1
|
Chen Y, Wang Y, Shen T, Wang N, Bai X, Li Q, Fang S, He Z, Sun C, Feng R. Serum metabolic signatures and MetalnFF diagnostic score for mild and moderate metabolic dysfunction-associated steatotic liver disease. J Pharm Biomed Anal 2025; 260:116772. [PMID: 40048991 DOI: 10.1016/j.jpba.2025.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/01/2025]
Abstract
To explore serum metabolic changes in metabolic dysfunction-associated steatotic liver disease (MASLD) with mild or moderate steatosis and develop a diagnostic index based on liver fat content to differentiate these stages. A total of 149 participants were enrolled from the Nutrition Health Atlas Project in 2019 (Stage 1, n = 92) and 2022 (Stage 2, n = 57). Serum levels of amino acids, free fatty acids (FFAs) and other organic acids were quantified using liquid or gas chromatography-mass spectrometry. The relationships between serum metabolites and magnetic resonance imaging proton density hepatic fat fraction were analyzed and a predictive model fitting fat fraction was constructed in Stage 1 and validated in Stage 2. Patients with moderate MASLD had significantly higher pyruvic acid, 2-ketoglutaric acid, malic acid, 2-hydroxyisocaproic acid and FFA(C14:0) than mild MASLD. Pathway analysis indicated that liver fat accumulation is associated with alterations in amino acid, FFA metabolism and tricarboxylic acid cycle (TCA). The MetalnFF score was developed to discriminate among three groups, achieving an area under the curve (AUC) of 0.956 (95 %CI:0.905, 1.00) for MASLD and 0.857 (95 %CI:0.745, 0.968) for moderate MASLD in Stage 1, and was further validated in Stage 2 with an AUC of 0.986 (95 %CI: 0.951, 1.00) and 0.759 (95 %CI:0.607, 0.921), respectively. In the early stages of MASLD, disrupted amino acid, FFAs metabolism and TCA cycle have occurred. As the disease progresses, metabolic disturbances in pyruvate metabolism become more severe. These findings enhance a deeper understanding of pathogenesis and propose MetalnFF score as a potential diagnostic tool.
Collapse
Affiliation(s)
- Yang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China
| | - Yiran Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Institute of Cancer Prevention and Treatment, Harbin Medical University, Heilongjiang, China
| | - Tianjiao Shen
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, US
| | - Nan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Xiao Bai
- Haxi New Area Community Health Service Center, Nangang District, Heilongjiang, China
| | - Qiyang Li
- Imaging Center, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Siyue Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Zhe He
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China; NHC Specialty Laboratory Cooperation Unit of Food Safety Risk Assessment and Standard Development, Heilongjiang, China.
| |
Collapse
|
2
|
Cheng WT, Pei SY, Wu J, Wang YJ, Yang YW, Xiao MF, Chen J, Wang YY, Wu L, Huang ZB. Cannabinoid-2 receptor depletion promotes non-alcoholic fatty liver disease in mice via disturbing gut microbiota and tryptophan metabolism. Acta Pharmacol Sin 2025; 46:1676-1691. [PMID: 39979552 PMCID: PMC12098919 DOI: 10.1038/s41401-025-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a spectrum of liver damage starting with liver steatosis and lipid disorders presented as the hallmark. Cannabinoid-2 receptor (CB2R) is the receptor of endocannabinoids mainly expressed in immune cells. Our preliminary study revealed the preventative role of CB2R in liver injury related to lipid metabolism. In this study, we aimed to explore the role of CB2R in NAFLD and the underlying mechanism related to microbial community. High-fat diet-induced NAFLD model was established in mice. We found that hepatic CB2R expression was significantly reduced in NAFLD mice and CB2R-/- mice fed with normal chow. Interestingly, cohousing with or transplanted with microbiota from WT mice, or treatment with an antibiotic cocktail ameliorated the NAFLD phenotype of CB2R-/- mice. The gut dysbiosis in CB2R-/- mice including increased Actinobacteriota and decreased Bacteroidota was similar to that of NAFLD patients and NAFLD mice. Microbial functional analysis and metabolomics profiling revealed obviously disturbed tryptophan metabolism in NAFLD patients and NAFLD mice, which were also seen in CB2R-/- mice. Correlation network showed that the disordered tryptophan metabolites such as indolelactic acid (ILA) and xanthurenic acid in CB2R-/- mice were mediated by gut dysbiosis and related to NAFLD severity indicators. In vitro and in vivo validation experiments showed that the enriched tryptophan metabolites ILA aggravated NAFLD phenotypes. These results demonstrate the involvement of CB2R in NAFLD, which is related to gut microbiota-mediated tryptophan metabolites. Our findings highlight CB2R and the associated microbes and tryptophan metabolites as promising targets for the treatment of NAFLD.
Collapse
MESH Headings
- Animals
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/microbiology
- Non-alcoholic Fatty Liver Disease/pathology
- Gastrointestinal Microbiome/physiology
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/deficiency
- Tryptophan/metabolism
- Mice, Inbred C57BL
- Male
- Mice
- Mice, Knockout
- Diet, High-Fat/adverse effects
- Humans
- Disease Models, Animal
- Dysbiosis/metabolism
- Liver/metabolism
- Liver/pathology
Collapse
Affiliation(s)
- Wei-Ting Cheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Si-Ya Pei
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| | - Yan-Jie Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Yong-Wen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mei-Fang Xiao
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuan-Yuan Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Wu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Kilroe SP, Von Ruff ZD, Arentson-Lantz EJ, Romsdahl TB, Linares JJ, Kalenta H, Marchant ED, Volpi E, Paddon-Jones D, Russell WK, Rasmussen BB. Human skeletal muscle disuse atrophy has profound and negative effects on the muscle metabolome and lipidome. Am J Physiol Endocrinol Metab 2025; 328:E962-E978. [PMID: 40298387 DOI: 10.1152/ajpendo.00012.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
We investigated how short-term muscle disuse altered the skeletal muscle metabolome, lipidome, and transcriptome in middle-aged adults. We report that the energy metabolism pathways: nicotinate and nicotinamide metabolism, glycolysis, and TCA cycle, were reduced after 7 days of muscle disuse. These changes in the metabolome were reflected by changes in the transcriptome where multiple genes involved in glycolysis and TCA pathways were reduced after short-term disuse. Phenylalanine, tyrosine, and tryptophan metabolism pathways showed the same response and were reduced after short-term disuse. The skeletal muscle lipidome showed a decrease in phosphatidylinositols but an increase in phosphatidylglycerols and diacylglycerols after short-term muscle disuse. We conclude that short-term muscle disuse in humans has profound and negative effects on the muscle metabolome and lipidome. These include significant downregulation of muscle glycolytic, amino acid, and TCA cycle intermediates. In contrast, skeletal muscle lipids had a divergent response to disuse (e.g., increased phosphatidylglycerols and diacylglycerols, but reduced phosphatidylinositols).NEW & NOTEWORTHY We present the first study that has applied a multiomic analysis (metabolomics, lipidomics, and transcriptomics) of short-term disuse in middle-aged adults. We identified an altered lipidomic and metabolic signature after disuse that included increases in lipids associated with lipotoxicity (e.g., sphingomyelin and diacylglycerol) and reductions in phosphatidylinositol. Energy pathway metabolites for glycolysis and the TCA cycle were reduced after short-term disuse. The lipidomics and metabolomics data were supported by changes in the associated gene expression.
Collapse
Affiliation(s)
- Sean P Kilroe
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Zachary D Von Ruff
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Emily J Arentson-Lantz
- Department of Nutrition & Metabolism, University of Texas Medical Branch, Galveston, Texas, United States
| | - Trevor B Romsdahl
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jennifer J Linares
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hanna Kalenta
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Erik D Marchant
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Elena Volpi
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Douglas Paddon-Jones
- Department of Nutrition & Metabolism, University of Texas Medical Branch, Galveston, Texas, United States
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Blake B Rasmussen
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
4
|
Zhan S, Zhou X, Fu J. Noninvasive Urinary Biomarkers for Obesity-Related Metabolic Diseases: Diagnostic Applications and Future Directions. Biomolecules 2025; 15:633. [PMID: 40427524 PMCID: PMC12109552 DOI: 10.3390/biom15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Obesity-related metabolic diseases include conditions linked to obesity, such as type 2 diabetes, hypertension, steatotic liver disease, and polycystic ovary syndrome. These disorders are primarily caused by insulin resistance, chronic inflammation, and excessive fat accumulation. They represent significant health challenges and often remain asymptomatic during their early stages. Traditional diagnostic tools, including blood glucose, lipid levels, blood pressure, and uric acid measurements, provide valuable insights but fall short of fully capturing the complexity of metabolic dysfunction. Consequently, there is a growing need for noninvasive, easily accessible biomarkers, especially those found in urine, to enable more accurate, sensitive, and patient-friendly diagnostic methods. Urine, with its diverse range of metabolites that reflect the body's metabolic changes, is an ideal sample for early detection. Recent advancements in urine metabolomics and proteomics have highlighted the potential of urinary biomarkers for diagnosing obesity-related metabolic diseases. Despite challenges such as the need for standardized detection techniques and clinical validation, the integration of artificial intelligence and multi-omics approaches holds significant promise for enhancing diagnostic accuracy and advancing disease management strategies.
