1
|
Ning H, Lu L. Isoreticular Metal-Organic Framework-3 (IRMOF-3): From Experimental Preparation, Functionalized Modification to Practical Applications. Polymers (Basel) 2024; 16:2134. [PMID: 39125160 PMCID: PMC11313755 DOI: 10.3390/polym16152134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Isoreticular metal-organic framework-3 (IRMOF-3), a porous coordination polymer, is an MOF material with the characteristics of a large specific surface area and adjustable pore size. Due to the existence of the active amino group (-NH2) on the organic ligand, IRMOF-3 has more extensive research and application potential. Herein, the main preparation methods of IRMOF-3 in existing research were compared and discussed first. Second, we classified and summarized the functionalization modification of IRMOF-3 based on different reaction mechanisms. In addition, the expanded research and progress of IRMOF-3 and their derivatives in catalysis, hydrogen storage, material adsorption and separation, carrier materials, and fluorescence detection were discussed from an application perspective. Moreover, the industrialization prospect of IRMOF-3 and the pressing problems in its practical application were analyzed and prospected. This review is expected to provide a reference for the design and application of more new nanomaterials based on IRMOF-3 to develop more advanced functional materials in industrial production and engineering applications.
Collapse
Affiliation(s)
- Haoyue Ning
- Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China;
| | - Lixin Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China;
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China
| |
Collapse
|
2
|
Xu X, Liu Y, Liu Y, Yu Y, Yang M, Lu L, Chan L, Liu B. Functional hydrogels for hepatocellular carcinoma: therapy, imaging, and in vitro model. J Nanobiotechnology 2024; 22:381. [PMID: 38951911 PMCID: PMC11218144 DOI: 10.1186/s12951-024-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies worldwide and is characterized by high rates of morbidity and mortality, posing a serious threat to human health. Interventional embolization therapy is the main treatment against middle- and late-stage liver cancer, but its efficacy is limited by the performance of embolism, hence the new embolic materials have provided hope to the inoperable patients. Especially, hydrogel materials with high embolization strength, appropriate viscosity, reliable security and multifunctionality are widely used as embolic materials, and can improve the efficacy of interventional therapy. In this review, we have described the status of research on hydrogels and challenges in the field of HCC therapy. First, various preparation methods of hydrogels through different cross-linking methods are introduced, then the functions of hydrogels related to HCC are summarized, including different HCC therapies, various imaging techniques, in vitro 3D models, and the shortcomings and prospects of the proposed applications are discussed in relation to HCC. We hope that this review is informative for readers interested in multifunctional hydrogels and will help researchers develop more novel embolic materials for interventional therapy of HCC.
Collapse
Affiliation(s)
- Xiaoying Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006, Guangzhou, China.
| |
Collapse
|
3
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
4
|
Wang J, Chen G, Yang X, Dou W, Mao Y, Zhang Y, Shi X, Xia Y, You Q, Liu M. Inhibitory effects of norcantharidin on titanium particle-induced osteolysis, osteoclast activation and bone resorption via MAPK pathways. Int Immunopharmacol 2024; 129:111655. [PMID: 38340423 DOI: 10.1016/j.intimp.2024.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Wear particles generated from the surface of implanted prostheses can lead to peri-implant osteolysis and subsequent aseptic loosening. In the inflammatory environment, extensive formation and activation of osteoclasts are considered the underlying cause of peri-implant osteolysis. Current medications targeting osteoclasts for the treatment of particle-induced bone resorption are not ideal due to significant side effects. Therefore, there is an urgent need to develop more effective drugs with fewer side effects. Norcantharidin (NCTD), a derivative of cantharidin extracted from blister beetles, is currently primarily used for the treatment of solid tumors in clinical settings. However, the potential role of NCTD in treating aseptic loosening of the prosthesis has not been reported. In this study, the in vitro results demonstrated that NCTD could effectively inhibit the formation of osteoclasts and bone resorption induced by the RANKL. Consistently, NCTD strongly inhibited RANKL-induced mRNA and protein levels of c-Fos and NFATc1, concomitant with reduced expression of osteoclast specific genes including TRAP, CTR and CTSK. The in vivo data showed that NCTD exerted significant protective actions against titanium particle-induced inflammation and subsequent osteolysis. The molecular mechanism investigation revealed that NCTD could suppress the activations of RANKL-induced MAPK (p38, ERK). Overall, these findings support the potential use of NCTD for the treatment of aseptic loosening following total joint arthroplasty.