1
|
Jain S, Bhatt J, Gupta S, Bhatia DD. Nanotechnology at the crossroads of stem cell medicine. Biomater Sci 2024; 13:161-178. [PMID: 39584588 DOI: 10.1039/d4bm01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Nanotechnology in stem cell medicine is an interdisciplinary field which has gained a lot of interest recently. This domain addresses key challenges associated with stem cell medicine such as cell isolation, targeted delivery, and tracking. Nanotechnology-based approaches, including magnetic cell sorting, fluorescent tagging, and drug or biomolecule conjugation for delivery, have enhanced precision in stem cell isolation and guided cell migration, increasing the therapeutic potential. Recent studies have focused on using nanomaterials and scaffolds to drive stem cell differentiation by activating specific molecular pathways, achieved through embedding biomolecules within the scaffold or through the scaffold's material composition and structure alone. These innovations hold promise in therapeutic applications across various diseases, including cancer stem cell targeting, neurodegenerative disorders, pre-eclampsia, cardiovascular conditions, and organoid development. This review examines recent advancements in the field, explores potential applications like biosensors and nanochips, and highlights the challenges and research gaps.
Collapse
Affiliation(s)
- Sweny Jain
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Jay Bhatt
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Sharad Gupta
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Dhiraj Devidas Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
2
|
Thamarai P, Karishma S, Kamalesh R, Shaji A, Saravanan A, Bibi S, Vickram AS, Chopra H, Saleem RA, Alsharif KF, Theyab A, Kamel M, Alamoudi MK, Kumer A, Chopra S, Abdel-Daim MM. Current advancements in nanotechnology for stem cells. Int J Surg 2024; 110:7456-7476. [PMID: 39236089 PMCID: PMC11634102 DOI: 10.1097/js9.0000000000002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Stem cell therapy has emerged as a promising approach for regenerative medicine, offering potential treatments for a wide range of diseases and injuries. Although stem cell therapy has great promise, several obstacles have prevented its broad clinical adoption. The effectiveness of therapy has been inhibited by problems such as ineffective stem cell differentiation, low post-transplantation survival rates, and restricted control over stem cell behavior. Furthermore, the implementation of stem cell therapies is further complicated by the possibility of immunological rejection and cancer. Innovative strategies that provide precise control over stem cell characteristics and maximize their therapeutic potential are desperately needed to overcome these obstacles. Recent studies have shown that the effectiveness of stem cell treatments can be greatly increased by nanoscale advances. By establishing an ideal microenvironment and precisely offering growth factors, nanomaterials such as nanoparticles, nanocomposites, and quantum dots have been demonstrated to improve stem cell differentiation and proliferation. This article provides an overview of the recent trends and applications of nanoscale innovations in the context of stem cell therapy. The recent development of precision medicine has been facilitated by the incorporation of nanotechnology into stem cell therapy. The ability to manipulate stem cells at the nanoscale offers unprecedented control over their behavior and function, opening up exciting possibilities for personalized and highly effective therapeutic interventions. This review paper highlights the recent trends and applications of nanotechnology in advancing stem cell therapy, showcasing its potential to revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Packiyam Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Suresh Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Raja Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Anbalagan Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rimah A. Saleem
- Biochemistry and Molecular Medicine College of Medicine Alfaisal University, Riyadh
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Cairo, Egypt
| | - Mariam K. Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences, IUBAT – International University of Business Agriculture and Technology, Uttara Model Town, Dhaka, Bangladesh
| | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Xiu W, Zhang Y, Tang D, Lee SH, Zeng R, Ye T, Li H, Lu Y, Qin C, Yang Y, Yan X, Wang X, Hu X, Chu M, Sun Z, Xu W. Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway. Cell Oncol (Dordr) 2024; 47:2201-2215. [PMID: 39373858 DOI: 10.1007/s13402-024-00999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
PURPOSE Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug. METHOD The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance. RESULTS ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC. CONCLUSIONS These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.
Collapse
Affiliation(s)
- Wenhao Xiu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yujia Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Dongfang Tang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Rui Zeng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tingjie Ye
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hua Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanlin Lu
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changtai Qin
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuxi Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaofeng Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoling Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xudong Hu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Maoquan Chu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhumei Sun
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Montazersaheb S, Farahzadi R, Fathi E, Alizadeh M, Abdolalizadeh Amir S, Khodaei Ardakan A, Jafari S. Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways. Heliyon 2024; 10:e26959. [PMID: 38455550 PMCID: PMC10918200 DOI: 10.1016/j.heliyon.2024.e26959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Background The discovery of novel cancer therapeutic strategies leads to the development of nanotechnology-based methods for cancer treatment. Silver nanoparticles (Ag-NPs) have garnered considerable interest owing to their size, shape, and capacity to modify chemical, optical, and photonic properties. This study aimed to investigate the impact of Ag-NPs on inducing of apoptosis in MDA-MB 231 cells by examining specific signaling pathways. Materials and methods The cytotoxicity of Ag-NPs was determined using an MTT assay in MDA-MB 231 cells. The apoptotic effects were assessed using the Annexin-V/PI assay. Real-time PCR and western blotting were conducted to analyze the expression of apoptosis-related genes and proteins, respectively. Levels of ERK1/2 and cyclin D1 were measured using ELISA. Cell cycle assay was determined by flow cytometry. Cell migration was evaluated by scratch assay. Results The results revealed that Ag-NPs triggered apoptosis and cell cycle arrest in MDA-MB 231 cells. The expression level of Bax (pro-apoptotic gene) was increased, while Bcl-2 (anti-apoptotic gene) expression was decreased. Increased apoptosis was correlated with increased levels of p53 and PTEN. Additionally, notable alterations were observed in protein expression related to the Janus kinase/Signal transducers (JAK/STAT) pathway, including p-AKT. Additionally, reduced expression of h-TERT was observed following exposure to Ag-NPs. ELISA results demonstrated a significant reduction in p-ERK/Total ERK and cyclin D1 levels in Ag-NPs-exposed MDA-MB 231 cells. Western blotting analysis also confirmed the reduction of p-ERK/Total ERK and cyclin D1. Decreased level of cyclin D is associated with suppression of cell cycle progression. The migratory ability of MDA-MB-231 cells was reduced upon treatment with Ag-NPs. Conclusions Our findings revealed that Ag-NPs influenced the proliferation, apoptosis, cell cycle, and migration in MDA-MB 231 cells, possibly by modulating protein expression of the AKT/ERK/Cyclin D1 axis.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahsan Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Shahabaddin Abdolalizadeh Amir
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Sendera A, Adamczyk-Grochala J, Pikuła B, Cholewa M, Banaś-Ząbczyk A. Electromagnetic field (50 Hz) enhance metabolic potential and induce adaptive/reprogramming response mediated by the increase of N6-methyladenosine RNA methylation in adipose-derived mesenchymal stem cells in vitro. Toxicol In Vitro 2024; 95:105743. [PMID: 38040129 DOI: 10.1016/j.tiv.2023.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Electromagnetic fields (EMF) have an impact on numerous cellular processes. It can positively and negatively affect adipose-derived stem cells (ASCs) thus their fate through the influence of specific factors and protein secretion. EMF can be a great factor for preconditioning ASCs for regenerative medicine purposes, however, understanding the cell's biological response to its effects in vitro is essential. METHODS ASCs were exposed to the EMF (50 Hz; 1.5 mT) for 24 and 48 h, and then cell biological response was analyzed. RESULTS 24 h exposure of ASCs to EMF, significantly increased N6-methyladenosine (m6A) RNA methylation, indicating epitranscriptomic changes as an important factor in ASCs preconditioning. Furthermore, the expression of stem cell markers such as Nanog, Oct-4, Sox-2, CD44, and CD105 increased after 24 h of EMF exposure. Besides, western blot analysis showed upregulation of p21 and DNMT2/TRDMT1 protein levels compared to control cells with no differences in the p53 profile. Moreover, after 24 h of exposure to EMF, cell membrane flexibility, the metabolic potential of cells as well as the distribution, morphology, and metabolism of mitochondria were altered. CONCLUSION ASCs undergo a process of mobilization and adaptation under the EMF influence through the increased m6A RNA modifications. These conditions may "force" ASCs to redefine their stem cell fate mediated by RNA-modifying enzymes and alter their reprogramming decision of as differentiation begins.
Collapse
Affiliation(s)
- Anna Sendera
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Barbara Pikuła
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marian Cholewa
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Agnieszka Banaś-Ząbczyk
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.
| |
Collapse
|
6
|
Zeng ZP, Lai CR, Zheng WJ. Ag 2 O-TiO 2 -NTs enhance osteogenic activity in vitro by modulating TNF-α/β-catenin signaling in bone marrow-derived mesenchymal stem cells. Chem Biol Drug Des 2024; 103:e14501. [PMID: 38453253 DOI: 10.1111/cbdd.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The toxic effects of nanoparticles-silver oxide (Ag2 O) limited its use. However, loading Ag2 O nanoparticles into titanium dioxide (TiO2 ) nanotubes (Ag2 O-TiO2 -NTs) has more efficient biological activity and safety. The aim of this study was to observe the effect of Ag2 O-TiO2 -NTs on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and its mechanism. The enzyme activity of lactate dehydrogenase (LDH) and the expression of RUNX family transcription factor 2 (Runx2), OPN, OCN in BMSCs were detected by quantitative real time polymerase chain reaction. At 14 days of induction, the mineralization ability and alkaline phosphatase (ALP) activity of cells in each group were observed by Alizarin Red S staining and ALP staining. In addition, the protein levels of tumor necrosis factor-α (TNF-α) and β-catenin in BMSCs of each group were observed by western blot. After 14 days of the induction, the mineralization ability and ALP activity of BMSCs in the Ag2 O-TiO2 -NTs group were significantly enhanced compared with those in the Ag2 O and TiO2 groups. Western blot analysis showed that the BMSCs in the Ag2 O-TiO2 -NTs group exhibited much lower protein level of TNF-α and higher protein level of β-catenin than those in the Ag2 O and TiO2 groups.Ag2 O-TiO2 -NTs enhance the osteogenic activity of BMSCs by modulating TNF-α/β-catenin signaling.