Collapse
Affiliation(s)
| | | | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310051, China
| |
Collapse
|
5
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
6
|
Beyoğlu D, Popov YV, Idle JR. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:12809. [PMID: 39684520 DOI: 10.3390/ijms252312809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
From a detailed review of 90 experimental and clinical metabolomic investigations of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD), we have developed metabolomic hallmarks for both obesity and MASLD. Obesity studies were conducted in mice, rats, and humans, with consensus biomarker groups in plasma/serum being essential and nonessential amino acids, energy metabolites, gut microbiota metabolites, acylcarnitines and lysophosphatidylcholines (LPC), which formed the basis of the six metabolomic hallmarks of obesity. Additionally, mice and rats shared elevated cholesterol, humans and rats shared elevated fatty acids, and humans and mice shared elevated VLDL/LDL, bile acids and phosphatidylcholines (PC). MASLD metabolomic studies had been performed in mice, rats, hamsters, cows, geese, blunt snout breams, zebrafish, and humans, with the biomarker groups in agreement between experimental and clinical investigations being energy metabolites, essential and nonessential amino acids, fatty acids, and bile acids, which lay the foundation of the five metabolomic hallmarks of MASLD. Furthermore, the experimental group had higher LPC/PC and cholesteryl esters, and the clinical group had elevated acylcarnitines, lysophosphatidylethanolamines/phosphatidylethanolamines (LPE/PE), triglycerides/diglycerides, and gut microbiota metabolites. These metabolomic hallmarks aid in the understanding of the metabolic role played by obesity in MASLD development, inform mechanistic studies into underlying disease pathogenesis, and are critical for new metabolite-inspired therapies.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey R Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
7
|
Jo S, Kim JM, Li M, Kim HS, An YJ, Park S. TAT as a new marker and its use for noninvasive chemical biopsy in NASH diagnosis. Mol Med 2024; 30:232. [PMID: 39592957 PMCID: PMC11590374 DOI: 10.1186/s10020-024-00992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Early diagnosis of Nonalcoholic steatohepatitis (NASH) is crucial to prevent its progression to hepatocellular carcinoma, but its gold standard diagnosis still requires invasive biopsy. Here, a new marker-based noninvasive chemical biopsy approach is introduced that uses urine-secreted tyrosine metabolites. METHODS We first identified NASH-specific decrease in TAT expression, the first enzyme in the tyrosine degradation pathway (TDP), by employing exometabolome-transcriptome correlations, single-cell RNA -seq, and tissue staining on human NASH patient samples. A selective extrahepatic monitoring of the TAT activity was established by the chemical biopsy exploiting the enzyme's metabolic conversion of D2-tyrosine into D2-4HPP. The approach was applied to a NASH mouse model using the methionine-choline deficient diet, where urine D2-4HPP level was measured with a specific LC-MS detection, following oral administration of D2-tyrosine. RESULTS The noninvasive urine chemical biopsy approach could effectively differentiate NASH from normal mice (normal = 14, NASH = 15, p = 0.0054), correlated with the NASH pathology and TAT level decrease observed with immunostaining on the liver tissue. In addition, we showed that the diagnostic differentiation could be enhanced by measuring the downstream metabolites of TDP. The specificity of the TAT and the related TDP enzymes in NASH were also addressed in other settings employing high fat high fructose mouse NASH model and human obesity vs. NASH cohort. CONCLUSIONS Overall, we propose TAT and TDP as pathology-relevant markers for NASH and present the urine chemical biopsy as a noninvasive modality to evaluate the NASH-specific changes in urine that may help the NASH diagnosis.
Collapse
Affiliation(s)
- Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minshu Li
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Yuan H, Jung ES, Chae SW, Jung SJ, Daily JW, Park S. Biomarkers for Health Functional Foods in Metabolic Dysfunction-Associated Steatotic Liver Disorder (MASLD) Prevention: An Integrative Analysis of Network Pharmacology, Gut Microbiota, and Multi-Omics. Nutrients 2024; 16:3061. [PMID: 39339660 PMCID: PMC11434757 DOI: 10.3390/nu16183061] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disorder (MASLD) is increasingly prevalent globally, highlighting the need for preventive strategies and early interventions. This comprehensive review explores the potential of health functional foods (HFFs) to maintain healthy liver function and prevent MASLD through an integrative analysis of network pharmacology, gut microbiota, and multi-omics approaches. We first examined the biomarkers associated with MASLD, emphasizing the complex interplay of genetic, environmental, and lifestyle factors. We then applied network pharmacology to identify food components with potential beneficial effects on liver health and metabolic function, elucidating their action mechanisms. This review identifies and evaluates strategies for halting or reversing the development of steatotic liver disease in the early stages, as well as biomarkers that can evaluate the success or failure of such strategies. The crucial role of the gut microbiota and its metabolites for MASLD prevention and metabolic homeostasis is discussed. We also cover state-of-the-art omics approaches, including transcriptomics, metabolomics, and integrated multi-omics analyses, in research on preventing MASLD. These advanced technologies provide deeper insights into physiological mechanisms and potential biomarkers for HFF development. The review concludes by proposing an integrated approach for developing HFFs targeting MASLD prevention, considering the Korean regulatory framework. We outline future research directions that bridge the gap between basic science and practical applications in health functional food development. This narrative review provides a foundation for researchers and food industry professionals interested in developing HFFs to support liver health. Emphasis is placed on maintaining metabolic balance and focusing on prevention and early-stage intervention strategies.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - James W. Daily
- Department of R&D, Daily Manufacturing Inc., Rockwell, NC 28138, USA;
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro79bungil, Asan 31499, Republic of Korea
| |
Collapse
|
9
|
Su R, Fu HL, Zhang QX, Wu CY, Yang GY, Wu JJ, Cao WJ, Liu J, Jiang ZP, Xu CJ, Rao Y, Huang L. Amplifying hepatic L-aspartate levels suppresses CCl 4-induced liver fibrosis by reversing glucocorticoid receptor β-mediated mitochondrial malfunction. Pharmacol Res 2024; 206:107294. [PMID: 38992851 DOI: 10.1016/j.phrs.2024.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor β (GRβ) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRβ ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRβ signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRβ signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.
Collapse
Affiliation(s)
- Rui Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Hui-Ling Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Qian-Xue Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Chen-Yan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Guan-Yu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jun-Jie Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Wen-Jie Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Cong-Jun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China.
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China.
| |
Collapse
|
10
|
Yan X, Liu H, Huang M, Zhang Y, Zeng B. Integrative proteomics and metabolomics explore the effect and mechanism of Qiyin granules on improving nonalcoholic fatty liver disease. Heliyon 2024; 10:e27075. [PMID: 38444462 PMCID: PMC10912341 DOI: 10.1016/j.heliyon.2024.e27075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern, representing a substantial burden within the spectrum of chronic liver diseases. Despite its escalating prevalence, a definitive therapeutic strategy or efficacious pharmacological intervention for NAFLD has yet to receive official approval to date. While Fu Fang Qiyin granules have exhibited efficacy in addressing NAFLD, the intricacies of their underlying mechanism of action remain inadequately elucidated. In this study, we substantiated the ameliorative impact of Qiyin on highfat diet (HFD)induced NAFLD in rat models. The results of metabonomics showed that 108 potential biomarkers in serum and urine related to amino acid metabolism, energy metabolism, and pyrimidine metabolism, have returned to normal levels compared to the model group. Hepatic transcriptomics further indicated that Qiyin potentially confers protective effects against NAFLD by mediating liver inflammation and fibrosis through lumican (LUM) and decorin (DCN). In summation, our investigation provides compelling evidence affirming the therapeutic promise of Qiyin for NAFLD. It elucidates the underlying mechanistic pathways, furnishing a compelling rationale for its prospective clinical application.
Collapse
Affiliation(s)
- Xuehua Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Yujie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Binfang Zeng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| |
Collapse
|
11
|
Identification of Gut Microbial Lysine and Histidine Degradation and CYP-Dependent Metabolites as Biomarkers of Fatty Liver Disease. mBio 2023; 14:e0266322. [PMID: 36715540 PMCID: PMC9973343 DOI: 10.1128/mbio.02663-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Numerous studies have described specific metabolites as biomarkers of severe liver diseases, but very few have measured gut microbiota (GM)-produced metabolites in fatty liver disease. We aimed at finding GM signatures and metabolite markers in plasma and feces related to high liver fat content. Based on imaging, we divided study participants into low (<5%, LF, n = 25) and high (>5%, HF, n = 39) liver fat groups. Fecal (LF n = 14, HF n = 25) and plasma (LF n = 11, HF n = 7) metabolomes of subsets of participants were studied using liquid chromatography/high resolution mass spectrometry. The GM were analyzed using 16S rRNA gene sequencing. Additionally, blood clinical variables and diet were studied. Dyslipidemia, higher liver enzymes and insulin resistance characterized the HF group. No major differences in diet were found between the groups. In the GM, the HF group had lower abundance of Bacteroides and Prevotellaceae NK3B31 group than the LF group after adjusting for metformin use or obesity. In feces, the HF group had higher levels of lysine and histidine degradation products, while 6-hydroxybetatestosterone (metabolized by CYP3A4) was low. Higher plasma levels of caffeine and its metabolites in the HF group indicate that the activity of hepatic CYP1A2 was lower than in the LF group. Our results suggest, that low fecal Prevotellaceae NK3B31 and Bacteroides abundance, and increased lysine and histidine degradation may serve as GM biomarkers of high liver fat. Altered plasma caffeine metabolites and lowered testosterone metabolism may specify decreased CYP activities, and their potential utility, as biomarkers of fatty liver disease. IMPORTANCE Because the high prevalence of nonalcoholic fatty liver disease sets diagnostic challenges to health care, identification of new biomarkers of the disease that in the future could have potential utility as diagnostic biomarkers of high liver fat content is important. Our results show that increased amino acid degradation products in the feces may be such biomarkers. In the blood, molecules that indicate defective hepatic metabolic enzyme activities were identified in individuals with high liver fat content.
Collapse
|
12
|
Liu X, Han L, Bi S, Ding X, Sheng Q, Jiang Y, Guan G, Niu Q, Jing X. Differential metabolites in cirrhotic patients with hepatitis B and muscle mass loss. Front Nutr 2023; 10:1068779. [PMID: 36875836 PMCID: PMC9980345 DOI: 10.3389/fnut.2023.1068779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Background Sarcopenia leads to complications (infections, hepatic encephalopathy and ascites) and poor overall survival in patients with cirrhosis, in which the phenotypic presentation is loss of muscle mass. This study aimed to reveal the metabolic profile and identify potential biomarkers in cirrhotic patients with hepatitis B virus and muscle mass loss. Method Twenty decompensated cirrhotic patients with HBV and muscle mass loss were designated Group S; 20 decompensated cirrhotic patients with HBV and normal muscle mass were designated Group NS; and 20 healthy people were designated Group H. Muscle mass loss was defined as the skeletal muscle mass index less than 46.96 cm2/m2 for males and less than 32.46 cm2/m2 for females. Gas chromatography-mass spectrometry was used to explore the distinct metabolites and pathways in the three groups. Results Thirty-seven metabolic products and 25 associated metabolic pathways were significantly different in the Group S patients from Group NS patients. Strong predictive value of 11 metabolites (inosine-5'-monophosphate, phosphoglycolic acid, D-fructose-6-phosphate, N-acetylglutamate, pyrophosphate, trehalose-6-phosphate, fumaric acid, citrulline, creatinine, (r)-3-hydroxybutyric acid, and 2-ketobutyric acid) were selected as potential biomarkers in Group S patients compared with Group NS patients. Two pathways may be associated with loss of muscle mass in patients with liver cirrhosis: amino acid metabolism and central carbon metabolism in cancer. Conclusion Seventy differential metabolites were identified in patients who have liver cirrhosis and loss of muscle mass compared with patients who have cirrhosis and normal muscle mass. Certain biomarkers might distinguish between muscle mass loss and normal muscle mass in HBV-related cirrhosis patients.
