1
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Le Meur M, Pignatelli J, Blasi P, Palomo V. Nanoparticles targeting the central circadian clock: Potential applications for neurological disorders. Adv Drug Deliv Rev 2025; 220:115561. [PMID: 40120723 DOI: 10.1016/j.addr.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Circadian rhythms and their involvement with various human diseases, including neurological disorders, have become an intense area of research for the development of new pharmacological treatments. The location of the circadian clock machinery in the central nervous system makes it challenging to reach molecular targets at therapeutic concentrations. In addition, a timely administration of the therapeutic agents is necessary to efficiently modulate the circadian clock. Thus, the use of nanoparticles in circadian clock dysfunctions may accelerate their clinical translation by addressing these two key challenges: enhancing brain penetration and/or enabling their formulation in chronodelivery systems. This review describes the implications of the circadian clock in neurological pathologies, reviews potential molecular targets and their modulators and suggests how the use of nanoparticle-based formulations could improve their clinical success. Finally, the potential integration of nanoparticles into chronopharmaceutical drug delivery systems will be described.
Collapse
Affiliation(s)
- Marion Le Meur
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Blasi
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy.
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Nanobiotecnología asociada al Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
3
|
Razavi ZS, Razavi FS, Alizadeh SS. Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem 2025; 287:117357. [PMID: 39947054 DOI: 10.1016/j.ejmech.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The blood-brain barrier (BBB) is a protective barrier that complicates the treatment of neurological disorders. Pharmaceutical compounds encounter significant challenges in crossing the central nervous system (CNS). Nanoparticles (NPs) are promising candidates for treating neurological conditions as they help facilitate drug delivery. This review explores the diverse characteristics and mechanisms of inorganic NPs (INPs), including metal-based, ferric-oxide, and carbon-based nanoparticles, which facilitate their passage through the BBB. Emphasis is placed on the physicochemical properties of NPs such as size, shape, surface charge, and surface modifications and their role in enhancing drug delivery efficacy, reducing immune clearance, and improving BBB permeability. Specific synthesis approaches are demonstrated, with an emphasis on the influence of each one on NP property, biological activity and the capability of an NP for its intended application. As for the advances in the field, the review emphasizes those characterized the NP formulation and surface chemistry that conquered the BBB and tested the need for its alteration. Current findings indicate that NP therapy can in the future enable effective targeting of specific brain disorders and eventually evolve this drug delivery system, which would allow for lower doses with less side effects.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
4
|
Luo Q, Yang J, Yang M, Wang Y, Liu Y, Liu J, Kalvakolanu DV, Cong X, Zhang J, Zhang L, Guo B, Duo Y. Utilization of nanotechnology to surmount the blood-brain barrier in disorders of the central nervous system. Mater Today Bio 2025; 31:101457. [PMID: 39896289 PMCID: PMC11786670 DOI: 10.1016/j.mtbio.2025.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Central nervous system (CNS) diseases are a major cause of disability and death worldwide. Due to the blood-brain barrier (BBB), drug delivery for CNS diseases is extremely challenging. Nano-delivery systems can overcome the limitations of BBB to deliver drugs to the CNS, improve the ability of drugs to target the brain and provide potential therapeutic methods for CNS diseases. At the same time, the choice of different drug delivery methods (bypassing BBB or crossing BBB) can further optimize the therapeutic effect of the nano-drug delivery system. This article reviews the different methods of nano-delivery systems to overcome the way BBB enters the brain. Different kinds of nanoparticles to overcome BBB were discussed in depth.
Collapse
Affiliation(s)
- Qian Luo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaying Yang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yingtong Wang
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jixuan Liu
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Dhan V. Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Xianling Cong
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jinnan Zhang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Yanhong Duo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
5
|
Lu G, Li X, Xu W, Zhang F, Chen X, Wu H, Dai H, Li F, Nie W. Biocompatible nanozyme with dual catalytic activities for high-performance multimodality therapy against glioblastoma. Biomed Mater 2025; 20:035007. [PMID: 40081015 DOI: 10.1088/1748-605x/adc05b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Nanozymes based on metals have been regarded as a promising candidate in the metabolic reprogramming of low-survival, refractory glioblastoma multiforme (GBM). However, due to size limitations, nanozymes struggle to balance catalytic activity with the ability to cross the blood-brain barrier (BBB), limiting their efficiency in GBM therapy. Herein, we establish a hybrid nanocluster, AuMn NCs, by cross-linking ultrasmall nano-gold (Au) and manganese oxide (MnO2), which overcomes the size requirement conflict for integrating catalytic activities, long-period circulation, photothermal effect, glucose consumption, and chemodynamic effect for multimodality treatment against GBM. After administered intravenously, the overall large-size AuMn NCs can escape kidney filtration and cross the BBB for GBM accumulation. Then the individual ultrasmall nano-MnO2components effectively catalyze H2O2degradation as catalase to produce oxygen, which is utilized by individual ultrasmall nano-Au components to consume glucose as glucose oxidase for starvation therapy. The H2O2generated during Au-catalyzed glucose consumption further facilitates MnO2catalytic activity. Such positive feedback overwhelmingly intervenes in the glucose metabolism of GBM. Concurrently, clustered Au-induced photothermal effect and released Mn2+-induced chemodynamic effect further contribute to eliminating GBM cells. The versatile clustered nanozyme offers a feasible strategy for the multimodality intervention of GBM.
Collapse
Affiliation(s)
- Guihong Lu
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, People's Republic of China
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, People's Republic of China
| | - Xiaoyan Li
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, People's Republic of China
| | - Wenfei Xu
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, People's Republic of China
| | - Fan Zhang
- Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, People's Republic of China
| | - Xiang Chen
- Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, People's Republic of China
| | - Huibin Wu
- Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, People's Republic of China
| | - Haibing Dai
- Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, People's Republic of China
- College of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Feng Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
6
|
Satpathy B, Saha I, Halder J, Rajwar TK, Rai VK, Pradhan D, Mishra A, Mahanty R, Dash P, Das C, Kar B, Ghosh G, Rath G. In vitro and in silico anti-Alzheimer study of rutin embedded with zinc chloride loaded bovine serum albumin nanoparticles. Tissue Cell 2025; 95:102869. [PMID: 40168841 DOI: 10.1016/j.tice.2025.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 03/15/2025] [Indexed: 04/03/2025]
Abstract
Nanotechnology-based herbal drug formulations that target multiple aspects of the disease are one of the possible approaches to address the pathological intricacies of Alzheimer's disease (AD). The present study includes the development of rutin embedded with zinc chloride-loaded bovine serum albumin nanoparticles (R-BSA-ZnCl2 NPs) to counter AD pathogenesis. In this work, the anti-AD potential of selected Phyto active (Rutin) was investigated using a high throughput in silico screening technique. Characterisation and optimization of the formulation were performed by different analytical methods such as FT-IR, zeta sizer and zeta potential, SEM analysis, thermal analysis, x-ray diffraction technique, etc. In vitro, free radical scavenging assay of the formulation was performed using a DPPH assay, and the ROS quantification was done by taking the RAW cell line. The amyloid β disaggregation study was confirmed by the thioflavin T assay, and the blood-brain barrier permeability assay was performed by taking brain endothelial cells. An anticholinesterase study was conducted to ascertain the formulation's potential for treating Alzheimer's disease. The NPs was prepared by ion gelation method and characterized for size (164.8 ± 5.6 nm), zeta potential (-29.6 mV), encapsulation efficiency (91 ± 1.1 %) and loading capacity (10 ± 0.2 %). The FTIR analysis indicated that there was no chemical interaction between the functional groups of rutin and other excipients. DSC, XRD studies suggested unchanged physical state of rutin in the prepared nanoparticle. Surface characterization analysed the irregular morphology of the nanoparticle. The antioxidant activity by DPPH and FRAP assay demonstrated a significant increase in free radical scavenging for R-BSA-ZnCl2 NPs in compared to rutin (p < 0.01). Anti-aggregation studies indicated that the nanoparticle inhibited the Aβ fibrils by over 70-80 %, as confirmed by Thioflavin T assay. Moreover, the blood brain barrier (BBB) permeability assay indicated permeation of nanoparticle via BBB. Thus, the present study highlighted that bovine serum albumin-zinc chloride nanoparticle may be used as a multifactorial therapeutic platform to address neurodegeneration associated with cognition.
