1
|
Dillman JR, Tkach JA, Fletcher JG, Bruining DH, Lu A, Kugathasan S, Alazraki AL, Knight-Scott J, Stidham RW, Adler J, Trapnell BC, Swanson SD, Fei L, Qian L, Towbin AJ, Kocaoglu M, Anton CG, Imbus RA, Dudley JA, Denson LA. MRI and Blood-based Biomarkers Are Associated With Surgery in Children and Adults With Ileal Crohn's Disease. Inflamm Bowel Dis 2024; 30:2181-2190. [PMID: 38738296 PMCID: PMC12102486 DOI: 10.1093/ibd/izae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Despite advances in medical therapy, many children and adults with ileal Crohn's disease (CD) progress to fibrostenosis requiring surgery. We aimed to identify MRI and circulating biomarkers associated with the need for surgical management. METHODS This prospective, multicenter study included pediatric and adult CD cases undergoing ileal resection and CD controls receiving medical therapy. Noncontrast research MRI examinations measured bowel wall 3-dimensional magnetization transfer ratio normalized to skeletal muscle (normalized 3D MTR), modified Look-Locker inversion recovery (MOLLI) T1 relaxation, intravoxel incoherent motion (IVIM) diffusion-weighted imaging metrics, and the simplified magnetic resonance index of activity (sMaRIA). Circulating biomarkers were measured on the same day as the research MRI and included CD64, extracellular matrix protein 1 (ECM1), and granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies (Ab). Associations between MRI and circulating biomarkers and need for ileal resection were tested using univariate and multivariable LASSO regression. RESULTS Our study sample included 50 patients with CD undergoing ileal resection and 83 patients with CD receiving medical therapy; mean participant age was 23.9 ± 13.1 years. Disease duration and treatment exposures did not vary between the groups. Univariate biomarker associations with ileal resection included log GM-CSF Ab (odds ratio [OR], 2.87; P = .0009), normalized 3D MTR (OR, 1.05; P = .002), log MOLLI T1 (OR, 0.01; P = .02), log IVIM perfusion fraction (f; OR, 0.38; P = .04), and IVIM apparent diffusion coefficient (ADC; OR, 0.3; P = .001). The multivariable model for surgery based upon corrected Akaike information criterion included age (OR, 1.03; P = .29), BMI (OR, 0.91; P = .09), log GM-CSF Ab (OR, 3.37; P = .01), normalized 3D MTR (OR, 1.07; P = .007), sMaRIA (OR, 1.14; P = .61), luminal narrowing (OR, 10.19; P = .003), log C-reactive protein (normalized; OR, 2.75; P = .10), and hematocrit (OR, 0.90; P = .13). CONCLUSION After accounting for clinical and MRI measures of severity, normalized 3D MTR and GM-CSF Ab are associated with the need for surgery in ileal CD.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - David H Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Aiming Lu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Adina L Alazraki
- Department of Radiology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Jack Knight-Scott
- Department of Radiology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan W Stidham
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Jeremy Adler
- Division of Pediatric Gastroenterology, Department of Pediatrics, C.S. Mott Children’s Hospital, Michigan Medicine, Ann Arbor, MI, USA
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, and Departments of Medicine and Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Scott D Swanson
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
| | - Lin Fei
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lucia Qian
- University of Michigan, Ann Arbor, MI, USA
| | - Alexander J Towbin
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Murat Kocaoglu
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christopher G Anton
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rebecca A Imbus
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan A Dudley
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Kvedaraite E, Lourda M, Mouratidou N, Düking T, Padhi A, Moll K, Czarnewski P, Sinha I, Xagoraris I, Kokkinou E, Damdimopoulos A, Weigel W, Hartwig O, Santos TE, Soini T, Van Acker A, Rahkonen N, Flodström Tullberg M, Ringqvist E, Buggert M, Jorns C, Lindforss U, Nordenvall C, Stamper CT, Unnersjö-Jess D, Akber M, Nadisauskaite R, Jansson J, Vandamme N, Sorini C, Grundeken ME, Rolandsdotter H, Rassidakis G, Villablanca EJ, Ideström M, Eulitz S, Arnell H, Mjösberg J, Henter JI, Svensson M. Intestinal stroma guides monocyte differentiation to macrophages through GM-CSF. Nat Commun 2024; 15:1752. [PMID: 38409190 PMCID: PMC10897309 DOI: 10.1038/s41467-024-46076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142-/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142-/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tim Düking