Collapse
Affiliation(s)
- Xuechun Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lei Han
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shenghua Bi
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueli Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qi Sheng
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yueping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ge Guan
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Zhang Y, Sun Y, Miao Q, Guo S, Wang Q, Shi T, Guo X, Liu S, Cheng G, Wang C, Zhang R. Serum metabolomics analysis in patients with alcohol dependence. Front Psychiatry 2023; 14:1151200. [PMID: 37139316 PMCID: PMC10150058 DOI: 10.3389/fpsyt.2023.1151200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Objective Alcohol dependence (AD) is a chronic recurrent mental disease caused by long-term drinking. It is one of the most prevalent public health problems. However, AD diagnosis lacks objective biomarkers. This study was aimed to shed some light on potential biomarkers of AD patients by investigating the serum metabolomics profiles of AD patients and the controls. Methods Liquid chromatography-mass spectrometry (LC-MS) was used to detect the serum metabolites of 29 AD patients (AD) and 28 controls. Six samples were set aside as the validation set (Control: n = 3; AD group: n = 3), and the remaining were used as the training set (Control: n = 26; AD group: n = 25). Principal component analysis (PCA) and partial least squares discriminant analysis (PCA-DA) were performed to analyze the training set samples. The metabolic pathways were analyzed using the MetPA database. The signal pathways with pathway impact >0.2, value of p <0.05, and FDR < 0.05 were selected. From the screened pathways, the metabolites whose levels changed by at least 3-fold were screened. The metabolites with no numerical overlap in their concentrations in the AD and the control groups were screened out and verified with the validation set. Results The serum metabolomic profiles of the control and the AD groups were significantly different. We identified six significantly altered metabolic signal pathways, including protein digestion and absorption; alanine, aspartate, and glutamate metabolism; arginine biosynthesis; linoleic acid metabolism; butanoate metabolism; and GABAergic synapse. In these six signal pathways, the levels of 28 metabolites were found to be significantly altered. Of these, the alterations of 11 metabolites changed by at least 3-fold compared to the control group. Of these 11 metabolites, those with no numerical overlap in their concentrations between the AD and the control groups were GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid and L-glutamine. Conclusion The metabolite profile of the AD group was significantly different from that of the control group. GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid, and L-glutamine could be used as potential diagnostic markers for AD.
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yajun Sun
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Scientific Research, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qin Miao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Addiction, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shilong Guo
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qi Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Tianyuan Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Xinsheng Guo
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Shuai Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Guiding Cheng
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Chuansheng Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Chuansheng Wang, ; Ruiling Zhang,
| | - Ruiling Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Chuansheng Wang, ; Ruiling Zhang,
| |
Collapse
|
14
|
Wang X, Rao B, Wang H, Liu C, Ren Z, Yu Z. Serum metabolome alterations in patients with early nonalcoholic fatty liver disease. Biosci Rep 2022; 42:BSR20220319. [PMID: 36124945 PMCID: PMC9583763 DOI: 10.1042/bsr20220319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Although metabolomic analysis for patients with nonalcoholic fatty liver disease (NAFLD) was a promising approach to identify novel biomarkers as targets for the diagnosis of NAFLD, the serum metabolomics profile of early-stage NAFLD patients from central China remain unknown. OBJECTIVE The aim of the present study was to explore the metabolic characteristics of patients with early-stage NAFLD based on the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology, to identify differential metabolites and perform functional analysis, and especially, to establish a novel early NAFLD clinical diagnostic tool. RESULTS Compared with healthy controls, serum metabolite species increased significantly in early stage NAFLD patients. Expression of 88 metabolites including 1-naphthylmethanol, rosavin, and theophylline were up-regulated in early NAFLD, while 68 metabolites including 2-hydroxyphenylacetic acid and lysophosphatidylcholine (24:1(15Z)) were down-regulated. The early NAFLD classifier achieved a strong diagnostic efficiency in the discovery phases (80.99%) and was successfully verified in the validation phases (75.23%). CONCLUSIONS These results advance our understanding about the composition and biological functions of serum metabolites of early NAFLD. In addition, serum metabolic markers can serve as an efficient diagnostic tool for the early-stage NAFLD.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Benchen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201111, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022; 13:971561. [PMID: 36091827 PMCID: PMC9453477 DOI: 10.3389/fphar.2022.971561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world, and it often coexists with insulin resistance-related diseases including obesity, diabetes, hyperlipidemia, and hypertension, which seriously threatens human health. Better prevention and treatment strategies are required to improve the impact of NAFLD. Although needle biopsy is an effective tool for diagnosing NAFLD, this method is invasive and difficult to perform. Therefore, it is very important to develop more efficient approaches for the early diagnosis of NAFLD. Traditional Chinese medicine (TCM) can play a certain role in improving symptoms and protecting target organs, and its mechanism of action needs to be further studied. Metabolomics, the study of all metabolites that is thought to be most closely associated with the patients' characters, can provide useful clinically biomarkers that can be applied to NAFLD and may open up new methods for diagnosis. Metabolomics technology is consistent with the overall concept of TCM, and it can also be used as a potential mechanism to explain the effects of TCM by measuring biomarkers by metabolomics. Based on PubMed/MEDLINE and other databases, this paper retrieved relevant literature NAFLD and TCM intervention in NAFLD using metabolomics technology in the past 5 years were searched, and the specific metabolites associated with the development of NAFLD and the potential mechanism of Chinese medicine on improving symptoms were summarized.
Collapse
Affiliation(s)
- Mingmei Shao
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Haam JH, Lee YK, Suh E, Kim YS. Characteristics of Urine Organic Acid Metabolites in Nonalcoholic Fatty Liver Disease Assessed Using Magnetic Resonance Imaging with Elastography in Korean Adults. Diagnostics (Basel) 2022; 12:diagnostics12051199. [PMID: 35626354 PMCID: PMC9140840 DOI: 10.3390/diagnostics12051199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is an essential organ that manufactures energy through various metabolic pathways; thus, exploring the intermediate metabolites in nonalcoholic fatty liver disease (NAFLD) may help discover novel parameters in hepatic steatosis or fibrosis. The present study aimed to investigate the traits of urine organic acid metabolites in participants with hepatic steatosis and fibrosis in nonalcoholic Korean adults. Hepatic steatosis and fibrosis, in 68 men and 65 women, were evaluated using quantification by proton density fat fraction with magnetic resonance (MR) imaging and MR elastography, respectively. Urine metabolites were obtained using a high-performance liquid chromatography–mass spectrometry analysis. The candidate metabolites were included in the logistic regression models for hepatic steatosis and fibrosis. The association between high p-hydroxyphenyllactate levels and hepatic steatosis was not independent of body mass index and Homeostatic Model Assessment-insulin resistance. High ethylmalonate, β-hydroxybutyrate, and sulfate levels were significantly related to a low probability of hepatic fibrosis, independent of covariates. In conclusion, urine metabolites were not related to hepatic steatosis independent of obesity and insulin resistance, while several metabolites were specifically associated with hepatic fibrosis. Further study is required to verify the diagnostic value of the metabolites in a population with wide-spectrum NAFLD.
Collapse
Affiliation(s)
- Ji-Hee Haam
- Chaum Life Center, CHA University, Seoul 06062, Korea; (J.-H.H.); (Y.K.L.); (E.S.)
| | - Yun Kyong Lee
- Chaum Life Center, CHA University, Seoul 06062, Korea; (J.-H.H.); (Y.K.L.); (E.S.)
| | - Eunkyung Suh
- Chaum Life Center, CHA University, Seoul 06062, Korea; (J.-H.H.); (Y.K.L.); (E.S.)
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
- Correspondence:
| |
Collapse
|
17
|
Zhu Y, Zang Q, Luo Z, He J, Zhang R, Abliz Z. An Organ-Specific Metabolite Annotation Approach for Ambient Mass Spectrometry Imaging Reveals Spatial Metabolic Alterations of a Whole Mouse Body. Anal Chem 2022; 94:7286-7294. [PMID: 35548855 DOI: 10.1021/acs.analchem.2c00557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rapid and accurate metabolite annotation in mass spectrometry imaging (MSI) can improve the efficiency of spatially resolved metabolomics studies and accelerate the discovery of reliable in situ disease biomarkers. To date, metabolite annotation tools in MSI generally utilize isotopic patterns, but high-throughput fragmentation-based identification and biological and technical factors that influence structure elucidation are active challenges. Here, we proposed an organ-specific, metabolite-database-driven approach to facilitate efficient and accurate MSI metabolite annotation. Using data-dependent acquisition (DDA) in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to generate high-coverage product ions, we identified 1620 unique metabolites from eight mouse organs (brain, liver, kidney, heart, spleen, lung, muscle, and pancreas) and serum. Following the evaluation of the adduct form difference of metabolite ions between LC-MS and airflow-assisted desorption electrospray ionization (AFADESI)-MSI and deciphering organ-specific metabolites, we constructed a metabolite database for MSI consisting of 27,407 adduct ions. An automated annotation tool, MSIannotator, was then created to conduct metabolite annotation in the MSI dataset with high efficiency and confidence. We applied this approach to profile the spatially resolved landscape of the whole mouse body and discovered that metabolites were distributed across the body in an organ-specific manner, which even spanned different mouse strains. Furthermore, the spatial metabolic alteration in diabetic mice was delineated across different organs, exhibiting that differentially expressed metabolites were mainly located in the liver, brain, and kidney, and the alanine, aspartate, and glutamate metabolism pathway was simultaneously altered in these three organs. This approach not only enables robust metabolite annotation and visualization on a body-wide level but also provides a valuable database resource for underlying organ-specific metabolic mechanisms.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
18
|
Babu AF, Csader S, Männistö V, Tauriainen MM, Pentikäinen H, Savonen K, Klåvus A, Koistinen V, Hanhineva K, Schwab U. Effects of exercise on NAFLD using non-targeted metabolomics in adipose tissue, plasma, urine, and stool. Sci Rep 2022; 12:6485. [PMID: 35444259 PMCID: PMC9019539 DOI: 10.1038/s41598-022-10481-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/01/2022] [Indexed: 02/08/2023] Open
Abstract
The mechanisms by which exercise benefits patients with non-alcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, remain poorly understood. A non-targeted liquid chromatography-mass spectrometry (LC–MS)-based metabolomics analysis was used to identify metabolic changes associated with NAFLD in humans upon exercise intervention (without diet change) across four different sample types—adipose tissue (AT), plasma, urine, and stool. Altogether, 46 subjects with NAFLD participated in this randomized controlled intervention study. The intervention group (n = 21) performed high-intensity interval training (HIIT) for 12 weeks while the control group (n = 25) kept their sedentary lifestyle. The participants' clinical parameters and metabolic profiles were compared between baseline and endpoint. HIIT significantly decreased fasting plasma glucose concentration (p = 0.027) and waist circumference (p = 0.028); and increased maximum oxygen consumption rate and maximum achieved workload (p < 0.001). HIIT resulted in sample-type-specific metabolite changes, including accumulation of amino acids and their derivatives in AT and plasma, while decreasing in urine and stool. Moreover, many of the metabolite level changes especially in the AT were correlated with the clinical parameters monitored during the intervention. In addition, certain lipids increased in plasma and decreased in the stool. Glyco-conjugated bile acids decreased in AT and urine. The 12-week HIIT exercise intervention has beneficial ameliorating effects in NAFLD subjects on a whole-body level, even without dietary changes and weight loss. The metabolomics analysis applied to the four different sample matrices provided an overall view on several metabolic pathways that had tissue-type specific changes after HIIT intervention in subjects with NAFLD. The results highlight especially the role of AT in responding to the HIIT challenge, and suggest that altered amino acid metabolism in AT might play a critical role in e.g. improving fasting plasma glucose concentration. Trial registration ClinicalTrials.gov (NCT03995056).