Collapse
Affiliation(s)
- Bibhanwita Satpathy
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ajit Mishra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ritu Mahanty
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Priyanka Dash
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chandan Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
7
|
Liu J, Wang T, Dong J, Lu Y. The blood-brain barriers: novel nanocarriers for central nervous system diseases. J Nanobiotechnology 2025; 23:146. [PMID: 40011926 DOI: 10.1186/s12951-025-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The central nervous system (CNS) diseases are major contributors to death and disability worldwide. However, the blood-brain barrier (BBB) often prevents drugs intended for CNS diseases from effectively crossing into the brain parenchyma to deliver their therapeutic effects. The blood-brain barrier is a semi-permeable barrier with high selectivity. The BBB primarily manages the transport of substances between the blood and the CNS. To enhance drug delivery for CNS disease treatment, various brain-based drug delivery strategies overcoming the BBB have been developed. Among them, nanoparticles (NPs) have been emphasized due to their multiple excellent properties. This review starts with an overview of the BBB's anatomical structure and physiological roles, and then explores the mechanisms, both endogenous and exogenous, that facilitate the NP passage across the BBB. The text also delves into how nanoparticles' shape, charge, size, and surface ligands affect their ability to cross the BBB and offers an overview of different nanoparticle classifications. This review concludes with an examination of the current challenges in utilizing nanomaterials for brain drug delivery and discusses corresponding directions for solutions. This review aims to propose innovative diagnostic and therapeutic approaches for CNS diseases and enhance drug design for more effective delivery across the BBB.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Wang
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Lu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Liu S, Li H, Xi S, Zhang Y, Sun T. Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies. Int J Nanomedicine 2025; 20:1443-1490. [PMID: 39925682 PMCID: PMC11806685 DOI: 10.2147/ijn.s457393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Given the complexity of the central nervous system (CNS) and the diversity of neurological conditions, the increasing prevalence of neurological disorders poses a significant challenge to modern medicine. These disorders, ranging from neurodegenerative diseases to psychiatric conditions, not only impact individuals but also place a substantial burden on healthcare systems and society. A major obstacle in treating these conditions is the blood-brain barrier (BBB), which restricts the passage of therapeutic agents to the brain. Nanotechnology, particularly the use of nanoparticles (NPs), offers a promising solution to this challenge. NPs possess unique properties such as small size, large surface area, and modifiable surface characteristics, enabling them to cross the BBB and deliver drugs directly to the affected brain regions. This review focuses on the application of NPs in gene therapy and enzyme replacement therapy (ERT) for neurological disorders. Gene therapy involves altering or manipulating gene expression and can be enhanced by NPs designed to carry various genetic materials. Similarly, NPs can improve the efficacy of ERT for lysosomal storage disorders (LSDs) by facilitating enzyme delivery to the brain, overcoming issues like immunogenicity and instability. Taken together, this review explores the potential of NPs in revolutionizing treatment options for neurological disorders, highlighting their advantages and the future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Haisong Li
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shiwen Xi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- International Center of Future Science, Jilin University, Changchun, People’s Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
9
|
Okafor NI, Omoteso OA, Choonara YE. The modification of conventional liposomes for targeted antimicrobial delivery to treat infectious diseases. DISCOVER NANO 2025; 20:19. [PMID: 39883380 PMCID: PMC11782757 DOI: 10.1186/s11671-024-04170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Some of the most crucial turning points in the treatment strategies for some major infectious diseases including AIDS, malaria, and TB, have been reached with the introduction of antimicrobials and vaccines. Drug resistance and poor effectiveness are key limitations that need to be overcome. Conventional liposomes have been explored as a delivery system for infectious diseases bioactives to treat infectious diseases to provide an efficient approach to maximize the therapeutic outcomes, drug stability, targetability, to reduce the side-effects of antimicrobials, and enhance vaccine performance where necessary. However, as the pathological understanding of infectious diseases become more known, the need for more advanced liposomal technologies was born to continue having a profound effect on targeted chemotherapy for infectious diseases. This review therefore provides a concise incursion into the most recent and vogue liposomal formulations used to treat infectious diseases. An appraisal of immunological, stimuli-responsive, biomimetic and functionalized liposomes and other novel modifications to conventional liposomes is assimilated in sync with mutations of resistant pathogens.
Collapse
Affiliation(s)
- Nnamdi Ikemefuna Okafor
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | | | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
10
|
Ortiz-Islas E, Montes P, Rodríguez-Pérez CE, Ruiz-Sánchez E, Sánchez-Barbosa T, Pichardo-Rojas D, Zavala-Tecuapetla C, Carvajal-Aguilera K, Campos-Peña V. Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy. Pharmaceutics 2025; 17:128. [PMID: 39861773 PMCID: PMC11768419 DOI: 10.3390/pharmaceutics17010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored. Here, we review novel approaches inspired by advanced knowledge of the underlying pathophysiological mechanisms of the disease. Among the therapeutic alternatives, immunotherapy stands out, employing monoclonal antibodies to specifically target and eliminate toxic proteins implicated in AD. Additionally, the use of medicinal plants is examined, as their synergistic effects among components may confer neuroprotective properties. The modulation of the gut microbiota is also addressed as a peripheral strategy that could influence neuroinflammatory and degenerative processes in the brain. Furthermore, the therapeutic potential of emerging approaches, such as the use of microRNAs to regulate key cellular processes and nanotherapy, which enables precise drug delivery to the central nervous system, is analyzed. Despite promising advances in these strategies, the incidence of Alzheimer's disease continues to rise. Therefore, it is proposed that achieving effective treatment in the future may require the integration of combined approaches, maximizing the synergistic effects of different therapeutic interventions.
Collapse
Affiliation(s)
- Emma Ortiz-Islas
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Talía Sánchez-Barbosa
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Diego Pichardo-Rojas
- Programa Prioritario de Epilepsia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Cecilia Zavala-Tecuapetla
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| |
Collapse
|
11
|
Yanamadala Y, Muthumula CMR, Khare S, Gokulan K. Strategies to Enhance Nanocrystal Formulations for Overcoming Physiological Barriers Across Diverse Routes of Administration. Int J Nanomedicine 2025; 20:367-402. [PMID: 39816376 PMCID: PMC11733173 DOI: 10.2147/ijn.s494224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers. The development of nanocrystal formulation requires comprehensive understanding of these barriers and the biological environment, along with strategic modulation of particle size, surface properties, and charge to facilitate improved bioavailability to the target site. This review focuses on applications of nanocrystals for diverse administration routes and strategies in overcoming anatomical and physiological delivery barriers. The orally administered nanocrystals benefit from increased solubility, prolonged gastrointestinal retention, and enhanced permeation. However, the nanocrystals, due to their small size and high surface area, are susceptible to aggregation in the presence of gastric fluids and are more prone to enzymatic degradation compared to the macrocrystalline form. Although nanocrystal formulations are composed of pure API, the application of excipients like stabilizers reduces the aggregation and improves formulation stability, solubility, and bioavailability. Some excipients can facilitate sustained drug release. Emerging research in nanocrystals include their application in blood-brain barrier transport, intranasal delivery, stimuli responsiveness, multifunctionality, and diagnostic purposes. However, the challenges related to toxicity, scale-up, and clinical translation still need further attention. Overall, nanocrystal engineering serves as a versatile platform for expanding the therapeutic potential of insoluble drugs and enabling dose reduction for existing drugs, which can minimize toxicity and improve bioavailability at lower dosages.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Chandra Mohan Reddy Muthumula
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
12
|
Mohammed PN, Hussen NH, Hasan AH, Salh HJH, Jamalis J, Ahmed S, Bhat AR, Kamal MA. A review on the role of nanoparticles for targeted brain drug delivery: synthesis, characterization, and applications. EXCLI JOURNAL 2025; 24:34-59. [PMID: 39967907 PMCID: PMC11830919 DOI: 10.17179/excli2024-7163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025]
Abstract
Unfortunately, nowadays, brain disorders, which include both neurological and mental disorders, are the main cause of years spent living with a disability worldwide. There are serious diseases with a high prevalence and a high mortality rate. However, the outmoded technical infrastructure makes their treatment difficult. The blood-brain barrier (BBB) serves as a protective mechanism for the central nervous system (CNS) and regulates its homeostatic processes. The brain is protected against injury and illness by an extremely complex system that precisely regulates the flow of ions, very few tiny molecules, and an even smaller number of macromolecules from the blood to the brain. Nevertheless, the BBB also considerably inhibits the delivery of medications to the brain, making it impossible to treat a variety of neurological diseases. Several strategies are now being studied to enhance the transport of drugs over the BBB. According to this research, nanoparticles are one of the most promising agents for brain disease treatment while many conventional drugs are also capable of crossing this barrier but there are amazing facts about nanoparticles in brain drug delivery. For example, 1. Precision Targeting: Through mechanisms such as receptor-mediated transport, ligand attachment, or the use of external stimuli (e.g., magnetic or thermal guidance), nanoparticles can deliver drugs specifically to diseased areas of the brain while minimizing exposure to healthy tissues. This targeted approach reduces side effects and enhances therapeutic outcomes. 2. Improved Drug Stability: Drugs can be encapsulated by nanoparticles, which keeps them stable and shields them from deterioration while being transported to the brain. 3. Therapeutic Payload: Nanoparticles possess a high surface-area-to-volume ratio, enabling them to encapsulate a substantial quantity of therapeutic agents relative to their size. This allows for enhanced drug delivery efficiency, maximizing therapeutic outcomes while potentially reducing the required dosage to achieve the desired effect. 4. Imaging Properties: Certain nanoparticles can also act as contrast agents for magnetic resonance imaging (MRI), allowing for the real-time visualization of drug distribution and administration in the brain. 5. Combination Therapy Possibility: Nanoparticles can be designed to co-deliver multiple medications or therapeutic agents, which could enhance synergistic effects. There have been in vivo studies where nanoparticles were successfully used for combination therapies, demonstrating potential for personalized treatments. One notable example is in cancer treatment, where nanoparticles have been designed to co-deliver multiple chemotherapeutic agents. In general, brain medication delivery by nanoparticles is a novel strategy that has the potential to revolutionize neurological disease therapy and enhance patient outcomes. The study furthermore includes a concise depiction of the structural and physiological characteristics of the BBB, and it also provides an overview of the nanoparticles that are most often used in medicine. A brief overview of the structural and physiochemical characteristics of the NPs, as well as the most popular nanoparticles used in medicine, is also included in the review.