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Avinash Padhi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Dermatology and Venereology Section, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsten Moll
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Biochemistry and Biophysics and National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ioanna Xagoraris
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Hartwig
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Telma E Santos
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tea Soini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Tech Watch, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Nelly Rahkonen
- Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Malin Flodström Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carl Jorns
- Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrik Lindforss
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Nordenvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher T Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Unnersjö-Jess
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Mira Akber
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ruta Nadisauskaite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Niels Vandamme
- VIB Single Cell Core, VIB, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
| | - Chiara Sorini
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Marijke Elise Grundeken
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Rolandsdotter
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Department of Gastroenterology, Södersjukhuset, Stockholm, Sweden
| | - George Rassidakis
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Maja Ideström
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Eulitz
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Henrik Arnell
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Theme of Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Parajuli P, Craig DB, Gadgeel M, Bagla S, Wright RE, Chu R, Shanti CM, Thirunagari R, Grover SK, Ravindranath Y. Defective monocyte plasticity and altered cAMP pathway characterize USB1-mutated poikiloderma with neutropenia Clericuzio type. Br J Haematol 2024; 204:683-693. [PMID: 37779259 DOI: 10.1111/bjh.19128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Poikiloderma with neutropenia (PN) Clericuzio type (OMIM #604173) is a rare disease with areas of skin hyper- and hypopigmentation caused by biallelic USB1 variants. The current study was spurred by poor healing of a perianal tear wound in one affected child homozygous for c.266-1G>A (p.E90Sfster8) mutation, from a family reported previously. Treatment with G-CSF/CSF3 or GM-CSF/CSF2 transiently increased neutrophil/monocytes count with no effect on wound healing. Analysis of peripheral blood revealed a lack of non-classical (CD14+/- CD16+ ) monocytes, associated with a systemic inflammatory cytokine profile, in the two affected brothers. Importantly, despite normal expression of cognate receptors, monocytes from PN patients did not respond to M-CSF or IL-34 in vitro, as determined by cytokine secretion or CD16 expression. RNAseq of monocytes showed 293 differentially expressed genes, including significant downregulation of GATA2, AKAP6 and PDE4DIP that are associated with leucocyte differentiation and cyclic adenosine monophosphate (cAMP) signalling. Notably, the plasma cAMP was significantly low in the PN patients. Our study revealed a novel association of PN with a lack of non-classical monocyte population. The defects in monocyte plasticity may contribute to disease manifestations in PN and a defective cAMP signalling may be the primary effect of the splicing errors caused by USB1 mutation.
Collapse
Affiliation(s)
- Prahlad Parajuli
- Department of Pharmaceutical and Health Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, USA
- Barbara Ann Karmanos Cancer Institute, Michigan, Detroit, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Michigan, Detroit, USA
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manisha Gadgeel
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
- Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Shruti Bagla
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Robert E Wright
- Department of Pharmaceutical and Health Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, USA
| | - Roland Chu
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
- Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Christina M Shanti
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
| | - Rajeev Thirunagari
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
| | - Sudershan K Grover