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland
| | - Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anton Klåvus
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland
| | - Ville Koistinen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland.,Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014, Turku, Finland
| | - Kati Hanhineva
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland.,Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014, Turku, Finland
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland. .,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
19
|
Sun R, Zhao H, Huang S, Zhang R, Lu Z, Li S, Wang G, Aa J, Xie Y. Prediction of Liver Weight Recovery by an Integrated Metabolomics and Machine Learning Approach After 2/3 Partial Hepatectomy. Front Pharmacol 2021; 12:760474. [PMID: 34916939 PMCID: PMC8669962 DOI: 10.3389/fphar.2021.760474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Liver has an ability to regenerate itself in mammals, whereas the mechanism has not been fully explained. Here we used a GC/MS-based metabolomic method to profile the dynamic endogenous metabolic change in the serum of C57BL/6J mice at different times after 2/3 partial hepatectomy (PHx), and nine machine learning methods including Least Absolute Shrinkage and Selection Operator Regression (LASSO), Partial Least Squares Regression (PLS), Principal Components Regression (PCR), k-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (xgbDART), Neural Network (NNET) and Bayesian Regularized Neural Network (BRNN) were used for regression between the liver index and metabolomic data at different stages of liver regeneration. We found a tree-based random forest method that had the minimum average Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the maximum R square (R2) and is time-saving. Furthermore, variable of importance in the project (VIP) analysis of RF method was performed and metabolites with VIP ranked top 20 were selected as the most critical metabolites contributing to the model. Ornithine, phenylalanine, 2-hydroxybutyric acid, lysine, etc. were chosen as the most important metabolites which had strong correlations with the liver index. Further pathway analysis found Arginine biosynthesis, Pantothenate and CoA biosynthesis, Galactose metabolism, Valine, leucine and isoleucine degradation were the most influenced pathways. In summary, several amino acid metabolic pathways and glucose metabolism pathway were dynamically changed during liver regeneration. The RF method showed advantages for predicting the liver index after PHx over other machine learning methods used and a metabolic clock containing four metabolites is established to predict the liver index during liver regeneration.
Collapse
Affiliation(s)
- Runbin Sun
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Phase I Clinical Trials Unit, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Haokai Zhao
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Huang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ran Zhang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhenyao Lu
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Sijia Li
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiye Aa
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuan Xie
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Metabolomics as an Important Tool for Determining the Mechanisms of Human Skeletal Muscle Deconditioning. Int J Mol Sci 2021; 22:ijms222413575. [PMID: 34948370 PMCID: PMC8706620 DOI: 10.3390/ijms222413575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle deconditioning impairs both locomotor function and metabolic health, and is associated with reduced quality life and increased mortality rates. Despite an appreciation of the existence of phenomena such as muscle anabolic resistance, mitophagy, and insulin resistance with age and disease in humans, little is known about the mechanisms responsible for these negative traits. With the complexities surrounding these unknowns and the lack of progress to date in development of effective interventions, there is a need for alternative approaches. Metabolomics is the study of the full array of metabolites within cells or tissues, which collectively constitute the metabolome. As metabolomics allows for the assessment of the cellular metabolic state in response to physiological stimuli, any chronic change in the metabolome is likely to reflect adaptation in the physiological phenotype of an organism. This, therefore, provides a holistic and unbiased approach that could be applied to potentially uncover important novel facets in the pathophysiology of muscle decline in ageing and disease, as well as identifying prognostic markers of those at risk of decline. This review will aim to highlight the current knowledge and potential impact of metabolomics in the study of muscle mass loss and deconditioning in humans and will highlight key areas for future research.
Collapse
|
21
|
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Orešič M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021; 18:835-856. [PMID: 34508238 DOI: 10.1038/s41575-021-00502-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.
| | | | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Örebro, Sweden
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Quentin M Anstee
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oscar Millet
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Pablo Ortiz
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | - Jose M Mato
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Jean-Francois Dufour
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland.,Hepatology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
22
|
Promising diagnostic biomarkers of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: From clinical proteomics to microbiome. World J Hepatol 2021; 13. [PMID: 34904026 PMCID: PMC8637675 DOI: 10.4254/wjh.v13.i11.1494&set/a 878138854+814606438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Fatty liver has been present in the lives of patients and physicians for almost two centuries. Vast knowledge has been generated regarding its etiology and consequences, although a long path seeking novel and innovative diagnostic biomarkers for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is still envisioned. On the one hand, proteomics and lipidomics have emerged as potential noninvasive resources for NAFLD diagnosis. In contrast, metabolomics has been able to distinguish between NAFLD and NASH, even detecting degrees of fibrosis. On the other hand, genetic and epigenetic markers have been useful in monitoring disease progression, eventually functioning as target therapies. Other markers involved in immune dysregulation, oxidative stress, and inflammation are involved in the instauration and evolution of the disease. Finally, the fascinating gut microbiome is significantly involved in NAFLD and NASH. This review presents state-of-the-art biomarkers related to NAFLD and NASH and new promises that could eventually be positioned as diagnostic resources for this disease. As is evident, despite great advances in studying these biomarkers, there is still a long path before they translate into clinical benefits.
Collapse
|
23
|
Castillo-Castro C, Martagón-Rosado AJ, Ortiz-Lopez R, Garrido-Treviño LF, Villegas-Albo M, Bosques-Padilla FJ. Promising diagnostic biomarkers of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: From clinical proteomics to microbiome. World J Hepatol 2021; 13:1494-1511. [PMID: 34904026 PMCID: PMC8637675 DOI: 10.4254/wjh.v13.i11.1494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/06/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty liver has been present in the lives of patients and physicians for almost two centuries. Vast knowledge has been generated regarding its etiology and consequences, although a long path seeking novel and innovative diagnostic biomarkers for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is still envisioned. On the one hand, proteomics and lipidomics have emerged as potential noninvasive resources for NAFLD diagnosis. In contrast, metabolomics has been able to distinguish between NAFLD and NASH, even detecting degrees of fibrosis. On the other hand, genetic and epigenetic markers have been useful in monitoring disease progression, eventually functioning as target therapies. Other markers involved in immune dysregulation, oxidative stress, and inflammation are involved in the instauration and evolution of the disease. Finally, the fascinating gut microbiome is significantly involved in NAFLD and NASH. This review presents state-of-the-art biomarkers related to NAFLD and NASH and new promises that could eventually be positioned as diagnostic resources for this disease. As is evident, despite great advances in studying these biomarkers, there is still a long path before they translate into clinical benefits.
Collapse
Affiliation(s)
| | - Alexandro José Martagón-Rosado
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición, Ciudad de México 14080, Mexico
| | - Rocio Ortiz-Lopez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | | | - Melissa Villegas-Albo
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | - Francisco Javier Bosques-Padilla
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
- Centro Regional para el Estudio de las Enfermedades Digestivas, Servicio de Gastroenterología, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
24
|
Robinson EJ, Taddeo MC, Chu X, Shi W, Wood C, Still C, Rovnyak VG, Rovnyak D. Aqueous Metabolite Trends for the Progression of Nonalcoholic Fatty Liver Disease in Female Bariatric Surgery Patients by Targeted 1H-NMR Metabolomics. Metabolites 2021; 11:metabo11110737. [PMID: 34822395 PMCID: PMC8619318 DOI: 10.3390/metabo11110737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/14/2023] Open
Abstract
Determining biomarkers and better characterizing the biochemical progression of nonalcoholic fatty liver disease (NAFLD) remains a clinical challenge. A targeted 1H-NMR study of serum, combined with clinical variables, detected and localized biomarkers to stages of NAFLD in morbidly obese females. Pre-surgery serum samples from 100 middle-aged, morbidly obese female subjects, grouped on gold-standard liver wedge biopsies (non-NAFLD; steatosis; and fibrosis) were collected, extracted, and analyzed in aqueous (D2O) buffer (1H, 600 MHz). Profiled concentrations were subjected to exploratory statistical analysis. Metabolites varying significantly between the non-NAFLD and steatosis groups included the ketone bodies 3-hydroxybutyrate (↓; p = 0.035) and acetone (↓; p = 0.012), and also alanine (↑; p = 0.004) and a putative pyruvate signal (↑; p = 0.003). In contrast, the steatosis and fibrosis groups were characterized by 2-hydroxyisovalerate (↑; p = 0.023), betaine (↓; p = 0.008), hypoxanthine (↓; p = 0.003), taurine (↓; p = 0.001), 2-hydroxybutyrate (↑; p = 0.045), 3-hydroxyisobutyrate (↑; p = 0.046), and increasing medium chain fatty acids. Exploratory classification models with and without clinical variables exhibited overall success rates ca. 75–85%. In the study conditions, inhibition of fatty acid oxidation and disruption of the hepatic urea cycle are supported as early features of NAFLD that continue in fibrosis. In fibrosis, markers support inflammation, hepatocyte damage, and decreased liver function. Complementarity of NMR concentrations and clinical information in classification models is shown. A broader hypothesis that standard-of-care sera can yield metabolomic information is supported.
Collapse
Affiliation(s)
- Emma J. Robinson
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
| | - Matthew C. Taddeo
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
| | - Xin Chu
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Weixing Shi
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Craig Wood
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | - Christopher Still
- The Obesity Institute, Geisinger, Danville, PA 17822, USA; (X.C.); (W.S.); (C.W.); (C.S.)
| | | | - David Rovnyak
- Department of Chemistry, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA; (E.J.R.); (M.C.T.)