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenwen Dou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuhang Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yudie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaotian Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yehua Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuyi You
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
5
|
Cao W, Lin Z, Zheng D, Zhang J, Heng W, Wei Y, Gao Y, Qian S. Metal-organic gels: recent advances in their classification, characterization, and application in the pharmaceutical field. J Mater Chem B 2023; 11:10566-10594. [PMID: 37916468 DOI: 10.1039/d3tb01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic gels (MOGs) are a type of functional soft substance with a three-dimensional (3D) network structure and solid-like rheological behavior, which are constructed by metal ions and bridging ligands formed under the driving force of coordination interactions or other non-covalent interactions. As the homologous substances of metal-organic frameworks (MOFs) and gels, they exhibit the potential advantages of high porosity, flexible structure, and adjustable mechanical properties, causing them to attract extensive research interest in the pharmaceutical field. For instance, MOGs are often used as excellent vehicles for intelligent drug delivery and programmable drug release to improve the clinical curative effect with reduced side effects. Also, MOGs are often applied as advanced biomedical materials for the repair and treatment of pathological tissue and sensitive detection of drugs or other molecules. However, despite the vigorous research on MOGs in recent years, there is no systematic summary of their applications in the pharmaceutical field to date. The present review systematically summarize the recent research progress on MOGs in the pharmaceutical field, including drug delivery systems, drug detection, pharmaceutical materials, and disease therapies. In addition, the formation principles and classification of MOGs are complemented and refined, and the techniques for the characterization of the structures/properties of MOGs are overviewed in this review.
Collapse
Affiliation(s)
- Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
6
|
Guan Q, Zhou X, Yang F, Zhang X, Wang Y, Li W, Li X. A novel strategy against hepatitis B virus: Glycyrrhetnic acid conjugated multi-component synergistic nano-drug delivery system for targeted therapy. J Biomater Appl 2023; 37:1393-1408. [PMID: 36373787 DOI: 10.1177/08853282221139132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is well known that Glycyrrhetnic acid (GA) has significant liver-targeting and anti-inflammatory effects. Syringopicroside (SYR) and Hydroxytyrosol (HT), the active components of the Chinese herb Syringa oblata Lindl, have earned great reputation for their potential in preventing or treating viral hepatitis type B. Therefore, we loaded SYR and HT into GA-conjugated PEG-PLGA, so that they could target the liver in additional to exerting their own pharmacological effects in a synergistic. However, the in vivo targeting and the low bioavailability of SYR and HT pose a huge challenge. Therefore, we synthesized GA-conjugated multi-component nano-drug delivery system (SH-GPP). SH-GPP had a regular spherical shape with a uniform size distribution of 110.5 ± 3.18 nm. We further evaluated the effects of SH-GPP in vitro and in vivo. In the in vivo experiment, we evaluated the following parameters: the serum ALT and AST values; liver tissue homogenate MDA and SOD; HE staining of the pathological liver sections; and the liver coefficient. In the in vitro studies, the following parameters were evaluated: cellular uptake of SH-GPP; wound healing/scratch assay; cellular apoptosis; cell cycle; HBsAg; and HBeAg content. SH-GPP had better anti-hepatitis B effect than Syringopicroside and hydroxytyrosol (SH) and NPP alone. The targeting ability of GA enabled HT and SYR in GPP to reach the liver accurately, and played a synergistic role to maximize their therapeutic effects. This study provides a novel strategy against hepatitis B virus, and also provides a feasible scheme for improving the low bioavailability of the active components of traditional Chinese medicine.