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Barbara Ann Karmanos Cancer Institute, Michigan, Detroit, USA
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan, USA
| |
Collapse
|
4
|
Vieujean S, Kotze PG, Netter P, Germain A, Louis E, Danese S, Peyrin-Biroulet L. Stemming the tide with ileocecal Crohn's disease: when is pharmacotherapy enough? Expert Opin Pharmacother 2023; 24:1595-1607. [PMID: 37401098 DOI: 10.1080/14656566.2023.2232726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Crohn's disease (CD) mostly affects the terminal ileum and ileocecal region and up to 80% of patients end up requiring surgery. Previously reserved for complicated or refractory forms, surgery is now considered as an alternative to medical treatment in localized ileocecal disease. AREAS COVERED This review examines factors associated with response to medical treatment and those associated with the need for surgery in ileocecal CD to identify the patients' profile for whom pharmacotherapy might be enough. Factors associated with the recurrence and the postoperative complications are also reviewed to help the clinician identify patients for whom medical therapy might be preferred. EXPERT’S OPINION LIR!C study long-term follow-up data show that 38% of infliximab-treated patients were still treated with infliximab at the end of their follow-up, while 14% had switched to another biologic or had received immunomodulator or corticosteroid and 48% had CD-related surgery. Only the combination with an immunomodulator was associated with a greater likelihood of continuing infliximab. Patients with ileocecal CD for whom pharmacotherapy might be sufficient are probably those with no risk factors for CD-related surgery.In addition, patients with high risk of recurrence or of post-operative complications may benefit more from medical treatment than from surgery.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | - Paulo Gustavo Kotze
- Colorectal Surgery Unit, Cajuru University Hospital, Catholic University of Paraná, Curitiba, Brazil
| | - Patrick Netter
- Université de Lorraine, CNRS, Laboratoire IMoPa, Nancy, France
| | - Adeline Germain
- Department of Digestive Surgery, University Hospital of Nancy-Brabois, Vandoeuvre-Les-Nancy, France
| | - Edouard Louis
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, Nancy, France
- University of Lorraine, INSERM, NGERE, Nancy, France
| |
Collapse
|
5
|
Kisia LE, Cheng Q, Raballah E, Munde EO, McMahon BH, Hengartner NW, Ong'echa JM, Chelimo K, Lambert CG, Ouma C, Kempaiah P, Perkins DJ, Schneider KA, Anyona SB. Genetic variation in CSF2 (5q31.1) is associated with longitudinal susceptibility to pediatric malaria, severe malarial anemia, and all-cause mortality in a high-burden malaria and HIV region of Kenya. Trop Med Health 2022; 50:41. [PMID: 35752805 PMCID: PMC9233820 DOI: 10.1186/s41182-022-00432-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 01/13/2023] Open
Abstract
Plasmodium falciparum infections remain among the leading causes of morbidity and mortality in holoendemic transmission areas. Located within region 5q31.1, the colony-stimulating factor 2 gene (CSF2) encodes granulocyte-macrophage colony-stimulating factor (GM-CSF), a hematopoietic growth factor that mediates host immune responses. Since the effect of CSF2 variation on malaria pathogenesis remains unreported, we investigated the impact of two genetic variants in the 5q31.1 gene region flanking CSF2:g-7032 G > A (rs168681:G > A) and CSF2:g.64544T > C (rs246835:T > C) on the rate and timing of malaria and severe malarial anemia (SMA, Hb < 5.0 g/dL) episodes over 36 months of follow-up. Children (n = 1654, aged 2-70 months) were recruited from a holoendemic P. falciparum transmission area of western Kenya. Decreased incidence rate ratio (IRR) for malaria was conferred by inheritance of the CSF2:g.64544 TC genotype (P = 0.0277) and CSF2 AC/GC diplotype (P = 0.0015). Increased IRR for malaria was observed in carriers of the CSF2 AT/GC diplotype (P = 0.0237), while the inheritance of the CSF2 AT haplotype increased the IRR for SMA (P = 0.0166). A model estimating the longitudinal risk of malaria showed decreased hazard rates among CSF2 AC haplotype carriers (P = 0.0045). Investigation of all-cause mortality revealed that inheritance of the GA genotype at CSF2:g-7032 increased the risk of mortality (P = 0.0315). Higher risk of SMA and all-cause mortality were observed in younger children (P < 0.0001 and P = 0.0015), HIV-1(+) individuals (P < 0.0001 and P < 0.0001), and carriers of HbSS (P = 0.0342 and P = 0.0019). Results from this holoendemic P. falciparum area show that variation in gene region 5q31.1 influences susceptibility to malaria, SMA, and mortality, as does age, HIV-1 status, and inheritance of HbSS.