Collapse
Affiliation(s)
- Payam Nawzad Mohammed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region-Iraq, Iraq
| | - Narmin Hamaamin Hussen
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region-Iraq, Iraq
| | - Aso Hameed Hasan
- Department of Chemistry, College of Science, University of Garmian, Kalar 46021, Kurdistan Region-Iraq, Iraq
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia- 81310 Johor Bahru, Johor, Malaysia
| | - Hozan Jaza Hama Salh
- Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia- 81310 Johor Bahru, Johor, Malaysia
| | - Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai - 600014, India
| | - Ajmal R. Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur- 440033, India
| | - Mohammad Amjad Kamal
- Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Savar, Dhaka -1216, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Novel Global Community Educational Foundation, Australia
| |
Collapse
|
13
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2025; 62:533-556. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
14
|
Tiwari S, Chaturvedi S, Kaul A, Choudhary V, Barthélémy P, Mishra AK. Development of amphiphilic self-assembled nucleolipid as BBB targeting probe based on SPECT. DISCOVER NANO 2024; 19:210. [PMID: 39690348 DOI: 10.1186/s11671-024-04129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/14/2024] [Indexed: 12/19/2024]
Abstract
Several approaches have been utilised to deliver therapeutic nanoparticles inside the brain but rendered by certain limitation such as active efflux, non-stability, toxicity of the nanocarrier, transport, physicochemical properties and many more. In this context use of biocompatible nano carriers is currently investigated. We herein present the hypothesis that the nucleoside-lipid based conjugates (nucleolipids) which are biocompatible in nature and have molecular recognition can be tuned for improved permeation across blood-brain barrier (BBB). In this work, a di-C15-palmitoyl-ketal nucleolipid nanoparticle bearing an acyclic chelator has been formulated, radiolabeled with 99mTc and evaluated for in vivo fate using SPECT imaging. The mean particle size of particles was 113 nm and found to be nontoxic as depticted through haemolytic assay (2.33% erythrocyte destruction) and 75 ± 0.3% HEK(Human Embryonic Kidney) cells survived at 72 h as depicted in SRB (Sulforhodamine B) toxicity assay. The encapsulation efficiency (68 ± 2.75%) and drug loading capacity (22 ± 1.8%.) was calculated for nanoparticles using Methotrexate as model anti-cancer drug. The mathematical models indicate fickian release with a release constant KH = 20.70. With 98 ± 0.75% radiolabelling efficiency and established in vitro stability, nanoparticles showed brain uptake in normal mice as 0.91 times in comparison to BBB compromised mice (1.6% ± 0.03 ID/g)indicating higher brain uptake with rapid clearance as depicted through blood kinetics.
Collapse
Affiliation(s)
- Swastika Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India.
- NOMATEN Center of Excellence, National Center for Nuclear Research, Ul. Andrzeja Soltana 7, 05-400, Otwock, Poland.
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India.
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Vishakha Choudhary
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Philippe Barthélémy
- Université de Bordeaux, INSERM, U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle Et Artificielle, ChemBioPharm, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - A K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India.
| |
Collapse
|
15
|
Yang H, Tan H, Wen H, Xin P, Liu Y, Deng Z, Xu Y, Gao F, Zhang L, Ye Z, Zhang Z, Chen Y, Wang Y, Sun J, Lam JWY, Zhao Z, Kwok RTK, Qiu Z, Tang BZ. Recent Progress in Nanomedicine for the Diagnosis and Treatment of Alzheimer's Diseases. ACS NANO 2024; 18:33792-33826. [PMID: 39625718 DOI: 10.1021/acsnano.4c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss and progressive and permanent deterioration of cognitive function. The most challenging issue in combating AD is its complicated pathogenesis, which includes the deposition of amyloid β (Aβ) plaques, intracellular hyperphosphorylated tau protein, neurofibrillary tangles (NFT), etc. Despite rapid advancements in mechanistic research and drug development for AD, the currently developed drugs only improve cognitive ability and temporarily relieve symptoms but cannot prevent the development of AD. Moreover, the blood-brain barrier (BBB) creates a huge barrier to drug delivery in the brain. Therefore, effective diagnostic tools and treatments are urgently needed. In recent years, nanomedicine has provided opportunities to overcome the challenges and limitations associated with traditional diagnostics or treatments. Various types of nanoparticles (NPs) play an essential role in nanomedicine for the diagnosis and treatment of AD, acting as drug carriers to improve targeting and bioavailability across/bypass the BBB or acting as drugs directly on AD lesions. This review categorizes different types of NPs and summarizes their applications in nanomedicine for the diagnosis and treatment of AD. It also discusses the challenges associated with clinical applications and explores the latest developments and prospects of nanomedicine for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Peikun Xin
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Liping Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yunhao Chen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yueze Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
16
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
17
|
Hameed H, Faheem S, Younas K, Jamshaid M, Ereej N, Hameed A, Munir R, Khokhar R. A comprehensive review on lipid-based nanoparticles via nose to brain targeting as a novel approach. J Microencapsul 2024; 41:681-714. [PMID: 39286884 DOI: 10.1080/02652048.2024.2404414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The central nervous system (CNS) has been a chief concern for millions of people worldwide, and many therapeutic medications are unable to penetrate the blood-brain barrier. Advancements in nanotechnology have enabled safe, effective, and precise delivery of medications towards specific brain regions by utilising a nose-to-brain targeting route. This method reduces adverse effects, increases medication bioavailability, and facilitates mucociliary clearance while promoting accumulation of drug in the targeted brain region. Recent developments in lipid-based nanoparticles, for instance solid lipid nanoparticles (SLNs), liposomes, nanoemulsions, and nano-structured lipid carriers have been explored. SLNs are currently the most promising drug carrier system because of their capability of transporting drugs across the blood-brain barrier at the intended brain site. This approach offers higher efficacy, controlled drug delivery, target specificity, longer circulation time, and a reduction in toxicity through a biomimetic mechanism.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, Orsay, France
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Khokhar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
18
|
de Moraes BPT, da Silva KP, Paese K, Sinhorin AP, Guterres SS, Pohlmann AR, Moraes-de-Souza I, de Oliveira Rodrigues S, SouzaSouza KFCE, da Cunha CMC, de Almeida MAP, Bozza PT, de Castro-Faria-Neto HC, Silva AR, Gonçalves-de-Albuquerque CF, Ferrarini SR. Effects of nanocapsules containing lumefantrine and artemether in an experimental model of cerebral malaria. DISCOVER NANO 2024; 19:184. [PMID: 39542943 PMCID: PMC11564608 DOI: 10.1186/s11671-024-04121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Malaria, a tropical neglected disease, imposes a significant burden on global health, leading to the loss of thousands of lives annually. Its gold standard treatment is a combination therapy of lumefantrine (LUM) and artemether (ART). Nanotechnology holds significant potential for improving drug bioavailability and potency while reducing adverse effects. OBJECTIVES This study aimed to develop lipid-core nanocapsules containing ART and LUM and evaluate their effects in an experimental cerebral malaria model (ECM). METHODS The polymeric interfacial deposition method was used to develop lipid-core nanocapsules (LNCs) containing ART and LUM (LNCARTLUM) and were characterized using micrometric and nanometric scales. Male C57BL/6 mice were infected with Plasmodium (P.) berghei ANKA (PbA, 1 × 105 PbA-parasitized red blood cells, intraperitoneally). On day 5 post-infection, PbA-infected mice were orally administered with ART + LUM, LNCARTLUM, blank nanocapsules (LNCBL), or ethanol as a control. Parasitemia, clinical scores, and survival rates were monitored throughout the experiment. Organ-to-body weight ratios, cytokine quantification, and intravital microscopy analyses were conducted on day 7 post-infection. RESULTS LNCs were successfully developed and characterized. The treatment with LNCARTLUM in ECM resulted in complete clearance of parasitemia at 10 dpi, decreased clinical scores, and maintained 100% survival rates. Thereated mice exhibited splenomegaly and reduced TNF-α, IL-1β, and MCP1 levels in the brain. Furthermore, the LNCARTLUM treatment protected the brain microvasculature, reducing the number of cells in the rolling process and adherent to the microvasculature endothelium. CONCLUSION Nanoformulations can potentially improve the efficacy of antimalarial drugs and be considered a promising approach to treat malaria.