Collapse
Affiliation(s)
- QingXia Guan
- Key Laboratory of Basic and Application Research of Beiyao (118437Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - XiaoYing Zhou
- Key Laboratory of Basic and Application Research of Beiyao (118437Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - FangFang Yang
- Key Laboratory of Basic and Application Research of Beiyao (118437Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Xue Zhang
- Key Laboratory of Basic and Application Research of Beiyao (118437Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - YanHong Wang
- Key Laboratory of Basic and Application Research of Beiyao (118437Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - WeiNan Li
- Key Laboratory of Basic and Application Research of Beiyao (118437Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - XiuYan Li
- Key Laboratory of Basic and Application Research of Beiyao (118437Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
7
|
Zhai BT, Sun J, Shi YJ, Zhang XF, Zou JB, Cheng JX, Fan Y, Guo DY, Tian H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J Nanobiotechnology 2022; 20:509. [DOI: 10.1186/s12951-022-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractNorcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.
Graphical Abstract
Collapse
|
8
|
Xiao S, Wang Y, Ma W, Zhou P, Wang B, Wu Z, Wen Q, Xiong K, Liu Y, Fu S. Intraperitoneal administration of thermosensitive hydrogel Co-loaded with norcantharidin nanoparticles and oxaliplatin inhibits malignant ascites of hepatocellular carcinoma. Drug Deliv 2022; 29:2713-2722. [PMID: 35975331 PMCID: PMC9387330 DOI: 10.1080/10717544.2022.2111480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Malignant ascites is a common complication of some advanced cancers. Although intraperitoneal (IP) administration of chemotherapy drugs is routinely used to treat cancerous ascites, conventional drugs have poor retention and therefore need to be administered frequently to maintain a sustained anti-tumor effect. In this study, a thermosensitive hydrogel composite loaded with norethindrone nanoparticles (NPs) and oxaliplatin (N/O/Hydrogel) was developed to inhibit ascites of hepatocellular carcinoma (HCC) through IP injection. N/O/Hydrogel induced apoptosis in the H22 cells in vitro, and significantly inhibited ascites formation, tumor cell proliferation and micro-angiogenesis in a mouse model of advanced HCC with ascites, and prolonged the survival of tumor-bearing mice. Histological examination of the major organs indicated that the hydrogel system is safe. Taken together, the N/O/Hydrogel system is a promising platform for in-situ chemotherapy of malignant ascites.
Collapse
Affiliation(s)
- Susu Xiao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Yu Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China.,Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Wenqiong Ma
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Ping Zhou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Biqiong Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhouxue Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Qian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Yanlin Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| |
Collapse
|
9
|
Calvo-Martín G, Plano D, Martínez-Sáez N, Aydillo C, Moreno E, Espuelas S, Sanmartín C. Norbornene and Related Structures as Scaffolds in the Search for New Cancer Treatments. Pharmaceuticals (Basel) 2022; 15:ph15121465. [PMID: 36558915 PMCID: PMC9780886 DOI: 10.3390/ph15121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The norbornene scaffold has arisen as a promising structure in medicinal chemistry due to its possible therapeutic application in cancer treatment. The development of norbornene-based derivatives as potential chemotherapeutic agents is attracting significant attention. Here, we report an unprecedented review on the recent advances of investigations into the antitumoral efficacy of different compounds, including the abovementioned bicyclic scaffold in their structure, in combination with chemotherapeutic agents or forming metal complexes. The impact that structural modifications to these bicyclic compounds have on the antitumoral properties and the mechanisms by which these norbornene derivatives act are discussed in this review. In addition, the use of norbornene, and its related compounds, encapsulation in nanosystems for its use in cancer therapies is here detailed.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Correspondence: (D.P.); (C.A.); Tel.: +34-948425600 (ext. 806358) (D.P.); +34-948425600 (ext. 803183) (C.A.)
| | - Nuria Martínez-Sáez
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Correspondence: (D.P.); (C.A.); Tel.: +34-948425600 (ext. 806358) (D.P.); +34-948425600 (ext. 803183) (C.A.)
| | - Esther Moreno
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Socorro Espuelas
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
10
|
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin. Molecules 2022; 27:molecules27227740. [PMID: 36431851 PMCID: PMC9693198 DOI: 10.3390/molecules27227740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Cantharidin (CTD) is the main active ingredient isolated from Mylabris, and norcantharidin (NCTD) is a demethylated derivative of CTD, which has similar antitumor activity to CTD and lower toxicity than CTD. However, the clinical use of NCTD is limited due to its poor solubility, low bioavailability, and toxic effects on normal cells. To overcome these shortcomings, researchers have explored a number of strategies, such as chemical structural modifications, microsphere dispersion systems, and nanodrug delivery systems. This review summarizes the structure-activity relationship of NCTD and novel strategies to improve the solubility and bioavailability of NCTD as well as reduce the toxicity. This review can provide evidence for further research of NCTD.