Collapse
Affiliation(s)
- Zhan-Peng Zeng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Chang-Rong Lai
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Jie Zheng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Sesena-Rubfiaro A, Prajapati NJ, Lou L, Ghimire G, Agarwal A, He J. Improving the development of human engineered cardiac tissue by gold nanorods embedded extracellular matrix for long-term viability. NANOSCALE 2024; 16:2983-2992. [PMID: 38259163 DOI: 10.1039/d3nr05422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A myocardial infarction (MI), commonly called a heart attack, results in the death of cardiomyocytes (CMs) in the heart. Tissue engineering provides a promising strategy for the treatment of MI, but the maturation of human engineered cardiac tissue (hECT) still requires improvement. Conductive polymers and nanomaterials have been incorporated into the extracellular matrix to enhance the mechanical and electrical coupling between cardiac cells. Here we report a simple approach to incorporate gold nanorods (GNRs) into the fibrin hydrogel to form a GNR-fibrin matrix, which is used as the major component of the extracellular matrix for forming a 3D hECT construct suspended between two flexible posts. The hECTs made with GNR-fibrin hydrogel showed markers of maturation such as higher twitch force, synchronous beating activity, sarcomere maturation and alignment, t-tubule network development, and calcium handling improvement. Most importantly, the GNR-hECTs can survive over 9 months. We envision that the hECT with GNRs holds the potential to restore the functionality of the infarcted heart.
Collapse
Affiliation(s)
| | - Navin J Prajapati
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Lihua Lou
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Govinda Ghimire
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Jin He
- Department of Physics, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Zhang X, Liu L, Wang J, Yao M, Liu L, Liu H, Ren S, Wei P, Cheng P, Li X, Zhang H, Chen M. Emodin suppresses adipogenesis of bone marrow derived mesenchymal stem cells from aplastic anemia via increasing TRIB3 expression. Tissue Cell 2024; 86:102287. [PMID: 38086146 DOI: 10.1016/j.tice.2023.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Increasing evidence indicate that enhanced adipogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) could contribute to the adiposity alteration in marrow microenvironment of aplastic anemia (AA). Identifying small molecule drugs with role in inhibiting adipogenesis of BM-MSCs may represent a novel direction in AA therapy by improving BM-MSCs mediated marrow microenvironment. METHODS For the purpose, we isolated AA BM-MSCs through whole bone marrow cell culture, evaluated a series of small molecule drugs using the in vitro adipogenic differentiation model of BM-MSCs, and finally focused on emodin, a natural anthraquinone derivative. Subsequently, we systematically investigated the molecular mechanism of emodin in attenuating adipogenic process by means of microarray profiling, bioinformatics analysis and lentivirus-mediated functional studies and rescue assay. RESULTS We found that emodin presented significantly suppressive effect on the in vitro adipogenic differentiation of AA BM-MSCs. Further mechanistic investigation revealed that emodin could increase the expression of Tribbles homolog 3 (TRIB3) which exhibited remarkably decreased expression in AA BM-MSCs compared with the normal counterparts and was subsequently demonstrated as a negative regulator in adipogenesis of AA BM-MSCs. Besides, TRIB3 depletion alleviated the suppressive effect of emodin on the adipogenic differentiation of AA BM-MSCs. CONCLUSION Our findings propose that emodin mediated TRIB3 up-regulation alleviates the adipogenic capacity of AA BM-MSCs, and emodin could serve as a potential therapeutic regimen for AA therapy.
Collapse
Affiliation(s)
- Xianning Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lulu Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Jian Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Mingkang Yao
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Haihui Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Peng Wei
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Xiyu Li
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| | - Mingtai Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| |
Collapse
|
9
|
Scafa Udriște A, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Metal-Based Nanoparticles for Cardiovascular Diseases. Int J Mol Sci 2024; 25:1001. [PMID: 38256075 PMCID: PMC10815551 DOI: 10.3390/ijms25021001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
10
|
Farahzadi R, Sanaat Z, Movassaghpour-Akbari AA, Fathi E, Montazersaheb S. Investigation of L-carnitine effects on CD44 + cancer stem cells from MDA-MB-231 breast cancer cell line as anti-cancer therapy. Regen Ther 2023; 24:219-226. [PMID: 37519907 PMCID: PMC10384609 DOI: 10.1016/j.reth.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) are a small subpopulation of breast cancer cells, capable of metastasis, recurrence, and drug resistance in breast cancer patients. Therefore, targeting BCSCs appears to be a promising strategy for the treatment and prevention of breast cancer metastasis. Mounting evidence supports the fact that carnitine, a potent antioxidant, modulates various mechanisms by enhancing cellular respiration, inducing apoptosis, and reducing proliferation and inflammatory responses in tumor cells. The objective of this study was to investigate the impact of L-carnitine (LC) on the rate of proliferation and induction of apoptosis in CD44+ CSCs. To achieve this, the CD44+ cells were enriched using the Magnetic-activated cell sorting (MACS) isolation method, followed by treatment with LC at various concentrations. Flow cytometry analysis was used to determine cell apoptosis and proliferation, and western blotting was performed to detect the expression levels of proteins. Treatment with LC resulted in a significant decrease in the levels of p-JAK2, p-STAT3, Leptin receptor, and components of the leptin pathway. Moreover, CD44+ CSCs-treated cells with LC exhibited a reduction in the proliferation rate, accompanied by an increase in the percentage of apoptotic cells. Hence, it was concluded that LC could potentially influence the proliferation and apoptosis of CD44+ CSC by modulating the expression levels of specific protein.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Yin F, Zhou Y, Xie D, Hu J, Luo X. Effects of nanomaterial exposure on telomere dysfunction, hallmarks of mammalian and zebrafish cell senescence, and zebrafish mortality. Ageing Res Rev 2023; 91:102062. [PMID: 37673133 DOI: 10.1016/j.arr.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Environmental and occupational exposure to hazardous substances accelerates biological aging. However, the toxic effects of nanomaterials on telomere and cellular senescence (major hallmarks of the biological aging) remained controversial. This study was to synthesize all published evidence to explore the effects of nanomaterial exposure on the telomere change, cellular senescence and mortality of model animals. Thirty-five studies were included by searching electronic databases (PubMed, Embase and Web of Science). The pooled analysis by Stata 15.0 software showed that compared with the control, nanomaterial exposure could significantly shorten the telomere length [measured as kbp: standardized mean difference (SMD) = -1.88; 95% confidence interval (CI) = -3.13 - - 0.64; % of control: SMD = -1.26; 95%CI = -2.11- - 0.42; < 3 kbp %: SMD = 5.76; 95%CI = 2.92 - 8.60), increase the telomerase activity (SMD = -1.00; 95%CI = -1.74 to -0.26), senescence-associated β-galactosidase levels in cells (SMD = 8.20; 95%CI = 6.05 - 10.34) and zebrafish embryos (SMD = 7.32; 95%CI = 4.70 - 9.94) as well as the mortality of zebrafish (SMD = 3.83; 95%CI = 2.94 - 4.72)]. The expression levels of telomerase TERT, shelterin components (TRF1, TRF2 and POT1) and senescence biomarkers (p21, p16) were respectively identified to be decreased or increased in subgroup analyses. In conclusion, this meta-analysis demonstrates that nanomaterial exposure is associated with telomere attrition, cell senescence and organismal death.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China.
| |
Collapse
|
12
|
Wang X, Li W, Hao M, Yang Y, Xu Y. Hypoxia-treated umbilical mesenchymal stem cell alleviates spinal cord ischemia-reperfusion injury in SCI by circular RNA circOXNAD1/ miR-29a-3p/ FOXO3a axis. Biochem Biophys Rep 2023; 34:101458. [PMID: 36969321 PMCID: PMC10033311 DOI: 10.1016/j.bbrep.2023.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Spinal cord ischemia reperfusion (SCIR) injury leads to spinal cord function injury, neural dysfunction and sometimes paralysis or even paraplegia, which severely impair the physical and mental health of individuals. Mesenchymal stem cells (MSCs) are a group of stem cells that have been widely studied for treatment of various diseases. This work aimed to study the therapeutic potential of hypoxia-induced exosomal circular RNA OXNAD1 from human umbilical cord mesenchymal stem cells (HucMSCs) against SCIR. We established an in vivo rat spinal cord injury (SCI) model and conducted treatment with exosomes that isolated from hypoxia-HucMSCs. Hypoxia-HucMSCs-derived exosomal circOXNAD1 alleviated the spinal cord tissue injury in SCI, improved limb motor function, decreased production of inflammatory factors including the IL-1 β, IL-6, and TNF-α. The in vitro hypoxia and reoxygenation (H/R) model demonstrated that Hypoxia-HucMSCs-derived exosomal circOXNAD1 improved neuron proliferation and alleviated apoptosis. Mechanistically, circOXNAD1 directly interact with miR-29a-3p and miR-29a-3p targets the 3'UTR of FOXO3a in neurons. Inhibition of miR-29a-3p and overexpression of FOXO3a reversed the effects of circOXNAD1 depletion in PC12 cell phenotypes. In conclusion, Hypoxia elevated the level circOXNAD1 in exosomes that derived from HuMSCs. The exosomal circOXNAD1 alleviated SCI through sponging miR-29a-3p and consequently elevated the FOXO3a expression. Our findings provided novel evidence for MSC-derived exosomal circOXNAD1in the treatment of SCI.