- Correspondence:
| |
Collapse
|
25
|
Goon DE, Ab-Rahim S, Mohd Sakri AH, Mazlan M, Tan JK, Abdul Aziz M, Mohd Noor N, Ibrahim E, Sheikh Abdul Kadir SH. Untargeted serum metabolites profiling in high-fat diet mice supplemented with enhanced palm tocotrienol-rich fraction using UHPLC-MS. Sci Rep 2021; 11:21001. [PMID: 34697380 PMCID: PMC8546078 DOI: 10.1038/s41598-021-00454-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023] Open
Abstract
Excessive high fat dietary intake promotes risk of developing non-alcoholic fatty liver disease (NAFLD) and predisposed with oxidative stress. Palm based tocotrienol-rich fraction (TRF) has been reported able to ameliorate oxidative stress but exhibited poor bioavailability. Thus, we investigated whether an enhanced formulation of TRF in combination with palm kernel oil (medium-chain triglycerides) (ETRF) could ameliorate the effect of high-fat diet (HFD) on leptin-deficient male mice. All the animals were divided into HFD only (HFD group), HFD supplemented with ETRF (ETRF group) and HFD supplemented with TRF (TRF group) and HFD supplemented with PKO (PKO group). After 6 weeks, sera were collected for untargeted metabolite profiling using UHPLC-Orbitrap MS. Univariate analysis unveiled alternation in metabolites for bile acids, amino acids, fatty acids, sphingolipids, and alkaloids. Bile acids, lysine, arachidonic acid, and sphingolipids were downregulated while xanthine and hypoxanthine were upregulated in TRF and ETRF group. The regulation of these metabolites suggests that ETRF may promote better fatty acid oxidation, reduce oxidative stress and pro-inflammatory metabolites and acts as anti-inflammatory in fatty liver compared to TRF. Metabolites regulated by ETRF also provide insight of its role in fatty liver. However, further investigation is warranted to identify the mechanisms involved.
Collapse
Affiliation(s)
- Danial Efendy Goon
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab-Rahim
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia.
| | - Amir Hakimi Mohd Sakri
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
| | - Musalmah Mazlan
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mardiana Abdul Aziz
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Norizal Mohd Noor
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Effendi Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
26
|
Niu L, Sulek K, Vasilopoulou CG, Santos A, Wewer Albrechtsen NJ, Rasmussen S, Meier F, Mann M. Defining NASH from a Multi-Omics Systems Biology Perspective. J Clin Med 2021; 10:jcm10204673. [PMID: 34682795 PMCID: PMC8538576 DOI: 10.3390/jcm10204673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease affecting up to 6.5% of the general population. There is no simple definition of NASH, and the molecular mechanism underlying disease pathogenesis remains elusive. Studies applying single omics technologies have enabled a better understanding of the molecular profiles associated with steatosis and hepatic inflammation—the commonly accepted histologic features for diagnosing NASH, as well as the discovery of novel candidate biomarkers. Multi-omics analysis holds great potential to uncover new insights into disease mechanism through integrating multiple layers of molecular information. Despite the technical and computational challenges associated with such efforts, a few pioneering studies have successfully applied multi-omics technologies to investigate NASH. Here, we review the most recent technological developments in mass spectrometry (MS)-based proteomics, metabolomics, and lipidomics. We summarize multi-omics studies and emerging omics biomarkers in NASH and highlight the biological insights gained through these integrated analyses.
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
- Correspondence: ; Tel.: +45-3114-6118
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Systems Medicine, Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Catherine G. Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Center for Health Data Science, University of Copenhagen, 2200 Copenhagen, Denmark
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Nicolai J. Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
| | - Florian Meier
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
- Functional Proteomics, Jena University Hospital, 07747 Jena, Germany
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (A.S.); (N.J.W.A.); (S.R.); (M.M.)
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (C.G.V.); (F.M.)
| |
Collapse
|
27
|
Liu L, Zhao J, Zhang R, Wang X, Wang Y, Chen Y, Feng R. Serum untargeted metabolomics delineates the metabolic status in different subtypes of non-alcoholic fatty liver disease. J Pharm Biomed Anal 2021; 200:114058. [PMID: 33865049 DOI: 10.1016/j.jpba.2021.114058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
AIMS The aim of this study was to identify novel serum metabolites associated with non-alcoholic fatty liver disease (NAFLD), and to explore the metabolic discrepancies between Lean-NAFLD and Obese-NAFLD. METHODS Serum samples from patients with NAFLD (n = 161) and healthy participants (n = 149) were collected, and metabolites were analyzed with UPLC-Q-TOF MS/MS. Subgroup analyses were performed to explore the metabolic differences among Lean-NAFLD, Obese-NAFLD and healthy controls RESULTS: A total of 24 differentially present metabolites were found between patients with NAFLD and healthy controls. Marked metabolic pathway differences were observed among the NAFLD subtypes, including in fatty acid and amino acid metabolism. Ultimately, five metabolites (prasterone, indoxylsulfuric acid, sebacic acid, arachidonic acid and pregnenolone sulfate) were used to establish a diagnostic model to distinguish patients with NAFLD regardless of Lean- or Obese-NAFLD type. CONCLUSIONS This study suggested that significant metabolic differences existed among subtypes of NAFLD, and our model might be useful to distinguish patients with NAFLD. These findings may lay a foundation for the detection and treatment of NAFLD subtypes.
Collapse
Affiliation(s)
- Liyan Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Jinhui Zhao
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Runan Zhang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xuemei Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yan Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Yang Chen
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Rennan Feng
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
28
|
Tang T, Li Y, Wang J, Elzo MA, Shao J, Li Y, Xia S, Fan H, Jia X, Lai S. Untargeted Metabolomics Reveals Intestinal Pathogenesis and Self-Repair in Rabbits Fed an Antibiotic-Free Diet. Animals (Basel) 2021; 11:1560. [PMID: 34071848 PMCID: PMC8228699 DOI: 10.3390/ani11061560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 01/18/2023] Open
Abstract
The prohibition of the use of growth-promoting drug additives in feeds was implemented in China in 2020. However, rabbits can experience symptoms of intestinal disease, such as diarrhea and flatulence, when switching from standard normal diets with antibiotics to antibiotic-free diets. The molecular mechanisms related to the occurrence of these diseases as well as associated physiological and metabolic changes in the intestine are unclear. Thus, the objectives of this study were to study the pathogenesis of intestinal inflammation using untargeted metabolomics. This was done to identify differential metabolites between a group of antibiotic-free feed Hyplus rabbits (Dia) whose diet was abruptly changed from a standard normal diet with antibiotics to an antibiotic-free diet, and an antibiotic diet group Hyplus rabbits (Con) that was fed a standard normal diet with antibiotics. Morphological damage to the three intestinal tissues was determined through visual microscopic examination of intestinal Dia and Con tissue samples stained with hematoxylin and eosin (HE). A total of 1969 different metabolites were identified in the three intestinal tissues from Dia and Con rabbits. The level of 1280 metabolites was significantly higher and the level of 761 metabolites was significantly lower in the Dia than in the Con group. These differential metabolites were involved in five metabolic pathways associated with intestinal inflammation (tryptophan metabolism, pyrimidine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, lysine degradation, and bile secretion). Rabbits in the Dia group developed metabolic disorders that affected the intestinal microbiota and changed the permeability of the intestinal tract, thereby triggering intestinal inflammation, affecting feed utilization, reducing production performance, and activating the intestinal tract self-repair mechanism. Thus, the abrupt transition from a diet with antibiotics to an antibiotic-free diet affected the structure and metabolism of the intestinal tract in Hyplus rabbits. Consequently, to avoid these problems, the antibiotic content in a rabbit diet should be changed gradually or alternative antibiotics should be found.
Collapse
Affiliation(s)
- Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
29
|
Wegermann K, Howe C, Henao R, Wang Y, Guy CD, Abdelmalek MF, Diehl AM, Moylan CA. Serum Bile Acid, Vitamin E, and Serotonin Metabolites Are Associated With Future Liver-Related Events in Nonalcoholic Fatty Liver Disease. Hepatol Commun 2021; 5:608-617. [PMID: 33860119 PMCID: PMC8034573 DOI: 10.1002/hep4.1665] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Identifying patients at higher risk for poor outcomes from nonalcoholic fatty liver disease (NAFLD) remains challenging. Metabolomics, the comprehensive measurement of small molecules in biological samples, has the potential to reveal novel noninvasive biomarkers. The aim of this study was to determine if serum metabolite profiles in patients with NAFLD associate with future liver-related events. We performed a retrospective single-center cohort study of 187 participants with biopsy-proven NAFLD. Metabolomic analysis was performed on serum using ultrahigh performance liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. We identified liver-related events (variceal bleeding, ascites, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatocellular carcinoma, hepatopulmonary or hepatorenal syndrome) by manual chart review between index biopsy (2007-2013) and April 1, 2018. Generalized linear models and Cox proportional hazards models were used to test the association of metabolites with liver-related events and time to first liver-related event, controlling for covariates and fibrosis stage. Over a mean ± SD follow-up of 6.9 ± 3.2 years, 11 participants experienced 22 liver-related events. Generalized linear models revealed 53 metabolites significantly associated with liver-related events (P < 0.05). In Cox proportional hazards modeling, 69 metabolites were significantly associated with time to future liver-related events (P < 0.05), seven of which met the false discovery rate threshold of 0.10: vitamin E metabolites gamma-carboxyethyl-hydroxychroman (gamma-CEHC) and gamma-CEHC glucuronide; primary bile acid metabolite taurochenodeoxycholate; serotonin metabolite 5-hydroxyindoleacetate; and lipid metabolites (i) 2-hydroxyglutarate, (ii) 3beta,17beta-diol disulfate 1, and (iii) eicosenoyl sphingomyelin. Conclusion: Metabolites of a primary bile acid, vitamin E, and serotonin were associated with future liver-related events. Our results suggest metabolite pathways may be useful for predicting which patients with NAFLD are at higher risk for hepatic decompensation.