Collapse
|
11
|
Preparation, Characterization, and In Vitro Release of Curcumin-Loaded IRMOF-10 Nanoparticles and Investigation of Their Pro-Apoptotic Effects on Human Hepatoma HepG2 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123940. [PMID: 35745062 PMCID: PMC9228752 DOI: 10.3390/molecules27123940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
Curcumin (CUR) has a bright future in the treatment of cancer as a natural active ingredient with great potential. However, curcumin has a low solubility, which limits its clinical application. In this study, IRMOF-10 was created by the direct addition of triethylamine, CUR was loaded into IRMOF-10 using the solvent adsorption method, and the two were characterized using a scanning electron microscope (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) methods, and Brunauer–Emmett–Teller (BET) analysis. We also used the MTT method, 4′,6-diamidino-2-phenylindole (DAPI) staining, the annexin V/PI method, cellular uptake, reactive oxygen species (ROS), and the mitochondrial membrane potential (MMP) to perform a safety analysis and anticancer activity study of IRMOF-10 and CUR@IRMOF-10 on HepG2 cells. Our results showed that CUR@IRMOF-10 had a CUR load of 63.96%, with an obvious slow-release phenomenon. The CUR levels released under different conditions at 60 h were 33.58% (pH 7.4) and 31.86% (pH 5.5). Cell experiments proved that IRMOF-10 was biologically safe and could promote curcumin entering the nucleus, causing a series of reactions, such as an increase in reactive oxygen species and a decrease in the mitochondrial membrane potential, thereby leading to cell apoptosis. In summary, IRMOF-10 is an excellent drug carrier and CUR@IRMOF-10 is an effective anti-liver cancer sustained-release preparation.
Collapse
|
12
|
Norcantharidin Nanostructured Lipid Carrier (NCTD-NLC) Suppresses the Viability of Human Hepatocellular Carcinoma HepG2 Cells and Accelerates the Apoptosis. J Immunol Res 2022; 2022:3851604. [PMID: 35497873 PMCID: PMC9045966 DOI: 10.1155/2022/3851604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Malignant tumors have become the main cause of harm to human life and health. Development for new antitumor drugs and the exploration to drug carriers are becoming the concerned focus. In this study, we exploited our experiments to explore the effect of NCTD-NLC on liver cancer cells: the HepG2 cells cultured in vitro were given with NCTD-NLC administration; then, the estimation on cellular proliferation and apoptosis was accomplished through MTT and flow cytometry. Six hours after the administration, we performed the High Performance Liquid Chromatography (HPLC) detection to estimate the NCTD content in the heart, liver, spleen, lung, kidney and plasma of rats. Then, our outcomes showed that NCTD-NLC had a notable inhibitory effect on HepG2 cells, leading to a gradually decreased cellular viability. Cell viability was negatively correlated with NCTD-NLC concentration. Along with the concentration increasing, significantly increasing cellular apoptosis and gradually decreasing cellular viability were observed. The apoptosis rate was positively correlated with the concentration of NCTD-NLC. On the basis of the data we obtained, we found that the group with NCTD-NLC tail vein injection had an obvious advantage in drug delivery when compared with other groups. Through the tumorigenesis test to nude mice, we found that the tumor inhibition rate of the NCTD-NLC tail vein injection group had a 27.48% elevation in contrast to the NCTD gavage group, and it was also the group with the best tumor inhibition efficiency. In conclusion, the NCTD-NLC prepared in this study had a mighty inhibitory effect towards HepG2 cellular viability and an accelerating work on apoptosis. Tail vein injection of NCTD-NLC has the best drug delivery effect.
Collapse
|