Collapse
Affiliation(s)
- Bianca Portugal Tavares de Moraes
- Post-Graduation Program in Neuroscience, Fluminense Federal University, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institut, Rio de Janeiro, Brazil
| | - Karoline Paiva da Silva
- Health Sciences Post-Graduation Program, Federal University Mato Grosso, Sinop, 78550-728, Brazil
| | - Karina Paese
- Environmental SciencesPost-Graduation Program, Federal University of Mato Grosso, Sinop, 78550-728, Brazil
| | - Adilson Paulo Sinhorin
- Environmental SciencesPost-Graduation Program, Federal University of Mato Grosso, Sinop, 78550-728, Brazil
| | - Silvia S Guterres
- Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande Do Sul, Porto Alegre, 90610-000, Brazil
| | - Adriana R Pohlmann
- Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande Do Sul, Porto Alegre, 90610-000, Brazil
| | - Isabelle Moraes-de-Souza
- Immunopharmacology Laboratory, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Adriana Ribeiro Silva
- Post-Graduation Program in Neuroscience, Fluminense Federal University, Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institut, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil.
- Immunopharmacology Laboratory, Oswaldo Cruz Institut, Rio de Janeiro, Brazil.
| | - Stela Regina Ferrarini
- Health Sciences Post-Graduation Program, Federal University Mato Grosso, Sinop, 78550-728, Brazil.
| |
Collapse
|
19
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Aminyavari S, Afshari AR, Ahmadi SS, Kesharwani P, Sanati M, Sahebkar A. Unveiling the theranostic potential of SPIONs in Alzheimer's disease management. J Psychiatr Res 2024; 179:244-256. [PMID: 39321523 DOI: 10.1016/j.jpsychires.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is a devastating kind of dementia that is becoming more common worldwide. Toxic amyloid-beta (Aβ) aggregates are the primary cause of AD onset and development. Superparamagnetic iron oxide nanoparticles (SPIONs) have received a lot of interest in AD therapy over the last decade because of their ability to redirect the Aβ fibrillation process and improve associated brain dysfunction. The potential diagnostic application of SPIONs in AD has dramatically increased this interest. Furthermore, surface-modified engineered SPIONs function as drug carriers to improve the efficacy of current therapies. Various preclinical and clinical studies on the role of SPIONs in AD pathology have produced encouraging results. However, due to their physicochemical properties (e.g., size, surface charge, and particle concentration) in the biological milieu, SPIONs may play the role of a preventive or accelerative agent in AD. Even though SPIONs are potential therapeutic and diagnostic options in AD, significant efforts are still needed to overcome the inconsistencies and safety concerns. This review evaluated the current understanding of how various SPIONs interact with AD models and explored the discrepancies in their efficacy and safety.
Collapse
Affiliation(s)
- Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Seyed Sajad Ahmadi
- Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Devi CM, Deka K, Das AK, Talukdar A, Sola P. Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma. Mol Biotechnol 2024:10.1007/s12033-024-01287-3. [PMID: 39327380 DOI: 10.1007/s12033-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Glioma is the most common and aggressive type of central nervous system tumor as categorized by the World Health Organization. Glioblastoma (GBA), in general, exhibits a grim prognosis and short life expectancy, rarely exceeding 14 months. The dismal prognosis is primarily attributed to the development of chemoresistance to temozolomide, the primary therapeutic agent for GBA treatment. Hence, it becomes imperative to develop novel drugs with antitumor efficacy rooted in distinct mechanisms compared to temozolomide. The vast marine environment contains a wealth of naturally occurring compounds from the sea (known as marine-derived natural products), which hold promise for future research in the quest for new anticancer drugs. Ongoing advancements in anticancer pharmaceuticals have led to an upswing in the isolation and validation of numerous pioneering breakthroughs and improvements in anticancer therapeutics. Nonetheless, the availability of FDA-approved marine-derived anticancer drugs remains limited, owing to various challenges and constraints. Among these challenges, drug delivery is a prominent hurdle. This review delves into an alternative approach for delivering marine-derived drugs using nanotechnological formulations and their mechanism of action for treating GBA.
Collapse
Affiliation(s)
- Chanam Melody Devi
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Amit Kumar Das
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Apurba Talukdar
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India.
| |
Collapse
|
22
|
Kang X, Mita N, Zhou L, Wu S, Yue Z, Babu RJ, Chen P. Nanotechnology in Advancing Chimeric Antigen Receptor T Cell Therapy for Cancer Treatment. Pharmaceutics 2024; 16:1228. [PMID: 39339264 PMCID: PMC11435308 DOI: 10.3390/pharmaceutics16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejia Kang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
- Faculty of Pharmacy, Mulawarman University, Samarinda 75119, Kalimantan Timur, Indonesia
| | - Lang Zhou
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Siqi Wu
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Zongliang Yue
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| |
Collapse
|
23
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
24
|
Ding N, Lei Y, Hu Y, Wei J, Wang W, Zhang R, Cai F. Research Progress of Novel Inorganic Nanomaterials in the Diagnosis and Treatment of Alzheimer's Disease. Neurol India 2024; 72:943-950. [PMID: 39428764 DOI: 10.4103/neurol-india.neurol-india-d-23-00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/27/2024] [Indexed: 10/22/2024]
Abstract
The global increase in the number of Alzheimer's disease (AD) patients has posed numerous treatment challenges. Six Food and Drug Administration-approved medications (e.g., donepezil and memantine) have demonstrated some efficacy but are primarily used to alleviate symptoms. The etiology of AD is unknown, and the blood-brain barrier restricts drug penetration, which severely restricts the use of various therapeutic agents. With their high targeting, long-lasting effect, and multifunctionality, inorganic nanomaterials provide a novel approach to the treatment of AD. A review of inorganic nanoparticles in the diagnosis and therapy of AD. This paper reviews the research literature on the use of inorganic nanomaterials in the treatment of AD. Gold nanoparticles, superparamagnetic iron oxide nanoparticles, magnetic nanoparticles, carbon nanotubes, and quantum dots are among the inorganic nanomaterials studied. As knowledge of the origins of AD remains limited, the majority of studies on inorganic nanomaterials have primarily focused on interventions on Aβ proteins. Adjusting and enhancing the properties of these inorganic nanomaterials, such as core-shell structure design and surface modification, confer benefits for the treatment of AD. Inorganic nanoparticles have a wide spectrum of therapeutic potential for AD. Despite their potential benefits, however, the safety and translation of inorganic nanomaterials into clinical applications remain formidable obstacles.