Collapse
Affiliation(s)
- Lily E Kisia
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
| | - Qiuying Cheng
- Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Department of Medical Laboratory Sciences, School of Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Elly O Munde
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Department of Clinical Medicine, School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nick W Hengartner
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - John M Ong'echa
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kiprotich Chelimo
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | | | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Medical Center, Chicago, IL, USA
| | - Douglas J Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Kristan A Schneider
- Department Applied Computer and Bio-Sciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Samuel B Anyona
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya.
- Department of Medical Biochemistry, School of Medicine, Maseno University, P.O. Box 333-40105, Maseno, Kenya.
| |
Collapse
|
6
|
Dang JT, Dang TT, Wine E, Dicken B, Madsen K, Laffin M. The Genetics of Postoperative Recurrence in Crohn Disease: A Systematic Review, Meta-analysis, and Framework for Future Work. CROHN'S & COLITIS 360 2021; 3:otaa094. [PMID: 36778938 PMCID: PMC9802308 DOI: 10.1093/crocol/otaa094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Recurrence following abdominal surgery in Crohn disease is over 50%. The impact of genetics on postoperative recurrence is not well defined. Methods A literature search was conducted where inclusion required an assessment, by genotype, of postoperative recurrence. The primary endpoint was odds of surgical recurrence. Results Twenty-eight studies identified a total of 6715 patients. Thirteen loci were identified as modifying the risk of recurrence. NOD2 was identified as a risk factor for recurrence by multiple works (cumulative odds ratio: 1.64, P = 0.003). Conclusions A NOD2 risk allele is associated with recurrence following surgery in Crohn disease. Progress in this area will require standardized reporting in future works.
Collapse
Affiliation(s)
- Jerry T Dang
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - ThucNhi T Dang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Bryan Dicken
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Laffin
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada,Address correspondence to: Michael Laffin, MD, PhD, Department of Surgery, University of Alberta, University of Alberta Hospital, 8440 112 Street NW, Edmonton, AB T6G 2B7, Canada ()
| |
Collapse
|
7
|
The Role of Inflammation in Crohn's Disease Recurrence after Surgical Treatment. J Immunol Res 2020; 2020:8846982. [PMID: 33426097 PMCID: PMC7781709 DOI: 10.1155/2020/8846982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Postoperative recurrence after surgery for Crohn's disease (CD) is virtually inevitable, and its mechanism is poorly known. Aim To review the numerous factors involved in CD postoperative recurrence (POR) pathogenesis, focusing on single immune system components as well as the immune system as a whole and highlighting the clinical significance in terms of preventive strategies and future perspectives. Methods A systematic literature search on CD POR, followed by a review of the main findings. Results The immune system plays a pivotal role in CD POR, with many different factors involved. Memory T-lymphocytes retained in mesenteric lymph nodes seem to represent the main driving force. New pathophysiology-based preventive strategies in the medical and surgical fields may help reduce POR rates. In particular, surgical strategies have already been developed and are currently under investigation. Conclusions POR is a complex phenomenon, whose driving mechanisms are gradually being unraveled. New preventive strategies addressing these mechanisms seem promising.
Collapse
|
8
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Song D, Lai L, Ran Z. Metabolic Regulation of Group 3 Innate Lymphoid Cells and Their Role in Inflammatory Bowel Disease. Front Immunol 2020; 11:580467. [PMID: 33193381 PMCID: PMC7649203 DOI: 10.3389/fimmu.2020.580467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammatory disorder of the intestine. IBD is associated with complex pathogenesis, and considerable data suggest that innate lymphoid cells contribute to the development and progression of the condition. Group 3 innate lymphoid cells (ILC3s) not only play a protective role in maintaining intestinal homeostasis and gut barrier function, but also a pathogenic role in intestinal inflammation. ILC3s can sense environmental and host-derived signals and combine these cues to modulate cell expansion, migration and function, and transmit information to the broader immune system. Herein, we review current knowledge of how ILC3s can be regulated by dietary nutrients, microbiota and their metabolites, as well as other metabolites. In addition, we describe the phenotypic and functional alterations of ILC3s in IBD and discuss the therapeutic potential of ILC3s in the treatment of IBD.