Collapse
Affiliation(s)
- Kara Wegermann
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA
| | - Catherine Howe
- Division of GastroenterologyDepartment of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Ricardo Henao
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNCUSA
| | - Ying Wang
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA
| | - Cynthia D Guy
- Department of PathologyDuke University HospitalDurhamNCUSA
| | - Manal F Abdelmalek
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA
| | - Anna Mae Diehl
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA
| | - Cynthia A Moylan
- Division of GastroenterologyDepartment of MedicineDuke University HospitalDurhamNCUSA.,Department of MedicineDurham Veterans Affairs Medical CenterDurhamNCUSA
| |
Collapse
|
30
|
Mozduri Z, Marty-Gasset N, Lo B, Masoudi AA, Morisson M, Canlet C, Arroyo J, Bonnet A, Bonnefont CMD. Identification of Plasmatic Biomarkers of Foie Gras Qualities in Duck by Metabolomics. Front Physiol 2021; 12:628264. [PMID: 33643071 PMCID: PMC7907454 DOI: 10.3389/fphys.2021.628264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
The foie gras is an emblematic product of French gastronomy composed of waterfowl fatty liver. The organoleptic qualities of this product depend on the liver characteristics such as liver weight (LW) and technological yield (TY) at cooking. One of the main issues for producers is to classify the foie gras with high or low technological quality before cooking them. Thus the study aims at identifying biomarkers of these characteristics with non-invasive biomarkers in duck. 1H-NMR (nuclear magnetic resonance of the proton) analyses were performed on plasma of male mule ducks at different time points during the overfeeding period to obtain a large range of liver characteristics so as to identify plasmatic biomarkers of foie gras. We used two methods, one based on bucket data from the 1H-NMR spectra and another one based on the fingerprints of several metabolites. PLS analyses and Linear models were performed to identify biomarkers. We identified 18 biomarkers of liver weight and 15 biomarkers of technological yield. As these two quality parameters were strongly correlated (−0.82), 13 biomarkers were common. The lactate was the most important biomarker, the other were mainly amino acids. Contrary to the amino acids, the lactate increased with the liver weight and decreased with the technological yield. We also identified 5 biomarkers specific to LW (3 carbohydrates: glucuronic acid, mannose, sorbitol and 2 amino acids: glutamic acid and methionine) that were negatively correlated to liver weight. It was of main interest to identify 2 biomarkers specific to the technological yield. Contrary to the isovaleric acid, the valine was negatively correlated to the technological yield.
Collapse
Affiliation(s)
- Zohre Mozduri
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France.,Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Bara Lo
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Cécile Canlet
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Julien Arroyo
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, Coulaures, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | |
Collapse
|
31
|
ASC, IL-18 and Galectin-3 as Biomarkers of Non-Alcoholic Steatohepatitis: A Proof of Concept Study. Int J Mol Sci 2020; 21:ijms21228580. [PMID: 33203036 PMCID: PMC7698245 DOI: 10.3390/ijms21228580] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease that is growing in prevalence. Symptoms of NASH become apparent when the disease has progressed significantly. Thus, there is a need to identify biomarkers of NASH in order to detect the disease earlier and to monitor disease severity. The inflammasome has been shown to play a role in liver diseases. Here, we performed a proof of concept study of biomarker analyses (cut-off points, positive and negative predictive values, receiver operating characteristic (ROC) curves, and likelihood ratios) on the serum of patients with NASH and healthy controls on apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), interleukin (IL)-18, Galectin-3 (Gal-3), and C-reactive protein (CRP). ASC, IL-18, and Gal-3 were elevated in the serum of NASH patients when compared to controls. The area under the curve (AUC) for ASC was the highest (0.7317) with an accuracy of 68%, followed by IL-18 (0.7036) with an accuracy of 66% and Gal-3 (0.6891) with an accuracy of 61%. Moreover, we then fit a stepwise multivariate logistic regression model using ASC, IL-18, and Gal-3 to determine the probability of patients having a NASH diagnosis, which resulted in an AUC of 0.71 and an accuracy of 79%, indicating that combining these biomarkers increases their diagnostic potential for NASH. These results indicate that ASC, IL-18, and Gal-3 are reliable biomarkers of NASH and that combining these analytes increases the biomarker potential of these proteins.
Collapse
|
32
|
Tang J, Xiong K, Zhang T, Han Han. Application of Metabolomics in Diagnosis and Treatment of Chronic Liver Diseases. Crit Rev Anal Chem 2020; 52:906-916. [PMID: 33146026 DOI: 10.1080/10408347.2020.1842172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic liver disease represents stepwise destruction of the liver parenchyma after chronic liver injury, which is often difficult to be diagnosed accurately. Thus, the development of specific biomarkers of chronic liver disease is important. Metabolomics is a powerful tool for biomarker exploration, which enables the exploration of disease pathogenesis or drug action mechanisms at the global metabolic level. The metabolomics workflow generally includes collection, preparation, and analysis of samples, and data processing and bioinformatics. A metabolomics study can simultaneously detect the dysfunctions in the glucose, lipid, amino-acid, and nucleotide metabolisms. Hence, it facilitates the obtaining of a better understanding of the pathogenesis of chronic liver disease and its diagnosis. Many effective drugs could reverse the change of comprehensive biochemical phenotypes induced by chronic liver disease. They can even potentially restore the normal metabolic signatures of patients. Increasingly more researchers have begun to apply metabolomics technologies to diagnose chronic liver disease and investigate the mechanism of action of effective drugs or the variations in drug responses. We are convinced that deepening the understanding of the metabolic alterations could extend their use as powerful biomarkers, promoting the more effective clinical diagnosis and treatment of chronic liver disease in the future.
Collapse
Affiliation(s)
- Jie Tang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Xiong
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Feng Q, Li Y, Yang Y, Feng J. Urine Metabolomics Analysis in Patients With Normoalbuminuric Diabetic Kidney Disease. Front Physiol 2020; 11:578799. [PMID: 33123032 PMCID: PMC7573362 DOI: 10.3389/fphys.2020.578799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) leads to low high albuminuria and gradually progresses to very high albuminuria with kidney insufficiency. However, about 20-40% of DKD is normoalbuminuric DKD (NADKD), which has impaired kidney function but normal urine albumin. This study is to investigate the urine metabolomic profiles of patients with NADKD and albuminuria DKD (ADKD). METHODS In total, 95 patients were divided into a simple diabetes mellitus group (SDM group), an ADKD group, and a NADKD group. All subjects were analyzed for urine metabolites using non-targeted metabolomics based on ultra-performance liquid chromatography - tandem mass spectrometry. RESULTS The urine metabolomic profiles of the SDM group, NADKD group, and ADKD group were significantly different, and 65 different metabolites were identified among the three groups. Metabolic pathway analysis of these differential metabolites found that the top three significantly changed metabolic pathways were linoleic acid metabolism, citrate cycle, and, arginine and proline metabolism. There are 12 metabolites enriched in these three metabolic pathways. In detail, compared with those in the SDM group, the levels of γ-linolenic acid in the ADKD group were increased significantly, while the levels of succinic acid, cis-aconitic acid, citric acid, L-proline, L-erythro-4-hydroxyglutamate, N-methylhydantoin, N-carbamoylputrescine, spermidine, and 5-aminopentanoic acid were reduced significantly; compared with those in the NADKD group, the levels of linoleic acid, γ-linolenic acid, and L-malic acid in the ADKD group were increased significantly (P < 0.05), while the levels of L-proline, L-erythro-4-hydroxyglutamate, N-carbamoylputrescine, and spermidine were significantly reduced (P < 0.05). However, there were no significant difference between the SDM group and NADKD group (P > 0.05). CONCLUSION The urine metabolomic profiles between the NADKD group and the ADKD group are significantly different. Specifically, these two groups have distinct levels of linoleic acid, γ-linolenic acid, L-malic acid, L-proline, L-erythro-4-hydroxyglutamate, N-carbamoylputrescine, and spermidine.
Collapse
Affiliation(s)
- Qian Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanmeng Li
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuwei Yang
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
34
|
Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020; 111S:154320. [PMID: 32712221 PMCID: PMC7377759 DOI: 10.1016/j.metabol.2020.154320] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical, histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver biopsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applications are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology. Omics are also generating non-invasive diagnostic modalities for the distinct stages of NAFLD, that remain though to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as prospectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of these techniques in understanding, diagnosing and treating NAFLD are summarized herein.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA..
| | - Konstantinos Stefanakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Savic D, Hodson L, Neubauer S, Pavlides M. The Importance of the Fatty Acid Transporter L-Carnitine in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2020; 12:E2178. [PMID: 32708036 PMCID: PMC7469009 DOI: 10.3390/nu12082178] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
L-carnitine transports fatty acids into the mitochondria for oxidation and also buffers excess acetyl-CoA away from the mitochondria. Thus, L-carnitine may play a key role in maintaining liver function, by its effect on lipid metabolism. The importance of L-carnitine in liver health is supported by the observation that patients with primary carnitine deficiency (PCD) can present with fatty liver disease, which could be due to low levels of intrahepatic and serum levels of L-carnitine. Furthermore, studies suggest that supplementation with L-carnitine may reduce liver fat and the liver enzymes alanine aminotransferase (ALT) and aspartate transaminase (AST) in patients with Non-Alcoholic Fatty Liver Disease (NAFLD). L-carnitine has also been shown to improve insulin sensitivity and elevate pyruvate dehydrogenase (PDH) flux. Studies that show reduced intrahepatic fat and reduced liver enzymes after L-carnitine supplementation suggest that L-carnitine might be a promising supplement to improve or delay the progression of NAFLD.
Collapse
Affiliation(s)
- Dragana Savic
- Radcliffe Department of Medicine, Oxford Centre for Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; (S.N.); (M.P.)
| | - Leanne Hodson
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology & Metabolism, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK;
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Stefan Neubauer
- Radcliffe Department of Medicine, Oxford Centre for Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; (S.N.); (M.P.)
| | - Michael Pavlides
- Radcliffe Department of Medicine, Oxford Centre for Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; (S.N.); (M.P.)
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
36
|
Moolla A, de Boer J, Pavlov D, Amin A, Taylor A, Gilligan L, Hughes B, Ryan J, Barnes E, Hassan‐Smith Z, Grove J, Aithal GP, Verrijken A, Francque S, Van Gaal L, Armstrong MJ, Newsome PN, Cobbold JF, Arlt W, Biehl M, Tomlinson JW. Accurate non-invasive diagnosis and staging of non-alcoholic fatty liver disease using the urinary steroid metabolome. Aliment Pharmacol Ther 2020; 51:1188-1197. [PMID: 32298002 PMCID: PMC8150165 DOI: 10.1111/apt.15710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The development of accurate, non-invasive markers to diagnose and stage non-alcoholic fatty liver disease (NAFLD) is critical to reduce the need for an invasive liver biopsy and to identify patients who are at the highest risk of hepatic and cardio-metabolic complications. Disruption of steroid hormone metabolic pathways has been described in patients with NAFLD. AIM(S) To assess the hypothesis that assessment of the urinary steroid metabolome may provide a novel, non-invasive biomarker strategy to stage NAFLD. METHODS We analysed the urinary steroid metabolome in 275 subjects (121 with biopsy-proven NAFLD, 48 with alcohol-related cirrhosis and 106 controls), using gas chromatography-mass spectrometry (GC-MS) coupled with machine learning-based Generalised Matrix Learning Vector Quantisation (GMLVQ) analysis. RESULTS Generalised Matrix Learning Vector Quantisation analysis achieved excellent separation of early (F0-F2) from advanced (F3-F4) fibrosis (AUC receiver operating characteristics [ROC]: 0.92 [0.91-0.94]). Furthermore, there was near perfect separation of controls from patients with advanced fibrotic NAFLD (AUC ROC = 0.99 [0.98-0.99]) and from those with NAFLD cirrhosis (AUC ROC = 1.0 [1.0-1.0]). This approach was also able to distinguish patients with NAFLD cirrhosis from those with alcohol-related cirrhosis (AUC ROC = 0.83 [0.81-0.85]). CONCLUSIONS Unbiased GMLVQ analysis of the urinary steroid metabolome offers excellent potential as a non-invasive biomarker approach to stage NAFLD fibrosis as well as to screen for NAFLD. A highly sensitive and specific urinary biomarker is likely to have clinical utility both in secondary care and in the broader general population within primary care and could significantly decrease the need for liver biopsy.