Collapse
Affiliation(s)
- Ning Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P.R. China, Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning, Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Sierri G, Patrucco M, Ferrario D, Renda A, Comi S, Ciprandi M, Fontanini V, Sica FS, Sesana S, Costa Verdugo M, Kravicz M, Salassa L, Busnelli M, Re F. Targeting specific brain districts for advanced nanotherapies: A review from the perspective of precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1991. [PMID: 39251878 PMCID: PMC11670049 DOI: 10.1002/wnan.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous studies are focused on nanoparticle penetration into the brain functionalizing them with ligands useful to cross the blood-brain barrier. However, cell targeting is also crucial, given that cerebral pathologies frequently affect specific brain cells or areas. Functionalize nanoparticles with the most appropriate targeting elements, tailor their physical parameters, and consider the brain's complex anatomy are essential aspects for precise therapy and diagnosis. In this review, we addressed the state of the art on targeted nanoparticles for drug delivery in diseased brain regions, outlining progress, limitations, and ongoing challenges. We also provide a summary and overview of general design principles that can be applied to nanotherapies, considering the areas and cell types affected by the most common brain disorders. We then emphasize lingering uncertainties that hinder the translational possibilities of nanotherapies for clinical use. Finally, we offer suggestions for continuing preclinical investigations to enhance the overall effectiveness of precision nanomedicine in addressing neurological conditions. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Giulia Sierri
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Michela Patrucco
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano‐Bicocca, Italy
| | - Davide Ferrario
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Antonio Renda
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Susanna Comi
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Matilde Ciprandi
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | | | | | - Silvia Sesana
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | | | - Marcelo Kravicz
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Luca Salassa
- Donostia International Physics Center (DIPC)DonostiaEuskadiSpain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika FakultateaEuskal Herriko Unibertsitatea UPV/EHUDonostiaSpain
- Basque Foundation for ScienceIkerbasqueBilbaoSpain
| | - Marta Busnelli
- Institute of Neuroscience, National Research CouncilItaly
| | - Francesca Re
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| |
Collapse
|
26
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
27
|
Fong H, Leid ZH, Debnath A. Approaches for Targeting Naegleria fowleri Using Nanoparticles and Artificial Peptides. Pathogens 2024; 13:695. [PMID: 39204295 PMCID: PMC11357329 DOI: 10.3390/pathogens13080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Naegleria fowleri is a free-living amoeba which causes primary amoebic meningoencephalitis (PAM). Although PAM is rare, the fatality rate is staggering at over 97%. So, the importance of finding an effective treatment and cure for PAM caused by N. fowleri is a crucial area of research. Existing research on developing novel therapeutic strategies to counter N. fowleri infection is limited. Since the blood-brain barrier (BBB) presents an obstacle to delivering drugs to the site of infection, it is important to employ strategies that can effectively direct the therapeutics to the brain. In this regard, our review focuses on understanding the physiology and mechanisms by which molecules pass through the BBB, the current treatment options available for PAM, and the recent research conducted in the decade of 2012 to 2022 on the use of nanomaterials to enhance drug delivery. In addition, we compile research findings from other central nervous system (CNS) diseases that use shuttle peptides which allow for transport of molecules through the BBB. The approach of utilizing BBB shuttles to administer drugs through the BBB may open up new areas of drug discovery research in the field of N. fowleri infection.
Collapse
Affiliation(s)
| | | | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (H.F.); (Z.H.L.)
| |
Collapse
|
28
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
29
|
Sadique FL, Subramaiam H, Krishnappa P, Chellappan DK, Ma JH. Recent advances in breast cancer metastasis with special emphasis on metastasis to the brain. Pathol Res Pract 2024; 260:155378. [PMID: 38850880 DOI: 10.1016/j.prp.2024.155378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Understanding the underlying mechanisms of breast cancer metastasis is of vital importance for developing treatment approaches. This review emphasizes contemporary breakthrough studies with special focus on breast cancer brain metastasis. Acquired mutational changes in metastatic lesions are often distinct from the primary tumor, suggesting altered mutagenesis pathways. The concept of micrometastases and heterogeneity within the tumors unravels novel therapeutic targets at genomic and molecular levels through epigenetic and proteomic profiling. Several pre-clinical studies have identified mechanisms involving the immune system, where tumor associated macrophages are key players. Expression of cell proteins like Syndecan1, fatty acid-binding protein 7 and tropomyosin kinase receptor B have been implicated in aiding the transmigration of breast cancer cells to the brain. Changes in the proteomic landscape of the blood-brain-barrier show altered permeability characteristics, supporting entry of cancer cells. Findings from laboratory studies pave the path for the emergence of new biomarkers, especially blood-based miRNA and circulating tumor cell markers for prognostic staging. The constantly evolving therapeutics call for clinical trials backing supportive evidence of efficacies of both novel and existing approaches. The challenge lying ahead is discovering innovative techniques to replace use of human samples and optimize small-scale patient recruitment in trials.
Collapse
Affiliation(s)
- Fairooz Labiba Sadique
- Department of Biomedical Science, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hemavathy Subramaiam
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Purushotham Krishnappa
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Jin Hao Ma
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
30
|
Rivera López E, Samaniego López C, Spagnuolo CC, Berardino BG, Alaimo A, Pérez OE. Chitosan-Tricarbocyanine-Based Nanogels Were Able to Cross the Blood-Brain Barrier Showing Its Potential as a Targeted Site Delivery Agent. Pharmaceutics 2024; 16:964. [PMID: 39065661 PMCID: PMC11280413 DOI: 10.3390/pharmaceutics16070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Targeting drugs to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). The cutting edge in nanotechnology generates optimism to overcome the growing challenges in biomedical sciences through the effective engineering of nanogels. The primary objective of the present report was to develop and characterize a biocompatible natural chitosan (CS)-based NG that can be tracked thanks to the tricarbocyanine (CNN) fluorescent probe addition on the biopolymer backbone. FTIR shed light on the chemical groups involved in the CS and CNN interactions and between CNN-CS and tripolyphosphate, the cross-linking agent. Both in vitro and in vivo experiments were carried out to determine if CS-NGs can be utilized as therapeutic delivery vehicles directed towards the brain. An ionic gelation method was chosen to generate cationic CNN-CS-NG. DLS and TEM confirmed that these entities' sizes fell into the nanoscale. CNN-CS-NG was found to be non-cytotoxic, as determined in the SH-SY5Y neuroblastoma cell line through biocompatibility assays. After cellular internalization, the occurrence of an endo-lysosomal escape (a crucial event for an efficient drug delivery) of CNN-CS-NG was detected. Furthermore, CNN-CS-NG administered intraperitoneally to female CF-1 mice were detected in different brain regions after 2 h of administration, using fluorescence microscopy. To conclude, the obtained findings in the present report can be useful in the field of neuro-nanomedicine when designing drug vehicles with the purpose of delivering drugs to the CNS.
Collapse
Affiliation(s)
- Emilio Rivera López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (E.R.L.); (B.G.B.); (A.A.)
| | - Cecilia Samaniego López
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.S.L.); (C.C.S.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Carla C. Spagnuolo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.S.L.); (C.C.S.)