Collapse
|
13
|
Elzayat EM, Shahien SA, El-Sherif AA, Hosney M. Therapeutic potential of stem cells and acitretin on inflammatory signaling pathway-associated genes regulated by miRNAs 146a and 155 in AD-like rats. Sci Rep 2023; 13:9613. [PMID: 37311848 DOI: 10.1038/s41598-023-36772-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Several drugs are used to improve the symptoms, but do not stop AD progression. There are more promising treatments that may have a significant role in AD diagnosis and treatment such as miRNAs and stem cells. The present study aims to develop a new approach for AD treatment by mesenchymal stem cells (MSCs) and/or acitretin with special reference to inflammatory signaling pathway as NF-kB and its regulator miRNAs in AD-like rat model. Fourty-five male albino rats were allotted for the present study. The experimental periods were divided into induction, withdrawal, and therapeutic phases. Expression levels of miR-146a, miR-155, necrotic, growth and inflammatory genes were assessed using RT-qPCR. Histopathological examination of brain tissues was performed in different rat groups. The normal physiological, molecular, and histopathological levels were restored after treatment with MSCs and/or acitretin. The present study demonstrates that the miR-146a and miR-155 might be used as promising biomarkers for AD. MSCs and/or acitretin proved their therapeutic potential in restoring the expression levels of targeted miRNAs and their related genes concerning NF-kB signaling pathway.
Collapse
Affiliation(s)
- Emad M Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif A Shahien
- Biotechnology/Bimolecular Chemistry Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A El-Sherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
14
|
Farahzadi R, Fathi E, Mesbah-Namin SA, Vietor I. Granulocyte differentiation of rat bone marrow resident C-kit + hematopoietic stem cells induced by mesenchymal stem cells could be considered as new option in cell-based therapy. Regen Ther 2023; 23:94-101. [PMID: 37206538 PMCID: PMC10189093 DOI: 10.1016/j.reth.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are effective in hematopoietic engraftment and tissue repair in stem cell transplantation. In addition, these cells control the process of hematopoiesis by secreting growth factors and cytokines. The aim of the present study is to investigate the effect of rat bone marrow (BM)-derived MSCs on the granulocyte differentiation of rat BM-resident C-kit+ hematopoietic stem cells (HSCs). The mononuclear cells were collected from rat BM using density gradient centrifugation and MSCs and C-kit+ HSCs were isolated. Then, cells were divided into two groups and differentiated into granulocytes; C-kit+ HSCs alone (control group) and co-cultured C-kit+ HSCs with MSCs (experimental group). Subsequently, the granulocyte-differentiated cells were collected and subjected to real-time PCR and Western blotting for the assessment of their telomere length (TL) and protein expressions, respectively. Afterwards, culture medium was collected to measure cytokine levels. CD34, CD16, CD11b, and CD18 granulocyte markers expression levels were significantly increased in the experimental group compared to the control group. A significant change was also observed in the protein expression of Wnt and β-catenin. In addition, MSCs caused an increase in the TL of granulocyte-differentiated cells. MSCs could affect the granulocyte differentiation of C-kit+ HSCs via increasing TL and Wnt/β-catenin protein expression.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
15
|
Cao M, Liu Z, You D, Pan Y, Zhang Q. TMT-based quantitative proteomic analysis of spheroid cells of endometrial cancer possessing cancer stem cell properties. Stem Cell Res Ther 2023; 14:119. [PMID: 37143105 PMCID: PMC10161517 DOI: 10.1186/s13287-023-03348-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) play an important role in endometrial cancer progression and it is potential to isolate CSCs from spheroid cells. Further understanding of spheroid cells at protein level would help find novel CSC markers. METHODS Spheroid cells from endometrial cancer cell lines, Ishikawa and HEC1A, exhibited increased colony forming, subsphere forming, chemo-drug resistance, migration, invasion ability and tumorigenicity, verifying their cancer stem-like cell properties. The up-regulated CD90, CD117, CD133 and W5C5 expression also indicated stemness of spheroid cells. TMT-based quantitative proteomic analysis was performed to explore the potential alterations between parent cells and cancer stem-like spheroid cells. HK2-siRNA was transfected to Ishikawa and HEC1A cells to explore the roles and molecular mechanism of HK2 in endometrial cancer. RESULTS We identified and quantified a total of 5735 proteins and 167 overlapped differentially expressed proteins of two cell types, 43 proteins were up-regulated and 124 were down-regulated in spheroid cells comparing with parent cells. KEGG pathway revealed a significant role of HIF-1 pathway in spheroid cells. qRT-PCR and western blot results of GPRC5A, PFKFB3 and HK2 of HIF-1 pathway confirmed their elevated expressions in spheroid cells which were consistent with proteomic results. HK2 promoted cancer stemness in endometrial cancer. CONCLUSION These findings indicate that spheroid cells from endometrial cancer cell lines possess cancer stem-like cell properties and enrich CSCs. HIF-1 pathway is activated in endometrial cancer stem-like spheroid cells.
Collapse
Affiliation(s)
- Mingzhu Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No.63, Duobao Road, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi Liu
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, No.1838, Baiyun Road North, Guangzhou, China
| | - Danming You
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qingyan Zhang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 1, Zhongshan 2nd Road, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
16
|
Zhou S, Liu Y, Zhang Q, Xu H, Fang Y, Chen X, Fu J, Yuan Y, Li Y, Yuan L, Xiang C. Human menstrual blood-derived stem cells reverse sorafenib resistance in hepatocellular carcinoma cells through the hyperactivation of mitophagy. Stem Cell Res Ther 2023; 14:58. [PMID: 37005657 PMCID: PMC10068152 DOI: 10.1186/s13287-023-03278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Sorafenib is a first-line drug targeting the RTK-MAPK signalling pathway used to treat advanced hepatocellular carcinoma (HCC). However, tumour cells readily develop sorafenib resistance, limiting long-term therapy with this drug. In our previous study, we found that human menstrual blood-derived stem cells (MenSCs) altered the expression of some sorafenib resistance-associated genes in HCC cells. Therefore, we wanted to further explore the feasibility of MenSC-based combination therapy in treating sorafenib-resistant HCC (HCC-SR) cells. METHODS The therapeutic efficiency of sorafenib was determined using CCK-8 (Cell Counting Kit-8), Annexin V/PI and clone formation assays in vitro and a xenograft mouse model in vivo. DNA methylation was determined using RT‒PCR and methylated DNA immunoprecipitation (MeDIP). Autophagy was detected by measuring LC3-II degradation and autophagosome maturation. Transmission electron microscopy identified autophagosomes and mitochondria. Physiological functions of mitochondria were assessed by measuring the ATP content, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). RESULTS The tumour suppressor genes BCL2 interacting protein 3 (BNIP3) and BCL2 interacting protein 3 like (BNIP3L) were silenced by promoter methylation and that BNIP3 and BNIP3L levels correlated negatively with sorafenib resistance in HCC-SR cells. Strikingly, MenSCs reversed sorafenib resistance. MenSCs upregulated BNIP3 and BNIP3L expression in HCC-SR cells via tet methylcytosine dioxygenase 2 (TET2)-mediated active demethylation. In HCC-SR cells receiving sorafenib and MenSC combination therapy, pressure from sorafenib and elevated BNIP3 and BNIP3L levels disrupted balanced autophagy. Hyperactivation of mitophagy significantly caused severe mitochondrial dysfunction and eventually led to the autophagic death of HCC-SR cells. CONCLUSIONS Our research suggests that combining sorafenib and MenSCs may be a potentially new strategy to reverse sorafenib resistance in HCC-SR cells.