Collapse
|
37
|
Zhu M, Li M, Zhou W, Ge G, Zhang L, Ji G. Metabolomic Analysis Identifies Glycometabolism Pathways as Potential Targets of Qianggan Extract in Hyperglycemia Rats. Front Pharmacol 2020; 11:671. [PMID: 32477136 PMCID: PMC7235344 DOI: 10.3389/fphar.2020.00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Qianggan formula, a designed prescription according to the Traditional Chinese Medicine (TCM) theory, is widely used in treating chronic liver diseases, and indicated to prevent blood glucose increase in patients via unknown mechanisms. To unravel the effects and underlying mechanisms of Qianggan formula on hyperglycemia, we administrated Qianggan extract to high fat and high sucrose (HFHS) diet rats. Results showed that four-week Qianggan extract intervention significantly decreased serum fasting blood glucose, hemoglobin A1c, and liver glycogen levels. Gas chromatography-mass spectrometry (GC-MS) approach was employed to explore metabolomic profiles in liver and fecal samples. By multivariate and univariate statistical analysis (variable importance of projection value > 1 and p value < 0.05), 44 metabolites (18 in liver and 30 in feces) were identified as significantly different. Hierarchical cluster analysis revealed that most differential metabolites had opposite patterns between pair-wise groups. Qianggan extract restored the diet induced metabolite perturbations. Metabolite sets enrichment and pathway enrichment analysis revealed that the affected metabolites were mainly enriched in glycometabolism pathways such as glycolysis/gluconeogenesis, pentose phosphate pathway, fructose, and mannose metabolism. By compound-reaction-enzyme-gene network analysis, batches of genes (e.g. Hk1, Gck, Rpia, etc) or enzymes (e.g. hexokinase and glucokinase) related to metabolites in enriched pathways were obtained. Our findings demonstrated that Qianggan extract alleviated hyperglycemia, and the effects might be partially due to the regulation of glycometabolism related pathways.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Li
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Distinguishing NASH Histological Severity Using a Multiplatform Metabolomics Approach. Metabolites 2020; 10:metabo10040168. [PMID: 32344559 PMCID: PMC7240949 DOI: 10.3390/metabo10040168] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is categorized based on histological severity into nonalcoholic fatty liver (NAFL) or nonalcoholic steatohepatitis (NASH). We used a multiplatform metabolomics approach to identify metabolite markers and metabolic pathways that distinguish NAFL from early NASH and advanced NASH. We analyzed fasting serum samples from 57 prospectively-recruited patients with histologically-proven NAFLD, including 12 with NAFL, 31 with early NASH and 14 with advanced NASH. Metabolite profiling was performed using a combination of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy analyzed with multivariate statistical and pathway analysis tools. We targeted 237 metabolites of which 158 were quantified. Multivariate analysis uncovered metabolite profile clusters for patients with NAFL, early NASH, and advanced NASH. Also, multiple individual metabolites were associated with histological severity, most notably spermidine which was more than 2-fold lower in advanced fibrosis vs. early fibrosis, in advanced NASH vs. NAFL and in advanced NASH vs. early NASH, suggesting that spermidine exercises a protective effect against development of fibrosing NASH. Furthermore, the results also showed metabolic pathway perturbations between early-NASH and advanced-NASH. In conclusion, using a combination of two reliable analytical platforms (LC-MS and NMR spectroscopy) we identified individual metabolites, metabolite clusters and metabolic pathways that were significantly different between NAFL, early-NASH, and advanced-NASH. These differences provide mechanistic insights as well as potentially important metabolic biomarker candidates that may noninvasively distinguish patients with NAFL, early-NASH, and advanced-NASH. The associations of spermidine levels with less advanced histology merit further assessment of the potential protective effects of spermidine in NAFLD.
Collapse
|
39
|
Differentiation between stages of non-alcoholic fatty liver diseases using surface-enhanced Raman spectroscopy. Anal Chim Acta 2020; 1110:190-198. [PMID: 32278395 DOI: 10.1016/j.aca.2020.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic disorder progressing from an initial benign accumulation of fat (NAFL) towards steatohepatitis (NASH), a degenerative form that can lead to liver cirrhosis and cancer. The development of non-invasive, rapid and accurate method to diagnose NASH is of high clinical relevance. Surface-enhanced Raman spectroscopy (SERS) of plasma was tested as a method to distinguish NAFL from NASH. SERS spectra from plasma of female patients diagnosed with NAFL (n = 32) and NASH (n = 35) were obtained in few seconds, using a portable Raman spectrometer. The sample consisted of 5 μL of biofluid deposited on paper coated with Ag nanoparticles. The spectra show consistent differences between the NAFL and NASH patients, with the uric acid/hypoxanthine band area ratio statistically different (p-value <0.001) between the two groups. The average figures of merit for a diagnostic test based on these ratios, as derived from a repeated 4-fold cross-validation of a logistic regression model, are all between 0.73 and 0.79, with an average area under the curve of 0.81. We conclude that SERS may be a reliable and rapid method to discriminate NAFLD from NASH.
Collapse
|
40
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
41
|
Metabolic impact of partial hepatectomy in the non-alcoholic steatohepatitis animal model of methionine-choline deficient diet. J Pharm Biomed Anal 2019; 178:112958. [PMID: 31718984 DOI: 10.1016/j.jpba.2019.112958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022]
Abstract
In the liver, obesity is often manifested by the clinical disorder of the Non-Alcoholic Fatty Liver Disease (NAFLD). A proportion of NAFLD patients develop hepatic inflammation, known as Non-Alcoholic Steatohepatitis (NASH), which can end up in cirrhosis, or Hepatocellular Carcinoma (HCC). In this scenario, partial hepatectomy (PH) is an alternative to promote liver regeneration. However, as liver regeneration is impaired in NASH patients, more knowledge about its metabolic condition is needed to improve the regenerative response of the liver in this pathological condition. Although extensively employed, the panoply of molecular alterations involved in the regenerative response of the liver after partial hepatectomy PH is far from being fully characterized. Metabolic fingerprinting (metabolomics) is a powerful tool to help in the elucidation of complex metabolic networks, by means of a blind, naïve approach to study which metabolic nodes (metabolites) show the biggest variations between conditions. The objective of the present study was to gain deeper knowledge about the metabolic processes involved in the NASH animal model, and particularly in the effect of PH by using metabolomics. For achieving such information, twelve 8-week-old male C57BL/6 J mice, fed commercial chow (control diet) or methionine and choline-Deficient diet (MCD) for three weeks were subjected to PH and sacrificed 2 weeks later. Livers were removed and submitted to metabolic profiling analysis through RP-LC/MS (qTOF), GC/MS (qTOF) and CE/MS(TOF). More than 3000 different features were detected and repeated measurements one-way ANOVA analysis was performed to unveil significant features. MCD diet induced changes (p < 0.05) in 46% of the detected features, whereas PH provoked significant changes in 85% of them. Most of the changes were detected through LC/MS and were associated to lipid metabolism. However, changes of metabolites virtually related to other metabolic routes (amino acids, carbohydrates, nucleotides) were found altered and detected by CE/MS and GC/MS. The changes associated to PH show a similar trend regardless of the diet, but in the context of the diet deficient in methionine and choline we have found results that point to a different ratio glycolysis/tricarboxylic acid cycle. Moreover, in the NASH model, the regeneration of the liver structures occurs at the expense of an increased phosphatidylethanolamines/phosphatidylcholines ratio.
Collapse
|
42
|
Abstract
Metabolomics uses advanced analytical chemistry techniques to enable the high-throughput characterization of metabolites from cells, organs, tissues, or biofluids. The rapid growth in metabolomics is leading to a renewed interest in metabolism and the role that small molecule metabolites play in many biological processes. As a result, traditional views of metabolites as being simply the "bricks and mortar" of cells or just the fuel for cellular energetics are being upended. Indeed, metabolites appear to have much more varied and far more important roles as signaling molecules, immune modulators, endogenous toxins, and environmental sensors. This review explores how metabolomics is yielding important new insights into a number of important biological and physiological processes. In particular, a major focus is on illustrating how metabolomics and discoveries made through metabolomics are improving our understanding of both normal physiology and the pathophysiology of many diseases. These discoveries are yielding new insights into how metabolites influence organ function, immune function, nutrient sensing, and gut physiology. Collectively, this work is leading to a much more unified and system-wide perspective of biology wherein metabolites, proteins, and genes are understood to interact synergistically to modify the actions and functions of organelles, organs, and organisms.
Collapse
Affiliation(s)
- David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Ezzaidi N, Zhang X, Coker OO, Yu J. New insights and therapeutic implication of gut microbiota in non-alcoholic fatty liver disease and its associated liver cancer. Cancer Lett 2019; 459:186-191. [PMID: 31185249 DOI: 10.1016/j.canlet.2019.114425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 02/09/2023]
Abstract
The gastrointestinal tract represents one of the largest interfaces between the host and environmental factors. It contains a vast and complex community of microbes, forming what is collectively known as the microbiota. This gut microbiota plays a pivotal role in the maintenance of health, and 'dysbiosis' of the gut microbiota, commonly considered as perturbation of microbiota diversity and composition, has been associated with intestinal and extra-intestinal diseases, including non-alcoholic fatty liver disease (NAFLD) and its associated hepatocellular carcinoma (NAFLD-HCC). In this review, we highlight microbiota dysbiosis and the microbiota-host interactions that link to the pathogenesis of NAFLD and NAFLD-HCC. We discuss the potential therapeutic implications of the gut microbiota in the progression of NAFLD-HCC.