- Centro de Investigaciones en Hidratos de Carbono, Consejo Nacional de Investigaciones Científicas y Técnicas (CIHIDECAR-CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Bruno G. Berardino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (E.R.L.); (B.G.B.); (A.A.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (E.R.L.); (B.G.B.); (A.A.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (E.R.L.); (B.G.B.); (A.A.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| |
Collapse
|
31
|
Lei J, Huang Y, Zhao Y, Zhou Z, Mao L, Liu Y. Nanotechnology as a new strategy for the diagnosis and treatment of gliomas. J Cancer 2024; 15:4643-4655. [PMID: 39006067 PMCID: PMC11242339 DOI: 10.7150/jca.96859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system (CNS), and is characterized by high aggressiveness and a high recurrence rate. Currently, the main treatments for gliomas include surgical resection, temozolomide chemotherapy and radiotherapy. However, the prognosis of glioma patients after active standardized treatment is still poor, especially for glioblastoma (GBM); the median survival is still only 14.6 months, and the 5-year survival rate is only 4-5%. The current challenges in glioma treatment include difficulty in complete surgical resection, poor blood‒brain barrier (BBB) drug permeability, therapeutic resistance, and difficulty in tumor-specific targeting. In recent years, the rapid development of nanotechnology has provided new directions for diagnosing and treating gliomas. Nanoparticles (NPs) are characterized by excellent surface tunability, precise targeting, excellent biocompatibility, and high safety. In addition, NPs can be used for gene therapy, photodynamic therapy, and antiangiogenic therapy and can be combined with biomaterials for thermotherapy. In recent decades, breakthroughs in diagnosing and treating gliomas have been made with various functional NPs, and NPs are expected to become a new strategy for glioma diagnosis and treatment. In this paper, we review the main obstacles in the treatment of glioma and discuss the potential and challenges of the latest nanotechnology in the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Jun Lei
- Department of Neurosurgery, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yiyang Huang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yichuan Zhao
- Southwest Medical University, Luzhou 646000, China
| | - Zhi Zhou
- Department of Neurosurgery, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Lei Mao
- Department of Neurosurgery, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Forgham H, Zhu J, Huang X, Zhang C, Biggs H, Liu L, Wang YC, Fletcher N, Humphries J, Cowin G, Mardon K, Kavallaris M, Thurecht K, Davis TP, Qiao R. Multifunctional Fluoropolymer-Engineered Magnetic Nanoparticles to Facilitate Blood-Brain Barrier Penetration and Effective Gene Silencing in Medulloblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401340. [PMID: 38647396 PMCID: PMC11220643 DOI: 10.1002/advs.202401340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Patients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood-brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) - as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity - meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment-focused MRI-siRNA theranostics for the better treatment and diagnosis of medulloblastoma.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Cheng Zhang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Heather Biggs
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Yi Cheng Wang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Nicholas Fletcher
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - James Humphries
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Gary Cowin
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Karine Mardon
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Maria Kavallaris
- Children's Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNew South Wales2052Australia
- School of Clinical MedicineFaculty of Medicine & HealthUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW Australian Centre for NanomedicineFaculty of EngineeringUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW RNA InstituteFaculty of ScienceUNSW SydneyKensingtonNew South Wales2052Australia
| | - Kristofer Thurecht
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Ruirui Qiao
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| |
Collapse
|
33
|
Silant’ev VE, Belousov AS, Trukhin FO, Struppul NE, Shmelev ME, Patlay AA, Shatilov RA, Kumeiko VV. Rational Design of Pectin-Chitosan Polyelectrolyte Nanoparticles for Enhanced Temozolomide Delivery in Brain Tumor Therapy. Biomedicines 2024; 12:1393. [PMID: 39061967 PMCID: PMC11273711 DOI: 10.3390/biomedicines12071393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Conventional chemotherapeutic approaches currently used for brain tumor treatment have low efficiency in targeted drug delivery and often have non-target toxicity. Development of stable and effective drug delivery vehicles for the most incurable diseases is one of the urgent biomedical challenges. We have developed polymer nanoparticles (NPs) with improved temozolomide (TMZ) delivery for promising brain tumor therapy, performing a rational design of polyelectrolyte complexes of oppositely charged polysaccharides of cationic chitosan and anionic pectin. The NPs' diameter (30 to 330 nm) and zeta-potential (-29 to 73 mV) varied according to the initial mass ratios of the biopolymers. The evaluation of nanomechanical parameters of native NPs demonstrated changes in Young's modulus from 58 to 234 kPa and adhesion from -0.3 to -3.57 pN. Possible mechanisms of NPs' formation preliminary based on ionic interactions between ionogenic functional groups were proposed by IR spectroscopy and dynamic rheology. The study of the parameters and kinetics of TMZ sorption made it possible to identify compounds that most effectively immobilize and release the active substance in model liquids that simulate the internal environment of the body. A polyelectrolyte carrier based on an equal ratio of pectin-chitosan (0.1% by weight) was selected as the most effective for the delivery of TMZ among a series of obtained NPs, which indicates a promising approach to the treatment of brain tumors.
Collapse
Affiliation(s)
- Vladimir E. Silant’ev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- Laboratory of Electrochemical Processes, Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Andrei S. Belousov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Fedor O. Trukhin
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Nadezhda E. Struppul
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Mikhail E. Shmelev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Aleksandra A. Patlay
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Roman A. Shatilov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Vadim V. Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
34
|
Saleh SR, Abd-Elmegied A, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Mehanna RA, Ghareeb DA, Abd-Elmonem NM. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int J Pharm 2024; 658:124218. [PMID: 38734273 DOI: 10.1016/j.ijpharm.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid β42 (Aβ42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3β/GSK3β, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aβ42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aβ42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Aml Abd-Elmegied
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nihad M Abd-Elmonem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
35
|
Muolokwu CE, Chaulagain B, Gothwal A, Mahanta AK, Tagoe B, Lamsal B, Singh J. Functionalized nanoparticles to deliver nucleic acids to the brain for the treatment of Alzheimer's disease. Front Pharmacol 2024; 15:1405423. [PMID: 38855744 PMCID: PMC11157074 DOI: 10.3389/fphar.2024.1405423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Brain-targeted gene delivery across the blood-brain barrier (BBB) is a significant challenge in the 21st century for the healthcare sector, particularly in developing an effective treatment strategy against Alzheimer's disease (AD). The Internal architecture of the brain capillary endothelium restricts bio-actives entry into the brain. Additionally, therapy with nucleic acids faces challenges like vulnerability to degradation by nucleases and potential immune responses. Functionalized nanocarrier-based gene delivery approaches have resulted in safe and effective platforms. These nanoparticles (NPs) have demonstrated efficacy in protecting nucleic acids from degradation, enhancing transport across the BBB, increasing bioavailability, prolonging circulation time, and regulating gene expression of key proteins involved in AD pathology. We provided a detailed review of several nanocarriers and targeting ligands such as cell-penetrating peptides (CPPs), endogenous proteins, and antibodies. The utilization of functionalized NPs extends beyond a singular system, serving as a versatile platform for customization in related neurodegenerative diseases. Only a few numbers of bioactive regimens can go through the BBB. Thus, exploring functionalized NPs for brain-targeted gene delivery is of utmost necessity. Currently, genes are considered high therapeutic potential molecules for altering any disease-causing gene. Through surface modification, nanoparticulate systems can be tailored to address various diseases by replacing the target-specific molecule on their surface. This review article presents several nanoparticulate delivery systems, such as lipid NPs, polymeric micelles, exosomes, and polymeric NPs, for nucleic acids delivery to the brain and the functionalization strategies explored in AD research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
36
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
37
|
Cogill SA, Lee JH, Jeon MT, Kim DG, Chang Y. Hopping the Hurdle: Strategies to Enhance the Molecular Delivery to the Brain through the Blood-Brain Barrier. Cells 2024; 13:789. [PMID: 38786013 PMCID: PMC11119906 DOI: 10.3390/cells13100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Modern medicine has allowed for many advances in neurological and neurodegenerative disease (ND). However, the number of patients suffering from brain diseases is ever increasing and the treatment of brain diseases remains an issue, as drug efficacy is dramatically reduced due to the existence of the unique vascular structure, namely the blood-brain barrier (BBB). Several approaches to enhance drug delivery to the brain have been investigated but many have proven to be unsuccessful due to limited transport or damage induced in the BBB. Alternative approaches to enhance molecular delivery to the brain have been revealed in recent studies through the existence of molecular delivery pathways that regulate the passage of peripheral molecules. In this review, we present recent advancements of the basic research for these delivery pathways as well as examples of promising ventures to overcome the molecular hurdles that will enhance therapeutic interventions in the brain and potentially save the lives of millions of patients.