Collapse
Affiliation(s)
- Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yiming Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huikang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xin Chen
- Department of Haematology, Affiliated Hangzhou First People's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310027, China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou, 311215, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
17
|
The effects of encapsulation on NK cell differentiation potency of C-kit+ hematopoietic stem cells via identifying cytokine profiles. Transpl Immunol 2023; 77:101797. [PMID: 36720394 DOI: 10.1016/j.trim.2023.101797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Natural killer cells (NK cells) can kill cancerous cells without prior sensitization. This feature makes them appealing candidates for cellular therapy. Due to the degradation rate and controlled release of these matrices, hydrogels hold great promise in cell differentiation. The study aims to investigate the effect of encapsulated alginate-gelatin on the differentiation potential of C-kit+ cells toward NK cells which are mediated by cytokines detection. Under both encapsulated and unencapsulated conditions, C-kit+ cells can differentiate into NK cells. In the following, real-time PCR and western blotting were done to investigate the mRNA and protein expression, respectively. Determine cytokine profiles from the collected culture medium conducted a Cytokine antibody array. The differentiated cells were then co-cultured with Molt-4 cells to examine the expression levels of INF-γ, TNF-α, and IL-10 using real-time-PCR. There was a substantial change in protein expression of the Notch pathway. Also, the encapsulation increased the mRNA expression of INF-γ and TNF-α in Molt-4 cells. Based on these findings, the encapsulation effects on the differentiation of C-kit+ cells toward NK cells could be related to the secreted cytokines such as interleukin-10 and INF-γ and the Notch protein expression.
Collapse
|
18
|
Dan QQ, Chen L, Shi LL, Zhou X, Wang TH, Liu H. Urine-derived mesenchymal stem cells-derived exosomes enhances survival and proliferation of aging retinal ganglion cells. BMC Mol Cell Biol 2023; 24:8. [PMID: 36879194 PMCID: PMC9990288 DOI: 10.1186/s12860-023-00467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES This study was designed to investigate to test the effect of exosomes from urine-derived mesenchymal stem cells (USCs) on the survival and viability of aging retinal ganglion cells (RGCs), and explored the preliminary related mechanisms. METHODS Primary USCs were cultured and identified by immunofluorescence staining. Aging RGCs models were established by D-galactose treatment and identified by β-Galactosidase staining. After treatment with USCs conditioned medium (with USCs removal), flow cytometry was performed to examine the apoptosis and cell cycle of RGCs. Cell viability of RGCs was detected by Cell-counting Kit 8 (CCK8) assay. Moreover, gene sequencing and bioinformatics analysis were applied to analyze the genetic variation after medium treatment in RGCs along with the biological functions of differentially expressed genes (DEGs). RESULTS The number of apoptotic aging RGCs was significantly reduced in USCs medium-treated RGCs. Besides, USCs-derived exosomes exert significant promotion on the cell viability and proliferation of aging RGCs. Further, sequencing data analyzed and identified DEGs expressed in aging RGCs and aging RGCs treated with USCs conditioned medium. The sequencing outcomes demonstrated 117 upregulated genes and 186 downregulated genes in normal RGCs group vs aging RGCs group, 137 upregulated ones and 517 downregulated ones in aging RGCs group vs aging RGCs + USCs medium group. These DEGs involves in numerous positive molecular activities to promote the recovery of RGCs function. CONCLUSIONS Collectively, the therapeutic potentials of USCs-derived exosomes include suppression on cell apoptosis, enhancement on cell viability and proliferation of aging RGCs. The underlying mechanism involves multiple genetic variation and changes of transduction signaling pathways.
Collapse
Affiliation(s)
- Qi-Qin Dan
- Institute of Neurological Disease, West China Hospital, Sichuan University, No. 88 Keyuan South Road, Chengdu, 610041, China
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, No. 88 Keyuan South Road, Chengdu, 610041, China
| | - Lan-Lan Shi
- Department of Human Anatomy and Tissue Embryology, Kunming Medical University, Kunming, 650500, China
| | - Xiu Zhou
- Laboratory Animal Department, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, No. 88 Keyuan South Road, Chengdu, 610041, China.
| | - Hua Liu
- Department of Anatomy, Institute of Eyes, Jinzhou Medical University, No.40, Section 3, Songpo Road, Linghe District, JinzhouLiaoning, 121001, China.
| |
Collapse
|
19
|
Hussain T, Chai L, Wang Y, Zhang Q, Wang J, Shi W, Wang Q, Li M, Xie X. Activation of PPAR-γ prevents TERT-mediated pulmonary vascular remodeling in MCT-induced pulmonary hypertension. Heliyon 2023; 9:e14173. [PMID: 36938425 PMCID: PMC10015197 DOI: 10.1016/j.heliyon.2023.e14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Background It has been demonstrated that elevated telomerase reverse transcriptase (TERT) expression or activity is implicated in pulmonary hypertension (PH). In addition, activation of peroxisome-proliferator-activated receptor γ (PPAR-γ) has been found to prevent PH progression. However, the molecular mechanism responsible for the protective effect of PPAR-γ activation on TERT expression in the pathogenesis of PH remains unknown. This study was performed to address these issues. Methods Intraperitoneal injection of monocrotaline (MCT) was used to establish PH. BIBR1532 was applied to inhibit the activity of telomerase. The right ventricular systolic pressure (RVSP) and histological analysis were used to detect the development of PH. The protein levels of p-Akt, t-Akt, c-Myc and TERT were determined by western blotting. Pharmacological inhibition of TERT by BIBR1532 effectively suppressed RVSP, RVHI and the WT% in MCT-induced PH rats. Results Pharmacological inhibition of Akt/c-Myc pathway by LY294002 diminished TERT upregulation, RVSP, RVHI and WT% in MCT-PH rats. Activation of PPAR-γ by pioglitazone inhibited p-Akt and c-Myc expressions and further downregulated TERT, thus to reduced RVSP, RVHI and WT% in MCT-treated PH rats. Conclusions In conclusion, TERT upregulation contributes to PH development in MCT-treated rats. Activation of PPAR-γ prevents pulmonary arterial remodeling through Akt/c-Myc/TERT axis suppression.
Collapse
Affiliation(s)
- Tafseel Hussain
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Corresponding author. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
20
|
Meshkini F, Moradi A, Hosseinkhani S. Upregulation of RIPK1 implicates in HEK 293T cell death upon transient transfection of A53T-α-synuclein. Int J Biol Macromol 2023; 230:123216. [PMID: 36634793 DOI: 10.1016/j.ijbiomac.2023.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SN) is the central protein in synucleinopathies including Parkinson's disease. Nevertheless, the molecular mechanisms through which α-SN leads to neuronal death remain unclear. METHODS To elucidate the relationship between α-SN and apoptosis, some indicators of the intrinsic and extrinsic apoptotic cell death were assessed in normal and a stable HEK293T cell line expressing firefly luciferase after transfection with the wild-type (WT) and A53T mutant α-SN. RESULTS Opposite to WT-α-SN, overexpression of A53T-α-SN resulted in enhanced expression of almost two fold for RIPK1 (93.0 %), FADD (45 %), Caspase-8, and Casp-9 activity (52.0 %) in measured time. Transfection of both WT-α-SN and A53T-α-SN showed an increase in the Casp-3/Procasp-3 ratio (WT: 60.5 %; A53T: 41.0 %), Casp-3 activity (WT: 65.0 %; A53T: 20.5 %), and a decrease in luciferase activity (WT: 50 %; A53T: 34.8 %). Overexpression of A53T-α-SN brought about with more cell death percentage compared to WT-α-SN within 36 h. No significant alteration in cytochrome c and reactive oxygen species release into cytosol were observed for both WT-α-SN and A53T-α-SN. CONCLUSION Altogether, these findings highlight the link between disease related mutants of α-SN (like A53T-α-SN) in triggering of RIPK1-dependent extrinsic apoptotic pathway in cell death during neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Fonseca LN, Bolívar-Moná S, Agudelo T, Beltrán LD, Camargo D, Correa N, Del Castillo MA, Fernández de Castro S, Fula V, García G, Guarnizo N, Lugo V, Martínez LM, Melgar V, Peña MC, Pérez WA, Rodríguez N, Pinzón A, Albarracín SL, Olaya M, Gutiérrez-Gómez ML. Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
Affiliation(s)
- Luisa Nathalia Fonseca
- Master Student in Biological Sciences - School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Santiago Bolívar-Moná
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Tatiana Agudelo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Daniela Beltrán
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Daniel Camargo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nestor Correa
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Alexandra Del Castillo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | | | - Valeria Fula
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Gabriela García
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Natalia Guarnizo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Valentina Lugo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Mariana Martínez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Verónica Melgar
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Clara Peña
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Wilfran Arbey Pérez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nicolás Rodríguez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Andrés Pinzón
- Department of Orthopedics and Traumatology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Sonia Luz Albarracín
- Department of Nutrition and Biochemistry -School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Mercedes Olaya
- Department of Pathology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Lucía Gutiérrez-Gómez
- Department of Morphology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
- Institute of Human Genetics - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| |
Collapse
|
22
|
Rybkowska P, Radoszkiewicz K, Kawalec M, Dymkowska D, Zabłocka B, Zabłocki K, Sarnowska A. The Metabolic Changes between Monolayer (2D) and Three-Dimensional (3D) Culture Conditions in Human Mesenchymal Stem/Stromal Cells Derived from Adipose Tissue. Cells 2023; 12:cells12010178. [PMID: 36611971 PMCID: PMC9818744 DOI: 10.3390/cells12010178] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION One of the key factors that may influence the therapeutic potential of mesenchymal stem/stromal cells (MSCs) is their metabolism. The switch between mitochondrial respiration and glycolysis can be affected by many factors, including the oxygen concentration and the spatial form of culture. This study compared the metabolic features of adipose-derived mesenchymal stem/stromal cells (ASCs) and dedifferentiated fat cells (DFATs) cultivated as monolayer or spheroid culture under 5% O2 concentration (physiological normoxia) and their impact on MSCs therapeutic abilities. RESULTS We observed that the cells cultured as spheroids had a slightly lower viability and a reduced proliferation rate but a higher expression of the stemness-related transcriptional factors compared to the cells cultured in monolayer. The three-dimensional culture form increased mtDNA content, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), especially in DFATs-3D population. The DFATs spheroids also demonstrated increased levels of Complex V proteins and higher rates of ATP production. Moreover, increased reactive oxygen species and lower intracellular lactic acid levels were also found in 3D culture. CONCLUSION Our results may suggest that metabolic reconfiguration accompanies the transition from 2D to 3D culture and the processes of both mitochondrial respiration and glycolysis become more active. Intensified metabolism might be associated with the increased demand for energy, which is needed to maintain the expression of pluripotency genes and stemness state.