Collapse
Affiliation(s)
- Niama Ezzaidi
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong; MChem Chemistry and Drug Discovery, University of Sussex, UK
| | - Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
44
|
Untargeted metabolomic profiling of urine from healthy dogs and dogs with chronic hepatic disease. PLoS One 2019; 14:e0217797. [PMID: 31150490 PMCID: PMC6544284 DOI: 10.1371/journal.pone.0217797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatic disease can present a diagnostic challenge with different etiologies being associated with similar clinical and laboratory findings. The histopathological assessment of a liver biopsy specimen is usually required in order to make a definitive diagnosis and the availability of non-invasive prognostic biomarkers is limited. The emerging science of metabolomics is used to detect changes in endogenous low molecular weight metabolites in biological samples and offers the possibility of identifying noninvasive markers of disease. The objective of this study was to investigate differences in the urine metabolome between healthy dogs, dogs with chronic hepatitis, dogs with hepatocellular carcinoma, and dogs with a congenital portosystemic shunt. Stored urine samples from 10 healthy dogs, 10 dogs with chronic hepatitis, 6 dogs with hepatocellular carcinoma, and 5 dogs with a congenital portosystemic shunt were analyzed. The urine metabolome was analyzed by gas chromatography–quadrupole time of flight mass spectrometry and 220 known metabolites were identified. Principal component analysis and heat dendrogram plots of the metabolomics data showed clustering between groups. Random forest analysis showed differences in the abundance of various metabolites including putrescine, gluconic acid, sorbitol, and valine. Based on univariate statistics, 37 metabolites were significantly different between groups. In, conclusion, the urine metabolome varies between healthy dogs, dogs with chronic hepatitis, dogs with hepatocellular carcinoma, and dogs with a congenital portosystemic shunt. Further targeted assessment of these metabolites is needed to assess their diagnostic utility.
Collapse
|
45
|
Gou XJ, Gao S, Chen L, Feng Q, Hu YY. A Metabolomic Study on the Intervention of Traditional Chinese Medicine Qushi Huayu Decoction on Rat Model of Fatty Liver Induced by High-Fat Diet. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5920485. [PMID: 30881991 PMCID: PMC6383432 DOI: 10.1155/2019/5920485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/23/2022]
Abstract
Qushi Huayu Decoction (QHD), an important clinically proved herbal formula, has been reported to be effective in treating fatty liver induced by high-fat diet in rats. However, the mechanism of action has not been clarified at the metabolic level. In this study, a urinary metabolomic method based on gas chromatography-mass spectrometry (GC-MS) coupled with pattern recognition analysis was performed in three groups (control, model, and QHD group), to explore the effect of QHD on fatty liver and its mechanism of action. There was obvious separation between the model group and control group, and the QHD group showed a tendency of recovering to the control group in metabolic profiles. Twelve candidate biomarkers were identified and used to explore the possible mechanism. Then, a pathway analysis was performed using MetaboAnalyst 3.0 to illustrate the pathways of therapeutic action of QHD. QHD reversed the urinary metabolite abnormalities (tryptophan, uridine, and phenylalanine, etc.). Fatty liver might be prevented by QHD through regulating the dysfunctions of phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, and tryptophan metabolism. This work demonstrated that metabolomics might be helpful for understanding the mechanism of action of traditional Chinese medicine for future clinical evaluation.
Collapse
Affiliation(s)
- Xiao-jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Shanshan Gao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Yangxian, Shaanxi 712046, China
| | - Liang Chen
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu 226001, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-yang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
46
|
Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut 2019; 68:359-370. [PMID: 30171065 DOI: 10.1136/gutjnl-2018-316307] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from simple hepatic steatosis, commonly associated with obesity, to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and hepatocellular carcinoma. NAFLD pathophysiology involves environmental, genetic and metabolic factors, as well as changes in the intestinal microbiota and their products. Dysfunction of the intestinal barrier can contribute to NAFLD development and progression. Although there are technical limitations in assessing intestinal permeability in humans and the number of patients in these studies is rather small, fewer than half of the patients have increased intestinal permeability and translocation of bacterial products. Microbe-derived metabolites and the signalling pathways they affect might play more important roles in development of NAFLD. We review the microbial metabolites that contribute to the development of NAFLD, such as trimethylamine, bile acids, short-chain fatty acids and ethanol. We discuss the mechanisms by which metabolites produced by microbes might affect disease progression and/or serve as therapeutic targets or biomarkers for NAFLD.
Collapse
Affiliation(s)
- Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
47
|
Carulli L, Zanca G, Schepis F, Villa E. The OMICs Window into Nonalcoholic Fatty Liver Disease (NAFLD). Metabolites 2019; 9:25. [PMID: 30717274 PMCID: PMC6409793 DOI: 10.3390/metabo9020025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common cause of hepatic abnormalities worldwide. Nonalcoholic steatohepatitis (NASH) is part of the spectrum of NAFLD and leads to progressive liver disease, such as cirrhosis and hepatocellular carcinoma. In NASH patient, fibrosis represents the major predictor of liver-related mortality; therefore, it is important to have an early and accurate diagnosis of NASH. The current gold standard for the diagnosis of NASH is still liver biopsy. The development of biomarkers able to predict disease severity, prognosis, as well as response to therapy without the need for a biopsy is the focus of most up-to-date genomic, transcriptomic, proteomic, and metabolomic research. In the future, patients might be diagnosed and treated according to their molecular signatures. In this short review, we discuss how information from genomics, proteomics, and metabolomics contribute to the understanding of NAFLD pathogenesis.
Collapse
Affiliation(s)
- Lucia Carulli
- Division of Gastroenterology, Department of Medical Specialties, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Giulia Zanca
- Division of Gastroenterology, Department of Medical Specialties, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Filippo Schepis
- Division of Gastroenterology, Department of Medical Specialties, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Erica Villa
- Division of Gastroenterology, Department of Medical Specialties, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
48
|
Yang Q, Zhang AH, Miao JH, Sun H, Han Y, Yan GL, Wu FF, Wang XJ. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv 2019; 9:37245-37257. [PMID: 35542267 PMCID: PMC9075731 DOI: 10.1039/c9ra06697g] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed. Mass spectrometry-based metabolomics has been used in a variety of disease research areas. However, the deep research of metabolites remains a difficult and lengthy process. Fortunately, mass spectrometry is considered to be a universal tool with high specificity and sensitivity and is widely used around the world. Mass spectrometry technology has been applied to various basic disciplines, providing technical support for the discovery and identification of endogenous substances in living organisms. The combination of metabolomics and mass spectrometry is of great significance for the discovery and identification of metabolite biomarkers. The mass spectrometry tool could further improve and develop the exploratory research of the life sciences. This mini review discusses metabolomics biotechnology with a focus on recent applications of metabolomics as a powerful tool to elucidate metabolic disturbances and the related mechanisms of diseases. Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed.![]()
Collapse
Affiliation(s)
- Qiang Yang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ai-hua Zhang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Jian-hua Miao
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Hui Sun
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ying Han
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Guang-li Yan
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Fang-fang Wu
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Xi-jun Wang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| |
Collapse
|
49
|
Kim DJ, Yoon S, Ji SC, Yang J, Kim YK, Lee S, Yu KS, Jang IJ, Chung JY, Cho JY. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci Rep 2018; 8:11874. [PMID: 30089798 PMCID: PMC6082879 DOI: 10.1038/s41598-018-30349-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a metabolic by-product of intestinal bacteria, showing hepatoprotective effects. However, its underlying molecular mechanisms remain unclear. The purpose of this study was to elucidate the action mechanisms underlying the protective effects of UDCA and vitamin E against liver dysfunction using metabolomics and metagenomic analysis. In this study, we analysed blood and urine samples from patients with obesity and liver dysfunction. Nine patients were randomly assigned to receive UDCA (300 mg twice daily), and 10 subjects received vitamin E (400 IU twice daily) for 8 weeks. UDCA significantly improved the liver function scores after 4 weeks of treatment and effectively reduced hepatic deoxycholic acid and serum microRNA-122 levels. To better understand its protective mechanism, a global metabolomics study was conducted, and we found that UDCA regulated uremic toxins (hippuric acid, p-cresol sulphate, and indole-derived metabolites), antioxidants (ascorbate sulphate and N-acetyl-L-cysteine), and the phenylalanine/tyrosine pathway. Furthermore, microbiome involvement, particularly of Lactobacillus and Bifidobacterium, was demonstrated through metagenomic analysis of bacteria-derived extracellular vesicles. Meanwhile, vitamin E treatment did not result in such alterations, except that it reduced uremic toxins and liver dysfunction. Our findings suggested that both treatments were effective in improving liver function, albeit via different mechanisms.
Collapse
Affiliation(s)
- Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Seonghae Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Korea
| | - Sang Chun Ji
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | | | | | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea. .,Metabolomics Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
50
|
Li WW, Yang Y, Dai QG, Lin LL, Xie T, He LL, Tao JL, Shan JJ, Wang SC. Non-invasive urinary metabolomic profiles discriminate biliary atresia from infantile hepatitis syndrome. Metabolomics 2018; 14:90. [PMID: 30830373 DOI: 10.1007/s11306-018-1387-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Neonatal cholestatic disorders are a group of hepatobiliary diseases occurring in the first 3 months of life. The most common causes of neonatal cholestasis are infantile hepatitis syndrome (IHS) and biliary atresia (BA). The clinical manifestations of the two diseases are too similar to distinguish them. However, early detection is very important in improving the clinical outcome of BA. Currently, a liver biopsy is the only proven and effective method used to differentially diagnose these two similar diseases in the clinic. However, this method is invasive. Therefore, sensitive and non-invasive biomarkers are needed to effectively differentiate between BA and IHS. We hypothesized that urinary metabolomics can produce unique metabolite profiles for BA and IHS. OBJECTIVES The aim of this study was to characterize urinary metabolomic profiles in infants with BA and IHS, and to identify differences among infants with BA, IHS, and normal controls (NC). METHODS Urine samples along with patient characteristics were obtained from 25 BA, 38 IHS, and 38 NC infants. A non-targeted gas chromatography-mass spectrometry (GC-MS) metabolomics method was used in conjunction with orthogonal partial least squares discriminant analysis (OPLS-DA) to explore the metabolomic profiles of BA, IHS, and NC infants. RESULTS In total, 41 differentially expressed metabolites between BA vs. NC, IHS vs. NC, and BA vs. IHS were identified. N-acetyl-D-mannosamine and alpha-aminoadipic acid were found to be highly accurate at distinguishing between BA and IHS. CONCLUSIONS BA and IHS infants have specific urinary metabolomic profiles. The results of our study underscore the clinical potential of metabolomic profiling to uncover metabolic changes that could be used to discriminate BA from IHS.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- TCM Department, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qi-Gang Dai
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li Lin
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Lei Tao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Jun Shan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shou-Chuan Wang
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|