Collapse
Affiliation(s)
| | | | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
10
|
Castro-Dopico T, Fleming A, Dennison TW, Ferdinand JR, Harcourt K, Stewart BJ, Cader Z, Tuong ZK, Jing C, Lok LSC, Mathews RJ, Portet A, Kaser A, Clare S, Clatworthy MR. GM-CSF Calibrates Macrophage Defense and Wound Healing Programs during Intestinal Infection and Inflammation. Cell Rep 2020; 32:107857. [PMID: 32640223 PMCID: PMC7351110 DOI: 10.1016/j.celrep.2020.107857] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/26/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a central role in intestinal immunity, but inappropriate macrophage activation is associated with inflammatory bowel disease (IBD). Here, we identify granulocyte-macrophage colony stimulating factor (GM-CSF) as a critical regulator of intestinal macrophage activation in patients with IBD and mice with dextran sodium sulfate (DSS)-induced colitis. We find that GM-CSF drives the maturation and polarization of inflammatory intestinal macrophages, promoting anti-microbial functions while suppressing wound-healing transcriptional programs. Group 3 innate lymphoid cells (ILC3s) are a major source of GM-CSF in intestinal inflammation, with a strong positive correlation observed between ILC or CSF2 transcripts and M1 macrophage signatures in IBD mucosal biopsies. Furthermore, GM-CSF-dependent macrophage polarization results in a positive feedback loop that augmented ILC3 activation and type 17 immunity. Together, our data reveal an important role for GM-CSF-mediated ILC-macrophage crosstalk in calibrating intestinal macrophage phenotype to enhance anti-bacterial responses, while inhibiting pro-repair functions associated with fibrosis and stricturing, with important clinical implications.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Aaron Fleming
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas W Dennison
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Zaeem Cader
- Division of Gastroenterology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Chenzhi Jing
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Laurence S C Lok
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Rebeccah J Mathews
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Anaïs Portet
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Arthur Kaser
- Division of Gastroenterology, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK; NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| |
Collapse
|
11
|
He JS, Tan JY, Li XZ, Feng R, Xiong SS, Lin SN, Qiu Y, Mao R. Serum biomarkers of fibrostenotic Crohn's disease: Where are we now? J Dig Dis 2020; 21:336-341. [PMID: 32496631 DOI: 10.1111/1751-2980.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis and subsequent stricture formation are major clinical challenges in inflammatory bowel disease, resulting in an increased rate of operation and poor prognosis compared with those without. With the changing perception that intestinal fibrosis is irreversible to the point of view that it is reversible in recent years, various candidate serum biomarkers have been studied over the past decades, which may stratify patients based on their risks of developing stenosis and enable the detection of early stages of fibrosis. However, reliable and accurate biomarkers are still unavailable due to conflicting results and the lack of high-quality evidence. In this review we summarized the serum biomarkers that have been proposed for intestinal fibrosis in recent years, which includes gene polymorphisms or variants, epigenetic markers, extracellular matrix components, growth factors, and antibodies, aiming to provide clues for future research.