Collapse
Affiliation(s)
- Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Maria Kawalec
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-608-6598
| |
Collapse
|
23
|
Yuan J, Kong Y. MiR-7-5p attenuates vascular smooth muscle cell migration and intimal hyperplasia after vascular injury by NF-kB signaling. Biochem Biophys Rep 2022; 33:101394. [PMID: 36601516 PMCID: PMC9806680 DOI: 10.1016/j.bbrep.2022.101394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/01/2023] Open
Abstract
Background Atherosclerosis (AS) is the primary cause of coronary artery disease, which is featured by aberrant proliferation, differentiation, and migration of vascular smooth muscle cells (VSMCs). MicroRNAs play crucial roles in AS, but the function of miR-7-5p in AS remains unclear. Here, we aimed to explore the effect of miR-7-5p on AS and VSMCs in vitro and in vivo. Methods The in vivo rat AS model and apoE-/- mouse model were established. The carotid artery injury was checked by immunohistochemistry staining. The RNA levels of miR-7-5p and p65 were measured by qPCR assay. Protein levels were checked by western blotting. Cell apoptosis was evaluated by flow cytometry. Cell migration was checked by Transwell assay and wound healing assay. The potential interaction between miR-7-5p with p65 was checked by luciferase reporter gene assay. Results MiR-7-5p was downregulated and NF-κB p65 was upregulated in injured carotid arteries in rat model. The carotid artery injury in the AS rats and the treatment of miR-7-5p attenuated the phenotype in the model. Immunohistochemistry staining and Western blot analysis revealed that PCNA levels were increased in injured carotid arteries of the model rats and miR-7-5p could reverse the levels. The cell viability of VSMCs was induced by PDGF-BB but miR-7-5p blocked the phenotype. PDGF-BB decreased apoptosis of VSMCs, while miR-7-5p was able to restore the cell apoptosis in the model. PDGF-BB-induced migration of VSMCs was attenuated by miR-7-5p. miR-7-5p mimic remarkably repressed the luciferase activity of p65 in VSMCs. The levels of p65 were inhibited by miR-7-5p in the cells. The PDGF-BB-promoted cell viability and migration of VSMCs was repressed by miR-7-5p and p65 overexpression reversed the phenotype. Conclusion We concluded that miR-7-5p attenuates vascular smooth muscle cell migration and intimal hyperplasia after vascular injury by NF-kB signaling.
Collapse
Affiliation(s)
- Jixiang Yuan
- The First Affiliated Hospital of Northwest Minzu University, Yinchuan, 750002, Ningxia Hui Autonomous Region, China,Corresponding author.
| | - Yun Kong
- Beijing Bioscience Biomedical Technology Co., LTD, Beijing, 100010, China
| |
Collapse
|
24
|
Ni C, Wu G, Miao T, Xu J. Wnt4 prevents apoptosis and inflammation of dental pulp cells induced by LPS by inhibiting the IKK/NF‑κB pathway. Exp Ther Med 2022; 25:75. [PMID: 36684653 PMCID: PMC9842946 DOI: 10.3892/etm.2022.11774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Wnt4 has been shown to promote the recovery of odontogenic differentiation of dental pulp stem cells under inflammatory conditions, but its role in inflammation and apoptosis of pulpitis remains to be elucidated. Lipopolysaccharide (LPS) (10 µg/ml) was applied to treat the human dental pulp cells (HDPCs) for 24 h. Western blotting measured the expressions of inflammatory cytokines and apoptosis-related proteins. Cell apoptosis was measured by flow cytometry. The level of Wnt4 was evaluated by reverse transcription-quantitative PCR and western blotting. The results indicated that LPS could promote inflammatory response and apoptosis in HDPCs and downregulated Wnt4 expression was found in LPS-HDPCs. Overexpression of Wnt4 ameliorated cell inflammatory response and apoptosis, presented by reduced expressions of IL-8, IL-6, TNF-α, IL-1β, Bax, cleaved-caspase 3 and enhanced Bcl-2 expression as well as decreased apoptosis rate. Moreover, overexpression of Wnt4 reduced the phosphorylation levels of IKK2, IκBα and p65 proteins upregulated by LPS. Finally, overexpression of IKK2 reversed the effects of Wnt4 on inflammation and apoptosis of LPS-HDPCs and NF-κB inhibitor reversed the effect of IKK2 overexpression in LPS-HDPCs. Wnt4 inhibited LPS-triggered inflammation and apoptosis in HDPCs via regulating the IKK/NF-κB signaling pathway, which provided a new viewpoint for understanding the pathological mechanism of pulpitis.
Collapse
Affiliation(s)
- Chengli Ni
- College of Stomatology, Anhui Medical College, Hefei, Anhui 230601, P.R. China,Correspondence to: Ms. Chengli Ni, College of Stomatology, Anhui Medical College, 632 Furong Road, Hefei, Anhui 230601, P.R. China
| | - Gang Wu
- Shanghai Smartee Denti-Technology Co., Ltd., Shanghai 200120, P.R. China
| | - Tingting Miao
- College of Stomatology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jianguang Xu
- Key Laboratory of Oral Disease Research of Anhui Province, Department of Orthodontics, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
25
|
Gao S, Li N, Zhang X, Chen J, Ko BC, Zhao Y. An autophagy-inducing stapled peptide promotes c-MET degradation and overrides adaptive resistance to sorafenib in c-MET + hepatocellular carcinoma. Biochem Biophys Rep 2022; 33:101412. [PMID: 36578529 PMCID: PMC9791588 DOI: 10.1016/j.bbrep.2022.101412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) accounts for approximately 90% of primary liver cancer cases and ranks as the second leading cause of cancer related death. Multiple receptor tyrosine kinases such as EGFR, FGFR and c-MET have been shown to drive tumorigenesis and progression of HCC. However, tyrosine kinase inhibitors (TKIs) that target these kinases, including the FDA-approved sorafenib, only offer limited clinical success. Resistance to sorafenib and other TKIs also readily emerge in HCC patients, further limiting the usage of these drugs. Novel therapeutic strategies are needed to address the urgent unmet medical need for HCC patients. Results Autophagy is an evolutionally conserved lysosome-dependent degradation process that is also functionally implicated in HCC. We previously developed an autophagy-inducing stapled peptide (Tat-SP4) that induced autophagy and endolysosomal degradation of EGFR in lung cancer and breast cancer cells. Here we present data to show that Tat-SP4 also induced significant autophagic response in multiple HCC cell lines and promoted the endolysosomal degradation of c-MET to attenuate its downstream signaling activities although it didn't affect the intrinsically fast turnover of EGFR. Tat-SP4 also overrode adaptive resistance to sorafenib in c-MET+ HCC cells but employed the distinct mechanism of inducing non-apoptotic cell death. Conclusion With its distinct mechanism of promoting autophagy and endolysosomal degradation of c-MET, Tat-SP4 may serve as a novel therapeutic agent that complement and synergize with sorafenib to enhance its clinical efficacy in HCC patients.
Collapse
Affiliation(s)
- Shan Gao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Na Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, PR China
| | - Xiaozhe Zhang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Jingyi Chen
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Ben C.B. Ko
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, PR China,Corresponding author. Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China.
| |
Collapse
|
26
|
Study of the biological relevance of Wnt/β-catenin signaling pathway and β-adrenergic regulation in osteoblastic differentiation of mesenchymal stem cells. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Luo J, Wang Y, Dong X, Wang W, Mu Y, Sun Y, Zhang F, Miao Y. miR-642a-5p increases glucocorticoid sensitivity by suppressing the TLR4 signalling pathway in THP-1 cells. Biochem Biophys Rep 2022; 32:101356. [PMID: 36186733 PMCID: PMC9519937 DOI: 10.1016/j.bbrep.2022.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The incidence rate of ulcerative colitis (UC) is increasing annually, and glucocorticoid (GC) resistance (GCR) is a common cause of UC-induced remission failure. Our previous studies have shown that the expression of miR-642a-5p is downregulated in UC with GCR, suggesting that miR-642a-5p may be related to the GC response. Therefore, we investigated the mechanism by which miR-642a-5p regulates the GC response in THP-1 cells. We found that after treatment with miR-642a-5p mimics and DEX, the expression levels of glucocorticoid receptor (GR) in the nucleus and NF-κB p65 and p50 in the cytoplasm were increased (P < 0.05). miR-642a-5p mimics transfected into THP-1 cells could synergize with dexamethasone (DEX) to reduce lipopolysaccharide (LPS)-induced inflammatory factor levels such as TNF-α, IL-1β, IL-6 and IL-12 (P < 0.05). Bioinformatics analysis and luciferase reporter assays confirmed that TLR4 is a target gene of miR-642a-5p. miR-642a-5p mimic pretreatment enhanced the inhibitory effect of DEX on TLR4 induced by LPS and inhibited the expression of TLR4 on the cell surface (P < 0.05). Additionally, miR-642a-5p further prevented the nuclear import of NF-κB P65 and inhibited the phosphorylation of ERK, p38 and JNK. These results suggest that miR-642a-5p can inhibit the inflammation by suppressing the TLR4 signalling pathway in THP-1 cells. It also highlights the TLR4 signalling pathway as a potential therapeutic target in anti-inflammation. miR-642a-5p can inhibit the TLR4 signalling pathway induced by LPS and increase the glucocorticoid sensitivity in THP-1 cells.