Collapse
Affiliation(s)
- Sinnead Anne Cogill
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae-Hyeok Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Tae Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
38
|
Suthar JK, Vaidya A, Ravindran S. Size, Surface Properties, and Ion Release of Zinc Oxide Nanoparticles: Effects on Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition in Neuronal PC-12 Cells. Biol Trace Elem Res 2024; 202:2254-2271. [PMID: 37713055 DOI: 10.1007/s12011-023-03832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
The extensive applications of zinc oxide nanoparticles (ZnO NPs) have resulted in a substantial risk of human exposure. However, the knowledge of the toxicity of these NPs in the nervous system is still limited. A comparative analysis of ZnO NPs of various sizes and NPs of the same size, with and without surface coating, and the potential role of released zinc ions is yet to be thoroughly explored. As a result, we have studied the cellular toxicity of two different-sized ZnO NPs, ZnO-22 (22 nm) and ZnO-43 (43 nm), and NPs with similar size but with polyvinylpyrrolidone coating (ZnO-P, 45 nm). The findings from our study suggested a time-, size-, and surface coating-dependent cytotoxicity in PC-12 cells at a concentration ≥ 10 μg/ml. ZnO NP treatment significantly elevated reactive oxygen and reactive nitrogen species, thereby increasing oxidative stress. The exposure of ZnO-22 and ZnO-43 significantly upregulated the expression of monoamine oxidase-A and downregulated the α-synuclein gene expression associated with the dopaminergic system. The interaction of NPs enzymes in the nervous system is also hazardous. Therefore, the inhibition activity of acetylcholinesterase enzyme was also studied for its interaction with these NPs, and the results indicated a dose-dependent inhibition of enzyme activity. Particle size, coating, and cellular interactions modulate ZnO NP's cytotoxicity; smaller sizes enhance cellular uptake and reactivity, while coating reduces cytotoxicity by limiting direct cell contact and potentially mitigating oxidative stress. Furthermore, the study of released zinc ions from the NPs suggested no significant contribution to the observed cytotoxicity compared to the NPs.
Collapse
Affiliation(s)
- Jitendra Kumar Suthar
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune, India.
| |
Collapse
|
39
|
Battaglini M, Marino A, Montorsi M, Carmignani A, Ceccarelli MC, Ciofani G. Nanomaterials as Microglia Modulators in the Treatment of Central Nervous System Disorders. Adv Healthc Mater 2024; 13:e2304180. [PMID: 38112345 DOI: 10.1002/adhm.202304180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Microglia play a pivotal role in the central nervous system (CNS) homeostasis, acting as housekeepers and defenders of the surrounding environment. These cells can elicit their functions by shifting into two main phenotypes: pro-inflammatory classical phenotype, M1, and anti-inflammatory alternative phenotype, M2. Despite their pivotal role in CNS homeostasis, microglia phenotypes can influence the development and progression of several CNS disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injuries, and even brain cancer. It is thus clear that the possibility of modulating microglia activation has gained attention as a therapeutic tool against many CNS pathologies. Nanomaterials are an unprecedented tool for manipulating microglia responses, in particular, to specifically target microglia and elicit an in situ immunomodulation activity. This review focuses the discussion on two main aspects: analyzing the possibility of using nanomaterials to stimulate a pro-inflammatory response of microglia against brain cancer and introducing nanostructures able to foster an anti-inflammatory response for treating neurodegenerative disorders. The final aim is to stimulate the analysis of the development of new microglia nano-immunomodulators, paving the way for innovative and effective therapeutic approaches for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Alessio Carmignani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
40
|
He W, Wang N, Wang Y, Liu M, Qing Q, Su Q, Zou Y, Liu Y. Engineering Nanomedicine for Non-Viral RNA-Based Gene Therapy of Glioblastoma. Pharmaceutics 2024; 16:482. [PMID: 38675144 PMCID: PMC11054437 DOI: 10.3390/pharmaceutics16040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant tumor of the central nervous system, characterized by aggressiveness, genetic instability, heterogenesis, and unpredictable clinical behavior. Disappointing results from the current clinical therapeutic methods have fueled a search for new therapeutic targets and treatment modalities. GBM is characterized by various genetic alterations, and RNA-based gene therapy has raised particular attention in GBM therapy. Here, we review the recent advances in engineered non-viral nanocarriers for RNA drug delivery to treat GBM. Therapeutic strategies concerning the brain-targeted delivery of various RNA drugs involving siRNA, microRNA, mRNA, ASO, and short-length RNA and the therapeutical mechanisms of these drugs to tackle the challenges of chemo-/radiotherapy resistance, recurrence, and incurable stem cell-like tumor cells of GBM are herein outlined. We also highlight the progress, prospects, and remaining challenges of non-viral nanocarriers-mediated RNA-based gene therapy.
Collapse
Affiliation(s)
- Wenya He
- School of Pharmacy, Henan University, Kaifeng 475004, China; (W.H.)
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ningyang Wang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yaping Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China; (W.H.)
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Mengyao Liu
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qian Qing
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qihang Su
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Zou
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
41
|
Li Z, Kovshova T, Malinovskaya J, Knoll J, Shanehsazzadeh S, Osipova N, Chernysheva A, Melnikov P, Gelperina S, Wacker MG. Blood-Nanoparticle Interactions Create a Brain Delivery Superhighway for Doxorubicin. Int J Nanomedicine 2024; 19:2039-2056. [PMID: 38476274 PMCID: PMC10928925 DOI: 10.2147/ijn.s440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose This study investigated the brain targeting mechanism of doxorubicin-loaded polybutyl cyanoacrylate (PBCA) nanoparticles, particularly their interactions with the blood-brain barrier (BBB). The BBB protects the brain from drugs in the bloodstream and represents a crucial obstacle in the treatment of brain cancer. Methods An advanced computer model analyzed the brain delivery of two distinct formulations, Doxil® and surfactant-coated PBCA nanoparticles. Computational learning was combined with in vitro release and cell interaction studies to comprehend the underlying brain delivery pathways. Results Our analysis yielded a surprising discovery regarding the brain delivery mechanism of PBCA nanoparticles. While Doxil® exhibited the expected behavior, accumulating in the brain through extravasation in tumor tissue, PBCA nanoparticles employed a unique and previously uncharacterized mechanism. They underwent cell hitchhiking, resulting in a remarkable more than 1000-fold increase in brain permeation rate compared to Doxil® (2.59 × 10-4 vs 0.32 h-1). Conclusion The nonspecific binding to blood cells facilitated and intensified interactions of surfactant-coated PBCA nanoparticles with the vascular endothelium, leading to enhanced transcytosis. Consequently, the significant increase in circulation time in the bloodstream, coupled with improved receptor interactions, contributes to this remarkable uptake of doxorubicin into the brain.
Collapse
Affiliation(s)
- Zhuoxuan Li
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Tatyana Kovshova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julia Malinovskaya
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julian Knoll
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Saeed Shanehsazzadeh
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Nadezhda Osipova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Anastasia Chernysheva
- V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Melnikov
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Svetlana Gelperina
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| |
Collapse
|
42
|
Hasan U, Chauhan M, Basu SM, R J, Giri J. Overcoming multidrug resistance by reversan and exterminating glioblastoma and glioblastoma stem cells by delivering drug-loaded nanostructure hybrid lipid capsules (nHLCs). Drug Deliv Transl Res 2024; 14:342-359. [PMID: 37587289 DOI: 10.1007/s13346-023-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma multiforme (GBM) is regarded as a highly aggressive brain cancer with a poor prognosis. There is an increase in the expression of P-glycoprotein (P-gp), responsible for multidrug resistance (MDR), making it a potential target for improving drug responses. Additionally, glioblastoma stem cells (GSCs) increase resistance to chemo- and radiotherapy and play a major role in cancer relapse. In this study, we targeted P-gp using a small molecule inhibitor, reversan (RV), to inhibit MDR that prolonged the retention of drugs in the cytosolic milieu. To eliminate GBM and GSCs, we have used two well-established anti-cancer drugs, regorafenib (RF) and curcumin (CMN). To improve the pharmacokinetics and decrease systemic delivery of drugs, we developed nanostructure hybrid lipid capsules (nHLCs), where hydrophobic drugs can be loaded in the core, and their physicochemical properties were determined by dynamic light scattering (DLS) and cryo-scanning electron microscopy (SEM). Inhibition of MDR by RV has also shown enhanced retention of nHLC in GBM cells. Co-delivery of drug-loaded nHLCs, pre-treated with RV, exhibited superior cytotoxicity in both GBM and GSCs than their individual doses and effectively reduced the size and stemness of tumor spheres and accelerated the rate of apoptosis, suggesting a promising treatment for glioblastoma.