Collapse
Affiliation(s)
- Jin Shen He
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin Yu Tan
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Zhi Li
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Rui Feng
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shan Shan Xiong
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Nan Lin
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ren Mao
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Singh A, Jindal AK, Joshi V, Anjani G, Rawat A. An updated review on phenocopies of primary immunodeficiency diseases. Genes Dis 2019; 7:12-25. [PMID: 32181272 PMCID: PMC7063430 DOI: 10.1016/j.gendis.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Primary immunodeficiency diseases (PIDs) refer to a heterogenous group of disorders characterized clinically by increased susceptibility to infections, autoimmunity and increased risk of malignancies. These group of disorders present with clinical manifestations similar to PIDs with known genetic defects but have either no genetic defect or have a somatic mutation and thus have been labelled as “Phenocopies of PIDs”. These diseases have been further subdivided into those associated with somatic mutations and those associated with presence of auto-antibodies against various cytokines. In this review, we provide an update on clinical manifestations, diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur K Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vibhu Joshi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Ballengee CR, Stidham RW, Liu C, Kim MO, Prince J, Mondal K, Baldassano R, Dubinsky M, Markowitz J, Leleiko N, Hyams J, Denson L, Kugathasan S. Association Between Plasma Level of Collagen Type III Alpha 1 Chain and Development of Strictures in Pediatric Patients With Crohn's Disease. Clin Gastroenterol Hepatol 2019; 17:1799-1806. [PMID: 30213581 PMCID: PMC6531351 DOI: 10.1016/j.cgh.2018.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS There are few serum biomarkers to identify patients with Crohn's disease (CD) who are at risk for stricture development. The extracellular matrix components, collagen type III alpha 1 chain (COL3A1) and cartilage oligomeric matrix protein (COMP), could contribute to intestinal fibrosis. We investigated whether children with inflammatory CD (B1) who later develop strictures (B2) have increased plasma levels of COL3A1 or COMP at diagnosis, compared with children who remain B1. We compared results with previously studied biomarkers, including autoantibodies against colony-stimulating factor 2 (CSF2). METHODS We selected 161 subjects (mean age, 12.2 y; 62% male) from the Risk Stratification and Identification of Immunogenic and Microbial Markers of Rapid Disease Progression in Children with Crohn's cohort, completed at 28 sites in the United States and Canada from 2008 through 2012. The children underwent colonoscopy and upper endoscopy at diagnosis and were followed up every 6 months for 36 months; plasma samples were collected at baseline. Based on CD phenotype, children were separated to group 1 (B1 phenotype at diagnosis and follow-up evaluation), group 2 (B2 phenotype at diagnosis), or group 3 (B1 phenotype at diagnosis who developed strictures during follow-up evaluation). Plasma samples were collected from patients and 40 children without inflammatory bowel disease (controls) at baseline and analyzed by enzyme-linked immunosorbent assay to measure COL3A1 and COMP. These results were compared with those from a previous biomarker study. The Kruskal-Wallis test and the pairwise Dunn test with Bonferroni correction were used to compare differences among groups. RESULTS The median baseline concentration of COL3A1 was significantly higher in plasma from group 3 vs group 1 (P < .01) and controls (P = .01). Median baseline plasma concentrations of COMP did not differ significantly among groups. A model comprising baseline concentrations of COL3A1 and anti-CSF2 identified patients with B2 vs B1 CD with an area under the curve of 0.80 (95% CI, 0.71-0.89); the combined concentration identified patients with strictures with a sensitivity value of 0.70 (95% CI, 0.55-0.83) and a specificity value of 0.83 (95% CI, 0.67-0.93). CONCLUSIONS We found median plasma concentrations of COL3A1, measured by enzyme-linked immunosorbent assay at diagnosis, to be significantly higher in patients with CD who later developed strictures than in patients without strictures. The combination of concentrations of COL3A1 and anti-CSF2 might be used to identify pediatric patients at CD diagnosis who are at risk for future strictures. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00790543.
Collapse
Affiliation(s)
| | | | - Chunyan Liu
- Cincinnati Children’s Hospital Medical Center
| | - Mi-Ok Kim
- University of California San Francisco
| | | | | | | | | | | | | | | | - Lee Denson
- Cincinnati Children’s Hospital Medical Center
| | - Subra Kugathasan
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, Georgia.
| |
Collapse
|
14
|
Lotfi N, Thome R, Rezaei N, Zhang GX, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol 2019; 10:1265. [PMID: 31275302 PMCID: PMC6593264 DOI: 10.3389/fimmu.2019.01265] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a growth factor that induces the differentiation and proliferation of myeloid progenitors in the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory diseases by stimulating the activation and migration of myeloid cells to inflammation sites, promoting survival of target cells and stimulating the renewal of effector granulocytes and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF production/signaling may lead to harmful inflammatory conditions. In this context, GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Conversely, a protective role has also been described in other autoimmune diseases where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus (SLE). In this review, we aimed for a comprehensive analysis of literature data on the multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies that target GM-CSF production.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Ballengee CR, Kugathasan S. Response to Biologics Delay Progression of Crohn's Disease in Children but Not Early Surgery. Clin Gastroenterol Hepatol 2018; 16:1398-1400. [PMID: 29775795 DOI: 10.1016/j.cgh.2018.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Cortney R Ballengee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|