Collapse
|
28
|
Pihlström S, Määttä K, Öhman T, Mäkitie RE, Aronen M, Varjosalo M, Mäkitie O, Pekkinen M. A multi-omics study to characterize the transdifferentiation of human dermal fibroblasts to osteoblast-like cells. Front Mol Biosci 2022; 9:1032026. [PMID: 36465561 PMCID: PMC9714459 DOI: 10.3389/fmolb.2022.1032026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Background: Various skeletal disorders display defects in osteoblast development and function. An in vitro model can help to understand underlying disease mechanisms. Currently, access to appropriate starting material for in vitro osteoblastic studies is limited. Native osteoblasts and their progenitors, the bone marrow mesenchymal stem cells, (MSCs) are problematic to isolate from affected patients and challenging to expand in vitro. Human dermal fibroblasts in vitro are a promising substitute source of cells. Method: We developed an in vitro culturing technique to transdifferentiate fibroblasts into osteoblast-like cells. We obtained human fibroblasts from forearm skin biopsy and differentiated them into osteoblast-like cells with ß-glycerophosphate, ascorbic acid, and dexamethasone treatment. Osteoblastic phenotype was confirmed by staining for alkaline phosphatase (ALP), calcium and phosphate deposits (Alizarin Red, Von Kossa) and by a multi-omics approach (transcriptomic, proteomic, and phosphoproteomic analyses). Result: After 14 days of treatment, both fibroblasts and MSCs (reference cells) stained positive for ALP together with a significant increase in bone specific ALP (p = 0.04 and 0.004, respectively) compared to untreated cells. At a later time point, both cell types deposited minerals, indicating mineralization. In addition, fibroblasts and MSCs showed elevated expression of several osteogenic genes (e.g. ALPL, RUNX2, BMPs and SMADs), and decreased expression of SOX9. Ingenuity Pathways Analysis of RNA sequencing data from fibroblasts and MSCs showed that the osteoarthritis pathway was activated in both cell types (p_adj. = 0.003 and 0.004, respectively). Discussion: These data indicate that our in vitro treatment induces osteoblast-like differentiation in fibroblasts and MSCs, producing an in vitro osteoblastic cell system. This culturing system provides an alternative tool for bone biology research and skeletal tissue engineering.
Collapse
Affiliation(s)
- Sandra Pihlström
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka E. Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mira Aronen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Pekkinen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
He C, Wang T, Han Y, Zuo C, Wang G. E3 ubiquitin ligase COP1 confers neuroprotection in cerebral ischemia/reperfusion injury via regulation of transcription factor C/EBPβ in microglia. Int J Biol Macromol 2022; 222:1789-1800. [DOI: 10.1016/j.ijbiomac.2022.09.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
30
|
Fathi E, Mesbah-Namin SA, Vietor I, Farahzadi R. Mesenchymal stem cells cause induction of granulocyte differentiation of rat bone marrow C-kit + hematopoietic stem cells through JAK3/STAT3, ERK, and PI3K signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1222-1227. [PMID: 36311196 PMCID: PMC9588313 DOI: 10.22038/ijbms.2022.66737.14633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Hematopoietic stem cells (HSCs) are the cells that give rise to different types of blood cells during the hematopoiesis process. Mesenchymal stromal cells (MSCs) as key elements in the bone marrow (BM) niche interact with hematopoietic progenitor cells (HPCs) by secreting cytokines, which control HPCs maintenance and fate. Here we report that BM-MSCs are capable of inducing granulocytic differentiation of the C-Kit+ HSCs via activating JAK3/STAT3, ERK, and PI3K signaling pathways. MATERIALS AND METHODS For this purpose, BM-MSCs and C-kit+ HSCs were isolated. Next, cells were divided into two groups and differentiated into granulocytes: C-kit+ HSCs alone (control group) and co-cultured C-kit+ HSCs with MSCs (experimental group). Afterward, the gene and protein expression were assessed by real-time PCR and western blotting, respectively. RESULTS It was found that BM-MSCs resulted in increased JAK3/STAT3, ERK, and PI3K protein expression in granulocyte differentiated C-kit+ HSCs. CONCLUSION It should be concluded that MSCs could affect the granulocyte differentiation of C-kit+ HSCs via increasing JAK3/STAT3, ERK, and PI3K signaling pathways.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Sharma T, Saralamma VVG, Lee DC, Imran MA, Choi J, Baig MH, Dong JJ. Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors. Int J Biol Macromol 2022; 222:239-250. [PMID: 36130643 DOI: 10.1016/j.ijbiomac.2022.09.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Republic of Korea
| | - Duk Chul Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Republic of Korea
| | - Mohammad Azhar Imran
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Republic of Korea
| | - Jaehyuk Choi
- BNJBiopharma, 2nd floor Memorial Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Republic of Korea.
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Republic of Korea.
| |
Collapse
|
32
|
Zhang J, Zhong M, Zhong W, Lan Y, Yuan Z, Duan Y, Wei Y. Construction of tandem diabody (IL-6/CD20)-secreting human umbilical cord mesenchymal stem cells and its experimental treatment on diffuse large B cell lymphoma. Stem Cell Res Ther 2022; 13:473. [PMID: 36104733 PMCID: PMC9476312 DOI: 10.1186/s13287-022-03169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 40% patients with diffuse large B cell lymphoma (DLBCL) experienced relapse or refractory (R/R) lymphoma after the standard first R-CHOP therapy. IL-6 was reportedly associated with chemotherapy resistance of rituximab. Further, mesenchymal stem cells (MSCs) are known as the potential cell vehicle for their tropism toward tumor. A MSCs-based tandem diabody for treating DLBCL is currently lacking. METHODS We constructed a tandem diabody (Tandab(IL-6/CD20)) with modified umbilical cord MSCs (UCMSCs) and designed a cell-based Tandab releasing system. Western blot, qPCR and immunofluorescence were used to confirm the construction and expression of lentivirus-infected UCMSCs. The vitality, apoptosis and homing abilities of UCMSCs were examined via CCK-8 assay, apoptosis, wound healing and migration analysis. Cell binding assay was used to demonstrate the targeting property of Tandab binding to CD20-positive DLBCL cells. Furthermore, we evaluated the viability of SU-DHL-2 and SU-DHL-4 by using CCK-8 and EDU assay after the treatment of UCMSCs-Tandab(IL-6/CD20). RESULTS Tandab protein peaked at 6273 ± 487 pg/ml in the medium on day 7 after cell culture. The proliferation and homing ability of UCMSCs did not attenuate after genetically modification. Immunofluorescence images indicated the Tandab protein bound to the lymphoma cells. UCMSCs-Tandab(IL-6/CD20) inhibited the growth of SU-DHL-2 or SU-DHL-4 cells in vitro. CONCLUSIONS UCMSCs-Tandab(IL-6/CD20), which bound with both tumor-associated surface antigens and pro-tumor cytokines in tumor microenvironment, might serve as a potential treatment for DLBCL, evidenced by inhibiting the growth of SU-DHL-2 or SU-DHL-4 cells.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Minglu Zhong
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology and Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanfei Lan
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yaming Wei
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Mahmud S, Alam S, Emon NU, Boby UH, Kamruzzaman, Ahmed F, Monjur-Al-Hossain ASM, Tahamina A, Rudra S, Ajrin M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm J 2022; 30:1360-1371. [PMID: 36249945 PMCID: PMC9563042 DOI: 10.1016/j.jsps.2022.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
This study intends to evaluate the development, importance, pre-clinical and clinical study evaluation of stem cell therapy for the treatment of cardiovascular disease. Cardiovascular disease is one of the main causes of fatality in the whole world. Though there are great progressions in the pharmacological and other interventional treatment options, heart diseases remain a common disorder that causes long-term warnings. Recent accession promotes the symptoms and slows down the adverse effects regarding cardiac remodelling. But they cannot locate the problems of immutable loss of cardiac tissues. In this case, stem cell treatment holds a promising challenge. Stem cells are the cells that are capable of differentiating into many cells according to their needs. So, it is assumed that these cells can distinguish into many cells and if these cells can be individualized into cardiac cells then they can be used to replace the damaged tissues of the heart. There is some abridgment in this therapy, none the less stem cell therapy remains a hopeful destination in the treatment of heart disease.