Collapse
Affiliation(s)
- Uzma Hasan
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, India
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jayakumar R
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
43
|
Zhao C, Zhu X, Tan J, Mei C, Cai X, Kong F. Lipid-based nanoparticles to address the limitations of GBM therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed Pharmacother 2024; 171:116113. [PMID: 38181717 DOI: 10.1016/j.biopha.2023.116113] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, characterized by high heterogeneity, strong invasiveness, poor prognosis, and a low survival rate. A broad range of nanoparticles have been recently developed as drug delivery systems for GBM therapy owing to their inherent size effect and ability to cross the blood-brain barrier (BBB). Lipid-based nanoparticles (LBNPs), such as liposomes, solid lipid NPs (SLNs), and nano-structured lipid carriers (NLCs), have emerged as the most promising drug delivery system for the treatment of GBM because of their unique size, surface modification possibilities, and proven bio-safety. In this review, the main challenges of the current clinical treatment of GBM and the strategies on how novel LBNPs overcome them were explored. The application and progress of LBNP-based drug delivery systems in GBM chemotherapy, immunotherapy, and gene therapy in recent years were systematically reviewed, and the prospect of LBNPs for GBM treatment was discussed.
Collapse
Affiliation(s)
- Changhong Zhao
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China; Lantian Pharmaceuticals Co., Ltd, Hubei, China.
| | - Xinshu Zhu
- School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223005, China
| | - Jianmei Tan
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Chao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Xiang Cai
- Lantian Pharmaceuticals Co., Ltd, Hubei, China; School of Business, Hubei University of Science and Technology, China
| | - Fei Kong
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
44
|
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier. ACS NANO 2024; 18:1820-1845. [PMID: 38193927 PMCID: PMC10811692 DOI: 10.1021/acsnano.3c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.
Collapse
Affiliation(s)
- Shuai Zha
- Hubei
University of Chinese Medicine, School of
Laboratory Medicine, 16
Huangjia Lake West Road, Wuhan 430065, China
- Hubei
Shizhen Laboratory, Wuhan 430061, China
| | - Haitao Liu
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Hengde Li
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Haolan Li
- Dalian
University of Technology School of Chemical
Engineering, Lingshui
Street, Ganjingzi District, Dalian 116024, China
| | - Ka-Leung Wong
- The
Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology, Building Y815, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Angelo Homayoun All
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
45
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
46
|
Verma R, Rao L, Nagpal D, Yadav M, Kumar M, Mittal V, Kaushik D. Exploring the Prospective of Curcumin-loaded Nanomedicine in Brain Cancer Therapy: An Overview of Recent Updates and Patented Nanoformulations. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:278-294. [PMID: 37904561 DOI: 10.2174/1872210517666230823155328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
Cancer is a complex, one of the fatal non-communicable diseases, and its treatment has enormous challenges, with variable efficacy of traditional anti-cancer agents. By 2025, it is expected that 420 million additional cases of cancer will be diagnosed yearly. However, among various types of cancer, brain cancer treatment is most difficult due to the presence of blood-brain barriers. Nowadays, phytoconstituents are gaining popularity because of their biosafety and low toxicity to healthy cells. This article reviews various aspects related to curcumin for brain cancer therapeutics, including epidemiology, the role of nanotechnology, and various challenges for development and clinical trials. Furthermore, it elaborates on the prospects of curcumin for brain cancer therapeutics. In this article, our objective is to illuminate the anti-cancer potential of curcumin for brain cancer therapy. Moreover, it also explores how to defeat its constraints of clinical application because of poor bioavailability, stability, and rapid metabolism. This review also emphasizes the possibility of curcumin for the cure of brain cancer using cuttingedge biotechnological methods based on nanomedicine. This review further highlights the recent patents on curcumin-loaded nanoformulations for brain cancer. Overall, this article provides an overview of curcumin's potential in brain cancer therapy by considering challenges to be overwhelmed and future prospective. Moreover, this review summarizes the reported literature on the latest research related to the utility of curcumin in brain cancer therapy and aims to provide a reference for advanced investigation on brain cancer treatment.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
47
|
Chakraborty P, Bhattacharyya C, Sahu R, Dua TK, Kandimalla R, Dewanjee S. Polymeric nanotherapeutics: An emerging therapeutic approach for the management of neurodegenerative disorders. J Drug Deliv Sci Technol 2024; 91:105267. [DOI: 10.1016/j.jddst.2023.105267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Yao Y, Bei F. Adeno-associated Virus-Mediated Gene Delivery Across the Blood-Brain Barrier. ADVANCES IN NEUROBIOLOGY 2024; 41:91-112. [PMID: 39589711 DOI: 10.1007/978-3-031-69188-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as a popular tool for gene therapy in the central nervous system (CNS). Given the dense vasculature in the CNS, systemic administration is an appealing approach for achieving a broad distribution of AAV vectors across the CNS. However, the blood-brain barrier (BBB) is a major obstacle that blocks the entry of AAV vectors into the brain and spinal cord. Thus, there is a great need to develop novel AAV vector technology with enhanced BBB penetration. In this chapter, we briefly summarize AAV biology, possible mechanisms for AAV vectors to overcome the BBB and further engineering strategies, and current clinical trials using systemic AAV gene therapy for CNS diseases.
Collapse
Affiliation(s)
- Yizheng Yao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Grosso C, Silva A, Delerue-Matos C, Barroso MF. Single and Multitarget Systems for Drug Delivery and Detection: Up-to-Date Strategies for Brain Disorders. Pharmaceuticals (Basel) 2023; 16:1721. [PMID: 38139848 PMCID: PMC10747932 DOI: 10.3390/ph16121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This review summarizes the recent findings on the development of different types of single and multitarget nanoparticles for disease detection and drug delivery to the brain, focusing on promising active principles encapsulated and nanoparticle surface modification and functionalization. Functionalized nanoparticles have emerged as promising tools for the diagnosis and treatment of brain disorders, offering a novel approach to addressing complex neurological challenges. They can act as drug delivery vehicles, transporting one or multiple therapeutic agents across the blood-brain barrier and precisely releasing them at the site of action. In diagnostics, functionalized nanoparticles can serve as highly sensitive contrast agents for imaging techniques such as magnetic resonance imaging and computed tomography scans. By attaching targeting ligands to the nanoparticles, they can selectively accumulate in the affected areas of the brain, enhancing the accuracy of disease detection. This enables early diagnosis and monitoring of conditions like Alzheimer's or Parkinson's diseases. While the field is still evolving, functionalized nanoparticles represent a promising path for advancing our ability to diagnose and treat brain disorders with greater precision, reduced invasiveness, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| | - Aurora Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidad de Vigo, E-32004 Ourense, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| |
Collapse
|
50
|
Sri Kanaka Durga Vijayalakshmi G, Puvvada N. Recent Advances in Chemically Engineered Nanostructures Impact on Ischemic Stroke Treatment. ACS OMEGA 2023; 8:45188-45207. [PMID: 38075770 PMCID: PMC10701887 DOI: 10.1021/acsomega.3c06228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 02/12/2024]
Abstract
Stroke is a serious public health problem that raises expenses for society and causes long-term impairment and death. However, due to restricted blood-brain barrier (BBB) penetration, there are few treatment alternatives for treating stroke. Recanalization techniques, neuroprotective medications, and recovery techniques are all forms of treatment. The ischemic stroke treatment window is too narrow for logical and efficient therapy, and detection is possible only in advanced stages. BBB integrity disruption, neurotoxicity, and the brief half-life of therapeutic thrombolytics are the key molecular pathogenic causes of ischemic stroke. Existing neuroprotective drugs' inability to promote the recovery of ischemic brain tissue after a stroke is another factor that contributes to the disease's progression, chronic nature, and severity. A possible approach to getting around these medication restrictions and boosting the effectiveness of therapies is nanotechnology. In order to get around these drug-related restrictions and boost the effectiveness of therapies for neurological conditions such as stroke, nanotechnology has emerged as a viable option. These problems might be avoided by using nanoparticle-based methods to create a thrombolytic medication that is safe to use after the tissue plasminogen activator (tPA) treatment window has passed. The idea of using biomimetic nanoparticles in the future for the treatment of ischemic stroke through immunotherapy and stem cell therapy is highlighted, along with recent advancements in the study of nanomaterials for ischemic stroke diagnostics and treatment.
Collapse
Affiliation(s)
| | - Nagaprasad Puvvada
- Department of Chemistry,
School of Advanced Sciences, VIT-AP University, Amaravathi, Andhra Pradesh 522237, India
| |
Collapse
|