Sollievo Della Sofferenza', San Giovanni Rotondo, Italy
| | - Guillem Argiles
- Vall D'Hebron University Hospital (HUVH) and Vall D'Hebron Institute of Oncology (VHIO), UVic-UCC, IOB-Quiron, Barcelona, Spain
| | - Elena Elez
- Vall D'Hebron University Hospital (HUVH) and Vall D'Hebron Institute of Oncology (VHIO), UVic-UCC, IOB-Quiron, Barcelona, Spain
| | - Giuseppe Signoriello
- Department of Public, Clinical and Preventive Medicine, Medical Statistics Unit, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Renato Franco
- Pathology Unit, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfredo Falcone
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Josep Tabernero
- Vall D'Hebron University Hospital (HUVH) and Vall D'Hebron Institute of Oncology (VHIO), UVic-UCC, IOB-Quiron, Barcelona, Spain
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Wien, Austria
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Erika Martinelli
- Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
48
|
Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2020; 9:E34. [PMID: 32698317 PMCID: PMC7551545 DOI: 10.3390/antib9030034] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibody-based immunotherapy is now considered to be a main component of cancer therapy, alongside surgery, radiation, and chemotherapy. Monoclonal antibodies possess a diverse set of clinically relevant mechanisms of action. In addition, antibodies can directly target tumor cells while simultaneously promoting the induction of long-lasting anti-tumor immune responses. The multifaceted properties of antibodies as a therapeutic platform have led to the development of new cancer treatment strategies that will have major impacts on cancer care. This review focuses on the known mechanisms of action, current clinical applications for the treatment of cancer, and mechanisms of resistance of monoclonal antibody therapy. We further discuss how monoclonal antibody-based strategies have moved towards enhancing anti-tumor immune responses by targeting immune cells instead of tumor antigens as well as some of the current combination therapies.
Collapse
Affiliation(s)
- David Zahavi
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA;
| | - Louis Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
49
|
Martini G, Ciardiello D, Vitiello PP, Napolitano S, Cardone C, Cuomo A, Troiani T, Ciardiello F, Martinelli E. Resistance to anti-epidermal growth factor receptor in metastatic colorectal cancer: What does still need to be addressed? Cancer Treat Rev 2020; 86:102023. [PMID: 32474402 DOI: 10.1016/j.ctrv.2020.102023] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) represents a global health problem, being one of the most diagnosed and aggressive tumors. Cetuximab and panitumumab monoclonal antibodies (mAbs) in combination with chemotherapy are an effective strategy for patients with RAS Wild Type (WT) metastatic colorectal cancer (mCRC). However, tumors are often unresponsive or develop resistance. In the last years, molecular alterations in principal oncogenes (RAS, BRAF, PI3KCA, PTEN) in the downstream pathway of the epidermal growth factor receptor (EGFR) and in other receptors (HER2, MET) that converge on MAPK-ERK signalling have been identified as novel mechanisms of resistance to anti-EGFR strategies. However, further efforts are needed to better stratify CRCs and ensure more individualized treatments. Herein, we describe the consolidated molecular drivers of resistance and the therapeutic strategies available so far, with an overview on potential biomarkers of response that could be integrated in clinical practice.
Collapse
Affiliation(s)
- Giulia Martini
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Davide Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Pietro Paolo Vitiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Stefania Napolitano
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Claudia Cardone
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Antonio Cuomo
- Gastroenterology Unit, Ospedale Umberto I, Nocera Inferiore, Italy
| | - Teresa Troiani
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Erika Martinelli
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
50
|
Kang DY, Sp N, Jo ES, Rugamba A, Hong DY, Lee HG, Yoo JS, Liu Q, Jang KJ, Yang YM. The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) Cells. Cancers (Basel) 2020; 12:E727. [PMID: 32204508 PMCID: PMC7140102 DOI: 10.3390/cancers12030727] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype and accounts for more than 80% of all lung cancer cases. Epidermal growth factor receptor (EGFR) phosphorylation by binding growth factors such as EGF activates downstream prooncogenic signaling pathways including KRAS-ERK, JAK-STAT, and PI3K-AKT. These pathways promote the tumor progression of NSCLC by inducing uncontrolled cell cycle, proliferation, migration, and programmed death-ligand 1 (PD-L1) expression. New cytotoxic drugs have facilitated considerable progress in NSCLC treatment, but side effects are still a significant cause of mortality. Gallic acid (3,4,5-trihydroxybenzoic acid; GA) is a phenolic natural compound, isolated from plant derivatives, that has been reported to show anticancer effects. We demonstrated the tumor-suppressive effect of GA, which induced the decrease of PD-L1 expression through binding to EGFR in NSCLC. This binding inhibited the phosphorylation of EGFR, subsequently inducing the inhibition of PI3K and AKT phosphorylation, which triggered the activation of p53. The p53-dependent upregulation of miR-34a induced PD-L1 downregulation. Further, we revealed the combination effect of GA and anti-PD-1 monoclonal antibody in an NSCLC-cell and peripheral blood mononuclear-cell coculture system. We propose a novel therapeutic application of GA for immunotherapy and chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Eun Seong Jo
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Dae Young Hong
- Department of Emergency Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Hong Ghi Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Konkuk University Medical Center, Seoul 05029, Korea;
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-0808, Japan;
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun 130000, Jilin, China;
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| |
Collapse
|