Collapse
Affiliation(s)
- Shabnur Mahmud
- School of Health and Life Sciences, Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Safaet Alam
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Umme Habiba Boby
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Kamruzzaman
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - A S M Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - Afroza Tahamina
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Marzina Ajrin
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong 4202, Bangladesh
| |
Collapse
|
34
|
Riboflavin (Vitamin B2) Deficiency Induces Apoptosis Mediated by Endoplasmic Reticulum Stress and the CHOP Pathway in HepG2 Cells. Nutrients 2022; 14:nu14163356. [PMID: 36014863 PMCID: PMC9414855 DOI: 10.3390/nu14163356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Riboflavin is an essential micronutrient and a precursor of flavin mononucleotide and flavin adenine dinucleotide for maintaining cell homeostasis. Riboflavin deficiency (RD) induces cell apoptosis. Endoplasmic reticulum (ER) stress is considered to induce apoptosis, and C/EBP homologous protein (CHOP) is a key pathway involved in this process. However, whether RD-induced apoptosis is mediated by ER stress and the CHOP pathway remains unclear and needs further investigation. Therefore, the current study presents the effect of RD on ER stress and apoptosis in the human hepatoma cell line (HepG2). Firstly, cells were cultured in a RD medium (4.55 nM riboflavin) and a control (CON) medium (1005 nM riboflavin). We conducted an observation of cell microstructure characterization and determining apoptosis. Subsequently, 4-phenyl butyric acid (4-PBA), an ER stress inhibitor, was used in HepG2 cells to investigate the role of ER stress in RD-induced apoptosis. Finally, CHOP siRNA was transfected into HepG2 cells to validate whether RD triggered ER stress-mediated apoptosis by the CHOP pathway. The results show that RD inhibited cell proliferation and caused ER stress, as well as increased the expression of ER stress markers (CHOP, 78 kDa glucose-regulated protein, activating transcription factor 6) (p < 0.05). Furthermore, RD increased the cell apoptosis rate, enhanced the expression of proapoptotic markers (B-cell lymphoma 2-associated X, Caspase 3), and decreased the expression of the antiapoptotic marker (B-cell lymphoma 2) (p < 0.05). The 4-PBA treatment and CHOP knockdown markedly alleviated RD-induced cell apoptosis. These results demonstrate that RD induces cell apoptosis by triggering ER stress and the CHOP pathway.
Collapse
|
35
|
Cai H, Guo H, Deng Y, Jiang J, Liu S, He W, Jian H. RRM2 regulates osteogenesis of mouse embryo fibroblasts via the Wnt/β‑catenin signaling pathway. Exp Ther Med 2022; 24:605. [PMID: 36160885 PMCID: PMC9468855 DOI: 10.3892/etm.2022.11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a widespread bone metabolic disease characterized by reduced bone mass and bone microstructure deterioration. Ribonucleotide reductase M2 (RRM2) is a key enzyme in DNA synthesis and repair. The present study investigated the effect of RRM2 on osteogenesis of mouse embryo fibroblasts (MEFs) and its molecular mechanism. Bioinformatics analysis revealed that RRM2 expression was increased during osteogenesis of MEFs triggered by bone morphogenetic protein 9. Subsequently, MEFs were used as a mesenchymal stem cell model and osteogenic inducing medium was used to induce osteogenic differentiation. RRM2 protein expression was measured by western blotting during osteogenic differentiation induction of MEFs. RRM2 levels in MEFs were upregulated and downregulated by RRM2-overexpressing recombinant adenovirus and small interfering RNA-RRM2, respectively. Bone formation markers (RUNX family transcription factor 2, osterix, distal-less homeobox 5, collagen type I α1 chain, osteopontin and osteocalcin) were detected by reverse transcription-quantitative (RT-q) PCR and alkaline phosphatase (ALP) and Alizarin Red S staining were examined. The protein expression levels of β-catenin and the ratio of phosphorylated (p-)GSK-3β to GSK-3β were detected by western blotting and the RNA expression of downstream related target genes (β-catenin, axis inhibition protein 2 (AXIN2), transcription factor 7 like 2, lymphoid enhancer binding factor 1, c-MYC and Cyclin D1) in the Wnt/β-catenin signaling pathway was measured by RT-qPCR. RRM2 protein expression increased as the osteogenic differentiation induction period was extended. RRM2 overexpression increased osteogenic marker RNA expression, ALP activity, bone mineralization, the protein expression levels of β-catenin, the ratio of p-GSK-3β to GSK-3β and the RNA expression of downstream related target genes in the Wnt/β-catenin signaling pathway, whereas RRM2 knockdown had the opposite effect. The findings of the present study revealed that RRM2 overexpression enhanced osteogenic differentiation, while RRM2 knockdown reduced osteogenic differentiation. RRM2 may regulate osteogenic differentiation of MEFs via the canonical Wnt/β-catenin signaling pathway, providing a possible therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Haijun Cai
- Department of Emergency, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| | - Hui Guo
- Department of Emergency, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| | - Yixuan Deng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Jinhai Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Siyuan Liu
- Department of Orthopedics, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| | - Wenge He
- Department of Orthopedics, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| | - Huagang Jian
- Department of Emergency, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| |
Collapse
|
36
|
Jantalika T, Manochantr S, Kheolamai P, Tantikanlayaporn D, Saijuntha W, Pinlaor S, Chairoungdua A, Paraoan L, Tantrawatpan C. Human chorion-derived mesenchymal stem cells suppress JAK2/STAT3 signaling and induce apoptosis of cholangiocarcinoma cell lines. Sci Rep 2022; 12:11341. [PMID: 35790790 PMCID: PMC9256624 DOI: 10.1038/s41598-022-15298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.
Collapse
Affiliation(s)
- Tanachapa Jantalika
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Weerachai Saijuntha
- Biodiversity and Conservation Research Unit, Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Luminita Paraoan
- Department of Biology, Faculty of Arts and Sciences, Edge Hill University, BioSciences Building, St Helens Road, Ormskirk, L39 4QP, UK.
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand. .,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
37
|
Xue F, Wu J, Feng W, Hao T, Liu Y, Wang W. MicroRNA‑141 inhibits the differentiation of bone marrow‑derived mesenchymal stem cells in steroid‑induced osteonecrosis via E2F3. Mol Med Rep 2022; 26:234. [PMID: 35616132 PMCID: PMC9178681 DOI: 10.3892/mmr.2022.12750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) affects the life of patients. MicroRNA-141 (miR-141) has been found associated with proliferation of bone marrow-derived mesenchymal stem cells (BMSCs). E2F transcription factor 3 (E2F3) has been identified as the target of miR-141 to regulate cell proliferation. The aim of the present study was to investigate whether miR-141 and E2F3 were involved in the osteogenic differentiation of BMSCs during ONFH. BMSCs from 4-week-old Sprague-Dawley rats were transduced with miR-141 mimic or inhibitor lentiviruses. Alkaline phosphatase staining was performed to confirm osteogenic differentiation. Reverse transcription-quantitative PCR, luciferase reporter assays and western blot analysis were also used to examine the interaction between E2F3 and miR-141 in BMSCs from the control and ONFH rats. The lentiviral transductions were carried out successfully. The mRNA expression levels of miR-141 in ONFH were upregulated, while those of E2F3 were downregulated compared with the control rat. The luciferase reporter assays indicated that miR-141 could target E2F3. miR-141 knockdown upregulated the mRNA expression levels of E2F3. In addition, osteogenic differentiation of BMSCs was inhibited following miR-141 overexpression, but increased following miR-141 knockdown, as evidenced by the results of the alkaline phosphatase staining and western blot analysis. In conclusion, miR-141 inhibits the osteogenic differentiation of BMSCs in ONFH by targeting E2F3. These two molecules may represent novel candidates to examine in order to investigate the mechanism underlying ONFH.
Collapse
Affiliation(s)
- Fei Xue
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Jian Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Wei Feng
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Ting Hao
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Yuan Liu
- Department of Orthopedic Surgery, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia Autonomous Region 010010, P.R. China
| | - Wenbo Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
38
|
Epiregulin increases stemness-associated genes expression and promotes chemoresistance of non-small cell lung cancer via ERK signaling. Stem Cell Res Ther 2022; 13:197. [PMID: 35551652 PMCID: PMC9102725 DOI: 10.1186/s13287-022-02859-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Chemoresistance often causes the failure of treatment and death of patients with advanced non-small-cell lung cancer. However, there is still no resistance genes signature and available enriched signaling derived from a comprehensive RNA-Seq data analysis of lung cancer patients that could act as a therapeutic target to re-sensitize the acquired resistant cancer cells to chemo-drugs. Hence, in this study, we aimed to identify the resistance signature for clinical lung cancer patients and explore the regulatory mechanism.
Method Analysis of RNA-Seq data from clinical lung cancer patients was conducted in R studio to identify the resistance signature. The resistance signature was validated by survival time of lung cancer patients and qPCR in chemo-resistant cells. Cytokine application, small-interfering RNA and pharmacological inhibition approaches were applied to characterize the function and molecular mechanism of EREG and downstream signaling in chemoresistance regulation via stemness. Results The RTK and vitamin D signaling were enriched among resistance genes, where 6 genes were validated as resistance signature and associated with poor survival in patients. EREG/ERK signaling was activated by chemo-drugs in NSCLC cells. EREG protein promoted the NSCLC resistance to chemo-drugs by increasing stemness genes expression. Additionally, inhibition of EREG/ErbB had downregulated ERK signaling, resulting in decreased expression of stemness-associated genes and subsequently re-sensitized the resistant NSCLC cells and spheres to chemo-drugs. Conclusions These findings revealed 6 resistance genes signature and proved that EREG/ErbB regulated the stemness to maintain chemoresistance of NSCLC via ERK signaling. Therefore, targeting EREG/ErbB might significantly and effectively resolve the chemoresistance issue. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02859-3.
Collapse
|
39
|
Cheng Y, Gu W, Zhang G, Guo X. Notch1 activation of Jagged1 contributes to differentiation of mesenchymal stem cells into endothelial cells under cigarette smoke extract exposure. BMC Pulm Med 2022; 22:139. [PMID: 35410206 PMCID: PMC9004089 DOI: 10.1186/s12890-022-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have shown therapeutic potential for engraftment to, differentiation into, endothelial cells (ECs). However, low-efficiency yields hinder their use as ECs for therapeutic vascularization. Methods The Notch1 signaling pathway is key to optimal pulmonary development. Recent evidence has shown that this pathway participated in angiogenesis. Herein, we found that in MSCs, Jagged1 was a target for Notch 1, resulting in a positive feedback loop that propagated a wave of ECs differentiation. Results In vitro, Jagged1 was found to be activated by Notch1 in MSCs, resulting in the RBP-Jκ-dependent expression of Jagged1 mRNA, a response that was blocked by Notch1 inhibition. Notch1 promoted the formation of cord-like structures on Matrigel. However, cigarette smoke extract inhibited this process, compared to that in control groups. Moreover, Notch1-overexpressing cells upregulated the expressing of HIF-1α gene. The HIF-1α was an angiogenic factor that clustered with Notch1, underscoring the critical role of Notch1 pathway in vessel assembly. Interestingly, this was abrogated by incubation with Notch1 shRNA. Conclusions Notch signaling pathway promotes differentiation of MSCs in to ECs. It also regulates angiogenesis and transcription of specific markers on ECs. These results provide a mechanism that regulates differentiation of MSCs into ECs phenotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01913-3.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Guorui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuejun Guo
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China.
| |
Collapse
|
40
|
Gu J, Wang B, Wang T, Zhang N, Liu H, Gui J, Lu Y. Effects of Cartilage Progenitor Cells, Bone Marrow Mesenchymal Stem Cells and Chondrocytes on Cartilage Repair as Seed Cells: An in vitro Study. Drug Des Devel Ther 2022; 16:1217-1230. [PMID: 35509492 PMCID: PMC9059879 DOI: 10.2147/dddt.s356936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jiaxiang Gu
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Bin Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Tianliang Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Naichen Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Hongjun Liu
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Jianchao Gui
- Department of Orthopedics, Nanjing Medical University Affiliated Nanjing First Hospital, Nanjing, People’s Republic of China
| | - Yiming Lu
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
- Correspondence: Yiming Lu, Email
| |
Collapse
|
41
|
Borojević A, Jauković A, Kukolj T, Mojsilović S, Obradović H, Trivanović D, Živanović M, Zečević Ž, Simić M, Gobeljić B, Vujić D, Bugarski D. Vitamin D3 Stimulates Proliferation Capacity, Expression of Pluripotency Markers, and Osteogenesis of Human Bone Marrow Mesenchymal Stromal/Stem Cells, Partly through SIRT1 Signaling. Biomolecules 2022; 12:biom12020323. [PMID: 35204824 PMCID: PMC8868595 DOI: 10.3390/biom12020323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
The biology of vitamin D3 is well defined, as are the effects of its active metabolites on various cells, including mesenchymal stromal/stem cells (MSCs). However, the biological potential of its precursor, cholecalciferol (VD3), has not been sufficiently investigated, although its significance in regenerative medicine—mainly in combination with various biomaterial matrices—has been recognized. Given that VD3 preconditioning might also contribute to the improvement of cellular regenerative potential, the aim of this study was to investigate its effects on bone marrow (BM) MSC functions and the signaling pathways involved. For that purpose, the influence of VD3 on BM-MSCs obtained from young human donors was determined via MTT test, flow cytometric analysis, immunocytochemistry, and qRT-PCR. Our results revealed that VD3, following a 5-day treatment, stimulated proliferation, expression of pluripotency markers (NANOG, SOX2, and Oct4), and osteogenic differentiation potential in BM-MSCs, while it reduced their senescence. Moreover, increased sirtuin 1 (SIRT1) expression was detected upon treatment with VD3, which mediated VD3-promoted osteogenesis and, partially, the stemness features through NANOG and SOX2 upregulation. In contrast, the effects of VD3 on proliferation, Oct4 expression, and senescence were SIRT1-independent. Altogether, these data indicate that VD3 has strong potential to modulate BM-MSCs’ features, partially through SIRT1 signaling, although the precise mechanisms merit further investigation.
Collapse
Affiliation(s)
- Ana Borojević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- Correspondence: ; Tel.: +381-11-3108-175
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Hristina Obradović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, 97070 Würzburg, Germany
- Bernhard-Heine-Center for Locomotion Research, University Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Milena Živanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Željko Zečević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Simić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
| | - Borko Gobeljić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Diana Bugarski
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| |
Collapse
|
42
|
Fathi E, Vandghanooni S, Montazersaheb S, Farahzadi R. Mesenchymal stem cells promote caspase-3 expression of SH-SY5Y neuroblastoma cells via reducing telomerase activity and telomere length. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1583-1589. [PMID: 35317118 PMCID: PMC8917842 DOI: 10.22038/ijbms.2021.59400.13187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The use of mesenchymal stem cells in malignancies has attracted much attention due to their ability to deliver anticancer agents to tumors, including cytokines, chemokines, etc. This study aimed to investigate the effect of MSCs on the neuroblastoma SH-SY5Y cells through proliferation/apoptosis, senescence assessment, telomere length, and telomerase activity in vitro. BAX and BCL2 were also examined as potential signaling pathways in this process. MATERIALS AND METHODS For this reason, two cell populations (MSCs and SH-SY5Y cells) were co-cultured on trans-well plates for 7 days. In a subsequent step, SH-SY5Y cells were harvested from both control and experimental groups and subjected to flow cytometry, ELISA, real-time PCR, PCR-ELISA TRAP assay, and Western blotting assay for Ki67/Caspase3 investigation, β-Galactosidase assessment, telomere length, and telomerase activity assay. Also, expression of genes and proteins through real-time PCR and Western blotting demonstrated the involvement of the aforementioned signaling pathways in this process. RESULTS It was found that MSCs contributed significantly to decrease and increase of Ki-67 and Caspase-3, respectively. Also, MSCs dramatically reduced the length of telomere and telomerase activity and increased the β-Galactosidase activity in a significant manner. In addition, significant increase and decrease were also seen in BAX and BCL2 gene and protein expressions, respectively. CONCLUSION These findings revealed that close interaction between MSCs and neuroblastoma cells causes inhibition of the SH-SY5Y cell proliferation and promotes cell senescence via BAX and caspase-3 cascade pathways.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Fathi E, Kholosi Pashutan M, Farahzadi R, Nozad Charoudeh H. L-carnitine in a certain concentration increases expression of cell surface marker CD34 and apoptosis in the rat bone marrow CD34 + hematopoietic stem cells. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:264-271. [PMID: 35126533 PMCID: PMC8806168 DOI: 10.22099/ijvr.2021.39045.5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Stem cell based therapy has been encouraged as an attractive method in regenerative medicine. Poor survival and maintenance of the cells transferred into the damaged tissue are broadly accepted as serious barriers to enhancing the efficacy of regenerative medicine. For this reason, some antioxidants such as L-carnitine (LC) are used as a favorite strategy to improve cell survival and retention properties. AIMS This study aims to evaluate the effect of LC on the expression of CD34 marker and its effect on apoptosis and SUZ12 gene expression. METHODS Rat bone marrow mono-nuclear cells (rBMNCs) were isolated. Then, CD34+ hematopoietic stem cells (HSCs) were enriched using the magnetic activated cell sorting (MACS) method. The cells were treated with 0.2 and 0.4 mM LC. Gene and protein expression levels of the CD34 were then measured by real-time PCR and flow cytometry, respectively. The percentage of apoptosis and SUZ12 gene expression were measured using the Annexin V/PI method and real-time PCR, respectively. RESULTS The results showed that in the experimental group, of the CD34+ HSCs treated with 0.2 mM LC, gene and protein expressions of CD34 increased by 1.7 fold and 0.49%, respectively. At the concentration of 0.4 mM, the early cell apoptosis increased by 25.9% (P<0.05). Also, in the concentration of 0.2 and 0.4 mM LC, the SUZ12 gene expression increased by 1.10 and 1.75 folds compared to the control group (P<0.05 and P<0.01), respectively. CONCLUSION The results of this study could be used to improve chronic myeloid leukemia (CML) as a multidirectional therapeutic strategy.
Collapse
Affiliation(s)
- E. Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - M. Kholosi Pashutan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - R. Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H. Nozad Charoudeh
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|